dc.contributor.author | Elumalai, Punniakoti | en_US |
dc.contributor.author | Parthiban, Anbanandam | en_US |
dc.date.accessioned | 2025-07-02T08:05:56Z | |
dc.date.available | 2025-07-02T08:05:56Z | |
dc.date.issued | 2025-07-01 | |
dc.identifier.citation | Elumalai, P. & Parthiban, A. (2025). Equitable colorings of Cartesian products of square of paths and cycles with square of paths and cycles. TWMS Journal of Applied and Engineering Mathematics, 15(7), 1796-1809. | en_US |
dc.identifier.issn | 2146-1147 | |
dc.identifier.issn | 2587-1013 | |
dc.identifier.uri | https://jaem.isikun.edu.tr/web/index.php/current/133-vol15no7/1449 | |
dc.identifier.uri | http://belgelik.isikun.edu.tr/xmlui/handleiubelgelik/6930 | |
dc.description.abstract | Let [p] = {1, 2, 3, . . . , p} and G be an undirected simple graph. Graph coloring is a special case of labeling, and G is said to admit a proper coloring if no two neighbouring vertices of it are given an identical color. The vertices of an identical color constitute a color class. G is p - colorable if it admits proper p - coloring. The chromatic number, χ(G) = min {p : G is proper p - colorable} and G is equitably p – colorable if it admits proper p - coloring and the absolute difference in size between any distinct pairwise color class is at most 1. The equitable chromatic number, χ=(G) = min {p : G is equitably p - colorable}. The equitable chromatic threshold, χ∗=(G) = min {p′: G is equitably p - colorable ∀ p ≥ p′}. In this paper, we obtain exact values or bounds of χ∗=(G1□G2) and χ=(G1□G2), where G1 = P2m or C2m and G2 = P2n or C2n. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Işık University Press | en_US |
dc.relation.ispartof | TWMS Journal of Applied and Engineering Mathematics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Square of a path and cycle graph | en_US |
dc.subject | Cartesian product | en_US |
dc.subject | Equitable coloring | en_US |
dc.subject | Equitable chromatic number | en_US |
dc.subject | Equitable chromatic threshold | en_US |
dc.title | Equitable colorings of Cartesian products of square of paths and cycles with square of paths and cycles | en_US |
dc.type | article | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.volume | 15 | |
dc.identifier.issue | 7 | |
dc.identifier.startpage | 1796 | |
dc.identifier.endpage | 1809 | |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Emerging Sources Citation Index (ESCI) | en_US |