Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorHameed, Arshaden_US
dc.contributor.authorHadi Rashid, Amalen_US
dc.contributor.authorIbrahim Shahab, Ghaidaen_US
dc.contributor.authorMohammed, Shaimaaen_US
dc.contributor.authorRabiu, Sanien_US
dc.date.accessioned2025-08-05T05:46:23Z
dc.date.available2025-08-05T05:46:23Z
dc.date.issued2025-08-01
dc.identifier.citationHameed, A., Hadi Rashid, A., Ibrahim Shahab, G., Mohammed, S. & Rabiu, S. (2025). Optimizing queueing systems with metaheuristics: a comparative analysis of genetic algorithms and traffic flow inspired optimization. TWMS Journal of Applied and Engineering Mathematics, 15(8), 2114-2127.en_US
dc.identifier.issn2146-1147
dc.identifier.issn2587-1013
dc.identifier.urihttps://jaem.isikun.edu.tr/web/index.php/current/134-vol15no8/1474
dc.identifier.urihttps://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/6969
dc.description.abstractQueueing system inefficiencies present critical operational challenges in service industries, particularly in healthcare where extended patient wait times and suboptimal resource utilization directly impact service quality and operational costs. While traditional analytical models (e.g., M/M/1, M/M/c) offer theoretical solutions, they frequently fail to accommodate dynamic real-world complexities. This study comparatively evaluates two metaheuristic approaches the established Genetic Algorithm (GA) and the novel Traffic Flow Inspired Optimization Algorithm (TFIOA), which models adaptive behaviors observed in transportation systems to optimize physician scheduling at Baquba Hospital’s Internal Medicine Clinic. Using empirical patient arrival and service time data collected over three-hour operational windows, we implemented both algorithms across three physician allocation scenarios (1-3 doctors). Performance was assessed through five metrics: patient waiting time, physician idle time, convergence rate, computational cost, and total operational expenditure. Results demonstrate TFIOA’s superior performance, achieving a 9.96% improvement in optimal solutions, 11.02% reduction in average costs, 33.6% faster convergence, and 17.1% higher success rate compared to GA. The dual objective cost function effectively balanced patient and physician time considerations, enabling practical policy evaluation. While TFIOA shows significant promise for realtime queue management, this study is limited by its single clinic focus and condensed observation period. Future research should validate these findings across diverse healthcare settings and extended timeframes.en_US
dc.language.isoengen_US
dc.publisherIşık University Pressen_US
dc.relation.ispartofTWMS Journal of Applied and Engineering Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectQueueing optimizationen_US
dc.subjectGenetic Algorithm (GA)en_US
dc.subjectTraffic Flow Inspired Optimization (TFIOA)en_US
dc.subjectHealthcare schedulingen_US
dc.subjectMetaheuristic algorithmsen_US
dc.titleOptimizing queueing systems with metaheuristics: a comparative analysis of genetic algorithms and traffic flow inspired optimizationen_US
dc.typearticleen_US
dc.description.versionPublisher's Versionen_US
dc.authorid0009-0005-7854-1047
dc.authorid0009-0001-1842-6857
dc.authorid0009-0004-8804-9868
dc.authorid0009-0000-5693-0563
dc.authorid0000-0002-2149-2695
dc.identifier.volume15
dc.identifier.issue8
dc.identifier.startpage2114
dc.identifier.endpage2127
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US
dc.indekslendigikaynakWebo of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakEmerging Sources Citation Index (ESCI)en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess