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SOME COMMON FIXED POINT RESULTS VIA (»-SIMULATION
FUNCTION

MOHAMMAD IMDAD!, ATIYA PERVEEN!, RQEEB GUBRAN!, §

ABSTRACT. Inspired by Khojasteh et al. [Filomat 29(6), 2015], Karapinar [Filomat
30(8), 2016] and Demma et al. [IJMSA 11(1), 2016], we establish some common fixed
point results for a pair of self-mappings defined on a complete b-metric space employing a
simulation function. Our results generalize several core results of the existing literature,
particularly, the results contained in aforementioned articles.
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1. INTRODUCTION

Due to extensive and broad applications, fixed point theory remains the most utilized
tool from nonlinear analysis. Banach contraction principle is the most classical and fun-
damental results of metric fixed point theory. This principle guarantees a unique fixed
point for each contraction defined on a complete metric space.

Many researchers have generalized Banach contraction principle utilizing a relatively
more general contractive conditions. Other generalizations of this principle can be ob-
tained either by proving it in various types of relatively larger classes of spaces (e.g.
2-metric space [1], b-metric [2,3], D-metric [4], partial metric [5], G-metric [6], cone metric
space [7] etc.) or by increasing number of involved mappings and even lately by employing
admissible mappings (e.g, [8]).

Improving Banach principle revived a new impetus when the authors attempted to pro-
duce unified-fixed point results. With such quest, Popa [9] initiated the notion of implicit
function, Wardowski [10] initiated a new type of contractions called F-contractions, Wei-
Shih Du and Khojasteh [11] presented the notion of manageable function, Khojasteh et
al. |[12] initiated the idea of simulation function and De Hierro and Shahzad [13] initiated
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the idea of R-function as well as R-contractions.

By now, there exists an extensive literature on this theme and still vigorous research is
going on. For this kind of work one can consult |[14-18] and references therein.

In this article, inspired by all above generalizations of Banach contraction principle,
we establish common fixed point results for a pair of self-mappings in a b-metric space
employing b-simulation function.

2. PRELIMINARIES

In order to prove our results, the following definitions, notions and auxiliary results are
needed. In the sequel, X stands for a non-empty set, o : X x X — [0,00), (T, g) is a pair
of self-mappings on X and Ix denotes the identity mapping on X.

Definition 2.1. [19] An element x € X is called a coincidence point of the pair (T, g) if
Tx = gx. The point z € X with z = Tx = gz is called a point of coincidence.
Moreover, z is called a common fized point of (T, g) if x = z.

We denote the set of all coincidence points of the pair (T, g) by Coin(T,g).

Definition 2.2. [20/ The pair (T, g) is said to be weakly compatible if T and g commute
at all x € Coin(T), g).

Definition 2.3. [21] The mapping T is called g-continuous at xy € X, if for any sequence
{rn} C X,

9T, — grg = T, — Txg.
If T is g-continuous at every x € X, then T is said to be g-continuous.

Definition 2.4. [§] The mapping T is called a-admissible with respect to g if for all
x,y € X, we have
a(gz, gy) > 1= a(T2,Ty) > 1.

Definition 2.5. [22] Two points x,y € X are said to be a (g, «)-comparable if a(gx, gy) >
1 or a(gy,gz) > 1.

Definition 2.6. [25] A subset Y of a metric space (X,d) is said to be a precomplete if
every Cauchy sequence {x,} in'Y converges to a point of X.

Bakhtin [2] and Czerwik [3] introduced the concept of b-metric space as follows:

Definition 2.7. [2,3] Let X be a non-empty set and b > 1 a fized real number. A function
o:X x X — [0,00) is known as b-metric if it satisfies the following properties for each
x,y,z € X:

(1) o(z,y) =0 iff & = y;

(2) oz, y) = oy, x);
(3) o(z,2) < blo(z,y) + oy, 2)].
The pair (X, o) is referred as b-metric space.

Remark 2.1. Fvery metric space is a b-metric space but the converse need not be true in
general. Further, for b= 1, the concept of b-metric space coincides with the metric space.

Khojasteh et al. [12] introduced the class of simulation function which was later refined
by Argoubi et al. [24] and De-Hierro et al. [25]. Karapinar [26] enlarged this class to cover
a-admissible mappings. Later on, Demma et al. |27] defined a type of simulation functions
in b-metric space as under:
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Definition 2.8. 27/ Let (X, o) be a b-metric space. A b-simulation function ¢ : [0, 00) X
[0,00) = R is a function satisfying the following:
(C1) C(t,s) <s—t, for all s,t > 0;
(C2) if {tn} and {s,} are sequences in (0,00) such that
0 < lim ¢, <liminfs, <limsups, <b lim ¢, < oo,
then
lim sup ¢ (bt,, s,) < 0.

n—o0

Remark 2.2. Condition ((2) in Definition[2.8§ and ((4) of [18, Definition 3.1] are inde-
pendent.

Some examples of simulation function are as under:
Example 2.1. ((t,s) = ks —t, for allt,s € [0,00), where k € [0,1).

Example 2.2. ((t,s) = ¥(s) —t, for all t,s € [0,00), where ¢ : [0,00) — [0,00) is an
upper semi-continuous function such that ¥(t) <t for allt >0 and 1(0) = 0.

Example 2.3. ((t,s) = ¢(s) — t, for all t,s € [0,00), where 1) : [0,00) — [0,00) is a
non-decreasing function satisfying > oo | W"(t) < oo for all t > 0, where Y™ is the n'"
iterate of .

Example 2.4. ((t,s) = s — ¢(s) — t, for allt,s € [0,00), where ¢ : [0,00) — [0,00) is a
continuous function such that ¢(t) =0 iff t = 0.
3. MAIN RESULTS

Inspired by [28], we introduce the following definition which is needed in our subsequent
discussions.

Definition 3.1. The mapping T is said to be a triangular a-orbital admissible with respect
to g if
(i) a(gx, Tz) > 1 = a(Tz, T?x)
(i) gz, gy) > 1 and a(gy, Ty)

The following is our main result.

1;

>
>1= a(gz,Ty) > 1.

Lemma 3.1. Let (X,0) be a b-metric space and T, g : X — X which satisfy the following
conditions:

(a) the mapping T is triangular a-orbital admissible with respect to g;

(b) there exists xg € X, such that a(gxo, Txo) > 1;

(c) there exists a b-simulation function ¢ such that

C(ba(gz, gy)o(Tz, Ty),o(gz, gy)) > 0, for all z,y € X. (1)

Then the sequence {gxy}, realized as Txy, = gxny1, for all n € NU {0}, is a bounded
sequence.

Proof. Let g € X as in (b) and generate a sequence {gz,} defined by T'z,, = gzp+1, for
all n € NU{0}. If there exists ng such that gz,, = gxn,+1, then z,, is a coincidence
point of the pair (7, g). Otherwise gz, # gzpy1 for all n > 0, i.e. o(gxyn, grni1) > 0 for
all n e NU{0}.

Using condition (a) and (c), we deduce that

a(gTn, gTm) > 1, for all m,n € NU {0} and m > n. (2)
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Since T satisfies , we have
0 < ¢(balgzn—1,92n)0(T2p—1,Tn),0(92n-1, 9n))

= ((ba(gxn-1,97n)0(9Tn, 9Tn+1), 0(9Tn—1,9%n))

< 0(92n—1,92n) — ba(gTn-1, g2n)0(9Tn, gTn+1),
so that

ba(grn—1,97n)0(9Tn, 9Tnt+1) < 0(9Tn—1,9Tn)- (3)
Since

0(92n; 9Tnt1) < (gTn—1,9%n)0(9Tn, gTnt1), (4)

therefore, {o(gxn, gxni1)} is a strictly decreasing sequence of positive real numbers, so

that it converges to some r > 0.
We assert that 7 = 0. Suppose on contrary, r > 0, then letting n — oo in , we get

br < br ILm a(grn—_1,9%y) <. (5)

If b > 1, then equation is possible only if » = 0. For b = 1, we have

lim a(gxn—1,9z,) = 1.
n—oo

Applying (¢2) with ¢, = a(gzn—1,92n)0(9Tn, gTn+1) and s, = o(gzn—_1,92y), we obtain
0 < limsup ((ba(g2n—1, 920)0(9Tn, gTn+1), 0(9Tn—1,9Tn)) < 0

n—o0

a contradiction so that, in all,

lim o(gxy, grny1) = 0. (6)

n—oo

Now, we prove that {gx,} is a bounded sequence. Suppose, on contrary, it is not. Then
there exists a subsequence {gzy, } (of {gz,}) such that n; = 1 and for each k € N, ng4q
is the smallest integer such that

O—(gxnk+1 ) gm"lk) >1

and
J((gxmagxnk) S 17 fO?“ Nk S m S Nk+1 — 1.
Now, by the triangle inequality, we obtain
1< U(gxnk+1,ga:nk) < ba(gwnk+l,gmnk+1_1) + bO’(g.Tnk+l_1, gxnk)
< bo(9Tnyyr» 9Tnys,—1) +0, for all k € N.
Letting £ — oo in the above inequality and using @, we get

s kh—{goo-(gfnkﬂ’gxnk) <b.

Again, from , we deduce that
ba(gxnkflagl‘nkJrlfl)J(gxnkagxnkJrl) < U(gwnkflagl‘n;ﬂrlfl)
Using above inequality and triangle inequality, we obtain
b < ba(gznk,l, gxnk+1fl)o-(gxnkvg$nk+1) < U(gﬂfnk,hgl'nk+1,1)
< bo(gTn,—1,9%n,,) + b0 (gTn,, 9Tn, 1)
< ba(g'xnk*l?gﬁnk) + b.
Letting k — oo in the preceding inequality and applying @, we get

b<blim a(grn,—1,9%n, —1)0(9Tn,, 9Tn,,,) < b
k—o00



610 TWMS J. APP. ENG. MATH. V.10, N.3, 2020

so that

lim o(gzn;, 1, 9Tny,—1)0(9Tn,, 9Tn, ;) = 1
k—o0

and

kh—{go (9T, -1, 9Tnyy, 1) = b.

Then, by condition ({2), we have

0 < lim Supg(ba(g‘rnk—lugInk+1—l)G(gxnk7gxnk+1)7 U(gxnk—lagxnk+1—1) < 07
n—oo

which is a contradiction. Thus our claim is established and hence {gz,} is bounded. O
Using Lemma we prove our main result which runs as follows:

Theorem 3.1. Let (X,0) be a b-metric space and T, g : X — X. Suppose the following
conditions hold:
(a) T is triangular a-orbital admissible with respect to g;
(b) there exists xy € X, such that a(gxo, Txo) > 1;
(c) there exists Y C X such that'Y is precomplete in g(X) and T(X) CY C g(X);
(d) there exists a b-simulation function ¢ satisfying (1);
(e) T is g-continuous.
Then there exists u € X such that Tu = gu. Furthermore, if T satisfies the following:

(f) for every x,y € Coin(T,g), there exists z € X such that z is (g, a)-comparable to
x and y;
(9) T and g are weakly compatible,

then the pair (T, g) has a unique common fized point.

Proof. Choose xg € X such as in (b) and define a sequence {gx,} satisfying T'z,, = gzp+1
for all n > 0. By lemma we obtain that {gz,} is a bounded sequence. Next, we show
that {gx, } is a Cauchy sequence. To accomplish this let us consider C,, = sup{o(gx;, gx;) :
i,j > n}; n € N. Then, C, < oo for every n € N. As {gz,} is a bounded sequence,
therefore, in view of the definition of {C),}, it is a bounded below as well as positive
decreasing. Hence,

lim C,, = C.

n—oo
where C' > 0. Now, we assert that C' = 0. Suppose, on contrary, that C' > 0. By the
definition of C),, for every k € N, there exists ng, my € N such that my > ny > k with

1

Letting £ — oo, one gets
lim o(g9zm,, 9xn,) = C. (7)
k—o00
Again, from and the definition of C),, we deduce that
ba(gﬂsnk,l, gﬂ:mk,l)a(gmmk,gxnk) < Clr-1.
Letting £ — oo in the above inequality and using equation , we get

bC < bC lim a(gxn,—1, 9Tme—1) < C. (8)
k—00
For b > 1, equation is possible only if C'= 0 and for b = 1, we obtain

lim o(gzn,—1,9%m,—1) = 1.
k—o0
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On using ((2), we have

0 < limsup C(ba(gl‘nkfla g$mk,1)a(gxnk, gxmk)7 O'(gxnkfla gxmkfl) <0,

n—oo

which is a contradiction so that

lim o(g9xm,, gzn,) = 0. 9)

k—o0

Thus, we have shown that {gz,} is a Cauchy sequence in Y. The precompleteness of Y
in g(X) ensures that there exists some x € X such that

lim gz, = gz.
n—oo

Now, owing to the g-continuity of 7', we have

lim Tz, = Tx.
n—oo

As Tz, = gxp41, the uniqueness of the limit implies that
Tx = gx. (10)
Next, assume that z,y € Coin(T, g), then by condition (f), there exists zgp € X such
that a(gzo0, gx) > 1 or a(gzx, gzo) > 1. In case a(gzo, gx) > 1, consider the sequence {gz,}
based at zg by Tz, = gzp+1. Since T' is triangular a-orbital admissible with respect to g,
inductively, we find a(gz,, gx) > 1, for all n € NU {0}. Now by equation , we derive
ba(gzn, 92)0(g2n+1, 97) < 0(g2n, 9z), (11)
which shows that {o(gzn, gz)} is a strictly decreasing sequence of positive real numbers.
Hence, there exists some L > 0 such that
lim o(gzn,gz) = L.
n—o0
Suppose L > 0. On taking limit in , we get
bL <bL lim a(gzn,gz) < L.
n—oo

Again, proceeding on the lines as before, for b > 1 one can show that L = 0 while for
b =1, using ((2) with t,, = a(gzn, gx)o(92zn+1,92) and s, = o(gzn, gx), we have

0 < limsup ((ba(g2n, 97)0(92n+1, 97), 0(92n, gr) < 0

n—oo

a contradiction. Thus, in all, we have L = 0, i.e., lim,_ o gz, = gz. In the same way,
we can also prove lim, . gz, = gy. Owing to the uniqueness of the limit, gz = gy, i.e.,
(T, g) has a unique point of coincidence.

Now we have to establish the uniqueness of a common fixed point. Let x € Coin(T, g),
then there exists some z € X, such that Tz = gz = 2. By condition (g), gz = g(Tx) =
T(gx) = Tz, then due to uniqueness of the point of coincidence

Tz =gz =z

Hence, z is a common fixed point of the pair (T, g). Now, appealing to the uniqueness of
the point of coincidence, z is unique. This completes the proof. O

Next, we demonstrate Theorem [3.1] by the following example:
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Example 3.1. Let X =[0,1] and 0 : X x X — [0,00) be defined by
G(‘Tay) = (ZE - y)27 V$7Z/ € X.

Then (X, o) is a complete b-metric space with b=2. Define T,g: X — X anda : X x X —
[0,00) as,

x x
T = ———— = — X
x 4(1+$),gw Z,Vx,ye

and

0, ifz=y,

a(z,y) = )

1, ifx#uy.

Then, for ((t,s) = ks —t, Vt,s € [0,00) and k € [31—2, 1), all the conditions of Theorem

are satisfied. Observe that, is obvious for gr = gy. Next, for gxr # gy:
C(algz, gy)o(Tz,Ty),0(gz, gy) = ko(gx, gy) — 2a(gx, gy)o (T, Ty)

ok (z —y)?
= Z(ac —y)* —2(1) A1 +z)(1+y))?

b
— (5 3 )07

1
> k —,1).
o ke [ 51

Now, appealling to Theorem the pair (T, g) has a unique common fized point (namely
rz=0).

Another version of Theorem is the following.

Theorem 3.2. The conclusion of Theorem[3.1] remains true if we replace the assumption
(e) by the following:

(€') if {gzn} is a sequence in X such that a(gxn,grns1) > 1 for all n and gx, —
gu € g(X) as n — oo, then there exists a subsequence {gxy,} of {gzn} such that
a(gan,,gu) > 1 for all k.

Proof. The proof runs on the lines of the proof of Theorem up to . From equa-
tion and condition (e’), there exists a subsequence {gz,,} (of {gz,}) such that
a(gzn,,gu) > 1 for all k. Since T satisfies (1], therefore

0 < ((ba(gan,, gu)o(Ten,, Tu), 0(g2n,, gu))
= C(ba(gzn,,, gu)o (g1, Tu), 0 (gTn, , gu))
< (g, gu) — ba(gn,, gu)o(grn, +1, Tu),
which implies that
0(gxn,+1, Tu) < ba(gzn,, gu)o(gen,+1,Tu) < o(gzn,, gu). (12)
On letting k£ — oo in , we obtain o(gu,Tu) = 0, i.e. gu = Tu. The remaining part of
the proof runs as in Theorem O

The following consequences exhibit that our results are general enough to deduce several
results of the existing literature.
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Corollary 3.1. (Banach [29] type) Let (X,0) be a b-metric space, o : X x X — [0,00)
and T, g : X — X which satisfy the following:

ba(gz, gy)o(Tx, Ty) < ko(gz, gy),
for all x,y € X, where k € [0,1). If the pair (T, g) satisfies all the conditions of Theorem
(resp. , then the pair (T, g) has a unique common fized point.

Proof. In view of Exampleand Theorem (resp. Theorem, the result follows. [
Corollary 3.2. (Boyd-Wong [30] type) Let (X, o) be a b-metric space, o : X x X — [0, 00)
and T, g : X — X such that there exists an upper semi-continuous function 1 : [0,00) —
[0,00) with ¢¥(t) <t for all t >0, ¥(0) =0 and

ba(gz, gy)o(T'x, Ty) < ¢(o(gz, gy)) for all z,y € X( wherin gz # gy).

If the pair (T,g) satisfies all the conditions of Theorem (resp. Theorem , then
(T, g) has a unique common fixed point.

Proof. The result follows from Example and Theorem (3.1 (resp. [3.2)). U
The following result is a generalized version of the main result of Samet et al. [8].

Corollary 3.3. /8] Let (X, 0) be a b-metric space, o : X x X — [0,00) and T,g: X — X
which satisfy the following:
ba(gz, gy)o(Tz, Ty) < ¢(o(gz, gy)),

for allz € X where : [0,00) — [0,00) is a non-decreasing function such thaty o> ™ (t) <
00, for all t > 0. If all the conditions of Theorem (resp. Theorem are satisfied,
then the pair (T, g) has a unique common fized point.

Proof. The result follows in view of the Example and Theorem 3.1/ (resp. Theorem
32). O

Next, we describe Rhoades type result.

Corollary 3.4. [31] Let (X, 0) be a b-metric space, a: X x X — [0,00) and T,g: X — X
which satisfy the following:

ba(gr, gy)o(Tx, Ty) < gz, gy) — ¢(o(gz, 9y)),

for all x,y € X, where ¢ : [0,00) — [0,00) is a continuous function such that ¢(x) = 0 iff
x = 0. If all the conditions of Theorem (resp. Theorem are satisfied, then T and
g have a unique common fized point.

Proof. The result follows in view of Example and Theorem [3.1| (resp. Theorem|3.2). O
On setting g = Iy, Y = X and take a = 1 in Theorem [3.1] we get the following:

Corollary 3.5. Theorem 5.3 of [27] and Theorem 2.3 of [32] follow immediately from
Theorem [31.

Choosing g = Ix, Y = X and b =1 in Theorems [3.1] and we get the following:
Corollary 3.6. Theorem 1.7 of [26] follows from Theorems and immediately.

Similarly, one can deduce a fixed point (or a common fixed point) result corresponding
to every b-simulation functions. Naturally, all the above results remain true in metric
spaces.
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