Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKalandarovich, Durdimurod Durdieven_US
dc.contributor.authorSuyarov, Tursunbek Rajabboyen_US
dc.contributor.authorTurdiev, Halimen_US
dc.date.accessioned2025-08-04T12:01:15Z
dc.date.available2025-08-04T12:01:15Z
dc.date.issued2025-08-01
dc.identifier.citationKalandarovich, D. D., Suyarov, T. R. & Turdiev, H. (2025). Inverse problem for a two-dimensional wave equation with a fractional Riemann-Liouville time derivative. TWMS Journal of Applied and Engineering Mathematics, 15(8), 2083-2100.en_US
dc.identifier.issn2146-1147
dc.identifier.issn2587-1013
dc.identifier.urihttps://jaem.isikun.edu.tr/web/index.php/current/134-vol15no8/1472
dc.identifier.urihttps://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/6967
dc.description.abstractIn this paper, we consider direct and inverse problems for a two-dimensional fractional wave equation with the Riemann-Liouville time fractional derivative. The direct problem is the initial-boundary problem for this equation with nonlocal boundary conditions. In inverse problem it is required to find time variable coefficient at the lower term of equation. Using the method of separation of variables, a classical solution of direct problem was found in the form of a bi orthogonal series in terms of eigenfunctions and associated functions. A nonlocal integral condition is used as the overdetermination condition with respect to the direct problem solution. Using the Fourier method, direct problem is reduced to equivalent integral equations. Then, using the estimates for MittagLeffler function and the generalized singular Gronwall inequality, we obtain an a priori estimate of the solution through an unknown coefficient, which we will need to study the inverse problem. The inverse problem is reduced to a Volterra integral equation of the second kind. Based on the unique solvability of this equation in the class of continuous functions, theorems on the unique solvability of direct and inverse problems are proven. Stability estimate is also obtained.en_US
dc.language.isoengen_US
dc.publisherIşık University Pressen_US
dc.relation.ispartofTWMS Journal of Applied and Engineering Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectWave equationen_US
dc.subjectRiemann-Liouville fractional integralen_US
dc.subjectInverse problemen_US
dc.subjectSpectral methoden_US
dc.subjectStabilityen_US
dc.subjectBanach fixed point theoremen_US
dc.titleInverse problem for a two-dimensional wave equation with a fractional Riemann-Liouville time derivativeen_US
dc.typearticleen_US
dc.description.versionPublisher's Versionen_US
dc.authorid0000-0002-6054-2827
dc.authorid0000-0002-7660-3153
dc.authorid0000-0002-1152-9159
dc.identifier.volume15
dc.identifier.issue8
dc.identifier.startpage2083
dc.identifier.endpage2100
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakEmerging Sources Citation Index (ESCI)en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess