Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAlshaybawee, Tahaen_US
dc.contributor.authorAlhusseini, Fadel Hamid Hadien_US
dc.contributor.authorMzedawee, Asaad Naser Husseinen_US
dc.date.accessioned2025-10-01T12:42:32Z
dc.date.available2025-10-01T12:42:32Z
dc.date.issued2025-10-01
dc.identifier.citationAlshaybawee, T., Alhusseini, F. H. H. & Mzedawee, A. N. H. (2025). Adaptive boosted estimation for single-index quantile regression. TWMS Journal of Applied and Engineering Mathematics, 15(10), 2567-2583.en_US
dc.identifier.issn2146-1147
dc.identifier.issn2587-1013
dc.identifier.urihttps://jaem.isikun.edu.tr/web/index.php/current/136-vol15no10/1511
dc.identifier.urihttps://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/7058
dc.description.abstractWe propose a novel boosted estimation method for single-index quantile regression (SIQR) that combines the robustness of quantile regression with the flexibility of gradient boosting. By modeling the conditional quantile through a single linear index and a nonlinear link function, our method achieves effective dimension reduction while capturing complex relationships in the data. The procedure iteratively updates the index direction and fits base learners such as splines or regression trees to the pseudoresiduals from the quantile loss. This approach avoids multivariate smoothing, handles non-Gaussian errors, and adapts well to nonlinear structures. We establish theoretical guarantees, including consistency and optimal convergence rates under standard conditions. Extensive simulation studies and a real-data application demonstrate that the proposed method outperforms existing SIQR approaches in terms of accuracy and robustness.en_US
dc.language.isoengen_US
dc.publisherIşık University Pressen_US
dc.relation.ispartofTWMS Journal of Applied and Engineering Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectQuantile regressionen_US
dc.subjectSingle-index modelen_US
dc.subjectGradient boostingen_US
dc.subjectSemi-parametric quantile regressionen_US
dc.subjectSingle-index quantile regressionen_US
dc.titleAdaptive boosted estimation for single-index quantile regressionen_US
dc.typearticleen_US
dc.description.versionPublisher's Versionen_US
dc.authorid0009-0003-8414-1424
dc.authorid0000-0002-3458-1398
dc.authorid0009-0004-0377-9555
dc.identifier.volume15
dc.identifier.issue10
dc.identifier.startpage2567
dc.identifier.endpage2583
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakEmerging Sources Citation Index (ESCI)en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess