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RADIATION OF ACOUSTIC WAVES FROM A CIRCUMFERENTIAL

SLOT ON A CIRCULAR DUCT

H. OZTURK, §

Abstract. Analytical solution is studied for a rigid circular waveguide which has a finite
gap on its outer wall. Following the Wiener-Hopf technique, problem is formulated as a
Fredholm integral equations. Asymptotic evaluations of integrals are carried out and the
field terms are determined explicitly. Finally, the influence of the different parameters
(gap length, width of the waveguide, etc.) on the radiation are illustrated numerically.
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1. Introduction

Acoustic wave radiation along duct systems is a basic problem and has been extensively
studied in the literature because of its use in many applications, such as noise reduction in
exhaust systems, design of aircraft jet and turbofan engines, room ventilators, etc. There-
fore, it is essential to investigate more accurate mathematical models for such engineering
problems. In order to do that different physical structures including expansion chambers,
circumferential slots, acoustically absorbent materials and different techniques including
Wiener-Hopf, mode matching, generalized scattering-matrix have been investigated in lit-
erature [1− 5].

As is well known, using a reactive or a dissipative silencer is an efficient method of
reducing noise in duct systems. When a sound wave propagates in cylindrical ducts,
sudden area changes on the geometry or coated duct walls with an acoustically absorbent
material can help to reduce energy in the transmitted wave. The abrupt changes in
cross-sectional area are formed as a reactive silencer and are widely analyzed in literature
[6− 9] . On the other hand, acoustically absorbent lining which was proven to be a very
useful method acts as a dissipative silencer since it dissipates acoustic energy into heat
energy [10]. Recently, the radiation of acoustic waves from semi-infinite coated pipe,
which also acts as a dissipative silencer, is analyzed rigorously [11]. In [12, 13] , the effect
of non-uniform liners on sound propagation is investigated. These works showed that a
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non-uniform liner was more effective in reducing noise compared to the uniform liner.
Then, reflection and transmission matrices in a non-uniformly lined waveguide with a
sudden area changes are determined in [14] .

The case in which a circumferential slot exists on the outer wall of a circular duct is
studied rigorously in this work. Finite gap on the outer wall can act as a reactive silencer.
Our aim is to reveal the effect of a finite gap to the sound propagation. In order to achieve
this goal, Wiener-Hopf technique, which is one of the most powerful analytical techniques
for analyzing the scattering problems, is used. The boundary-value problem has been
stated in the form of a modified Wiener-Hopf equation by considering Fourier transform
of the Helmholtz equation, boundary conditions and continuity relations. After classical
factorization and decomposition procedures Wiener-Hopf equation is reduced into a pair
of Fredholm integral equations and then solved approximately. The effects of the physical
parameters to the radiated field and the reflection and transmission coefficients have been
shown graphically. Finally, analytical derivations are compared to annular duct with an
infinite centerbody and excellent agreement is observed.

The time convention e−iwt is suppressed throughout this paper.

2. ANALYSIS

Consider the acoustic plane wave propagation along a rigid circular duct which has a
finite large gap on its outer wall as shown in Fig. 1. For analysis purposes, it is convenient

Figure 1. The physical structure of the problem.

to express the total field as follows:

uT (ρ, z) =

{
ui(ρ, z) + u1(ρ, z) , a < ρ < b, z ∈ (−∞,∞)

u2(ρ, z) , ρ > b, z ∈ (−∞,∞)
(1)

where ui(ρ, z) is the incident sound wave given by

ui(ρ, z) = eikz (2)

with k = w/c being the wavenumber, which is assumed to have a small positive imaginary
part corresponding to a slightly lossy medium. The lossless case can then be obtained by
making Im(k) →0 at the end of the analysis. In Eq. (1) , u1(ρ, z) and u2(ρ, z) are the
unknown fields which satisfy the Helmholtz equation[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂

∂z2
+ k2

]
uj(ρ, z) = 0 , j = 1, 2 (3)

is to be determined with the help of the following boundary and continuity conditions:

∂

∂ρ
u1(a, z) = 0 , z ∈ (−∞,∞) (4)
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∂

∂ρ
u1(b, z) = 0 , z ∈ (−∞, 0) ∪ (l,∞) (5)

∂

∂ρ
u2(b, z) = 0 , z ∈ (−∞, 0) ∪ (l,∞) (6)

∂

∂ρ
u2(b, z)−

∂

∂ρ
u1(b, z) = 0 , z ∈ (0, l) (7)

u2(b, z)− u1(b, z) = eikz , z ∈ (0, l) (8)

In order to obtain a unique solution to the problem , one has to take into account the
following radiation and edge conditions [15]:

∂u2
∂r
− iku2 = O(r−1/2), r =

√
ρ2 + z2 →∞ (9)

uT (b, z) = O(1), z → 0, l (10)

∂

∂ρ
uT (b, z) = O(z−

1
3 ), z → 0, l (11)

2.1. Derivation of the Modified Wiener-Hopf Equation. Since the u1(ρ, z) satisfies
the Helmholtz equation in the range a < ρ < b and z ∈ (−∞,∞) , its Fourier transform
with respect to z gives [

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+K2 (α)

]
F (ρ, α) = 0 (12)

where

F (ρ, α) = F−(ρ, α) + F1(ρ, α) + eiαlF+(ρ, α) (13)

and

K(α) =
√
k2 − α2 (14)

The square-root function is defined in the complex α−plane, cut along α = k to α = k+i∞
and α = −k to α = −k − i∞ , such that K(0) = k. F−(ρ, α), F1(ρ, α) and F+(ρ, α) are
defined by

F−(ρ, α) =

0∫
−∞

u1(ρ, z)e
iαzdz (15)

F1(ρ, α) =

l∫
0

u1(ρ, z)e
iαzdz (16)

F+(ρ, α) =

∞∫
l

u1(ρ, z)e
iα(z−l)dz (17)

Owing to the analytical properties of Fourier integrals, F−(ρ, α) and F+(ρ, α) are regular
functions in the lower half-plane Im(α) <Im(k) and in the upper half-plane Im(α) >Im(−k) ,
respectively, while F1(ρ, α) is an entire function of α. The general solution of (12) satisfying
the radiation condition reads

F (ρ, α) = −A(α)
J0(Kρ)

KJ1(Ka)
−B(α)

Y0(Kρ)

KY1(Ka)
(18)



H. OZTURK: RADIATION OF ACOUSTIC WAVES FROM A CIRCUMFERENTIAL SLOT... 693

where A(α) and B(α) are unknown spectral coefficients. From equations (4) and (5) we
have

B(α) = −A(α) (19)

and

A(α) = F
′
1(b, α)

J1(Ka)Y1(Ka)

[J1(Kb)Y1(Ka)− J1(Ka)Y1(Kb)]
(20)

where the dot specifies the derivative with respect to ρ. Substituting (19) and (20) into
(18), one obtains

F (ρ, α) =
F
′
1(b, α)[Y0(Kρ)J1(Ka)− J0(Kρ)Y1(Ka)]

K[J1(Kb)Y1(Ka)− J1(Ka)Y1(Kb)]
(21)

On the other hand, the field u2(ρ, z) satisfies the Helmholtz equation in the region ρ > b,
z ∈ (−∞,∞) whose Fourier transform with respect to z gives[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+K2(α)

]
G(ρ, α) = 0 (22)

with
G(ρ, α) = G−(ρ, α) +G1(ρ, α) + eiαlG+(ρ, α) (23)

where

G−(ρ, α) =

0∫
−∞

u2(ρ, z)e
iαzdz (24)

G1(ρ, α) =

l∫
0

u2(ρ, z)e
iαzdz (25)

G+(ρ, α) =

∞∫
l

u2(ρ, z)e
iα(z−l)dz (26)

Notice that G+(ρ, α) and G−(ρ, α) are unknown functions which are regular in the half-
planes Im(α) >Im(−k) and Im(α) <Im(k), respectively, while G1(ρ, α) is an entire func-
tion of α. The general solution of (22) is

G(ρ, α) = C(α)H
(1)
0 (Kρ) (27)

where C(α) is the unknown coefficient to be determined. According to the boundary
condition (6), C(α) is written as follows

C(α) = − G
′
1(b, α)

KH
(1)
1 (Kb)

(28)

Inserting (28) into (27) we obtain

G(ρ, α) = − G
′
1(b, α)

KH
(1)
1 (Kb)

H
(1)
0 (Kρ) (29)

Now, applying Fourier transform to the continuity relations (7) and (8) and making use
of (21) and (29), we obtain the following modified Wiener-Hopf equation

−2M(α)F
′
1(b, α)

πbK2(α)
+ S−(α) + eiαlS+(α) =

(
eil(α+k) − 1

)
i(α+ k)

(30)
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where

S−(α) = F−(b, α)−G−(b, α) (31)

S+(α) = F+(b, α)−G+(b, α) (32)

and

N(α) =
H

(1)
1 (Ka)

H
(1)
1 (Kb)[J1(Kb)Y1(Ka)− J1(Ka)Y1(Kb)]

. (33)

2.2. Solution of the Modified Wiener-Hopf Equation. The first step to solve the
Wiener-Hopf equation is the factorization of the kernel N(α) as:

N(α) = N+(α)N−(α) (34)

where N−(α) and N+(α) are regular and nonzero in the half-planes Im(α) <Im(k) and
Im(α) >Im(−k) , respectively, which are given by

N−(α) = N+(−α) (35)

Their explicit expressions are given in [16] as

N+(α) =
√
N(0)

∞∏
m=1

1

(1 + α/δm)eα(b−a)/mπ

exp

[
ik(b− a)

2
+
K(α)(a− b)

π
log

(
α+ iK(α)

k

)
+ q1(α)− q2(α)

]
exp

{
α

πi
(b− a)

[
1− C + log

(
2πi

k(b− a)

)]}
(36)

with

q1(α) =
1

π
P

∞∫
0

[
1− 2

πx

1

J2
1 (x) + Y 2

1 (x)

]
log

(
1 +

αa

[(ka)2 − x2]1/2

)
dx (37)

q2(α) =
1

π
P

∞∫
0

[
1− 2

πx

1

J2
1 (x) + Y 2

1 (x)

]
log

(
1 +

αb

[(kb)2 − x2]1/2

)
dx (38)

Above , the letter P denotes the Cauchy principle value at the singularities x = ka and
x = kb, C is the Euler’s constant given by C = 0.57721... and δ′ms are the roots of the
function

J1(ξmb)Y1(ξma)− J1(ξma)Y1(ξmb) = 0, m = 1, 2, ... (39)

with

δm =
√
k2 − ξ2m, m = 1, 2, ... (40)

We find from Eq. (36) that the split function N±(α) = O(±α−1/2) as | α |→ ∞.
The second important step is to multiply both sides of Eq. (30) by e−iαl(k+α)

N+(α) and

(k − α) /N−(α) and decompose the resulting equations in the strip Im(−k) <Im(α) <Im(k)
by taking into account the asymptotic behaviour of N±(α). After some manipulations, we
arrive at the following pair of simultaneous Fredholm integral equations:

(k + α)

N+(α)
U(α) = − 1

2πi

∫
L+

e−iτ l
(k + τ)L(τ)

N+(τ)(τ − α)
dτ (41)
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(k − α)

N−(α)
L(α) =

1

2πi

∫
L−

eiτ l
(k − τ)U(τ)

N−(τ)(τ − α)
dτ +

2k

i(k + α)N+(k)
(42)

where L± are the integration paths as shown in Fig. 2, and

U(α) = S+(α)− eikl

i(α+ k)
(43)

L(α) = S−(α) +
1

i(α+ k)
(44)

Changing the integration variable τ by -τ in (41) and replace α by -α in (42) and then

Re α

Im α

−k

L 
+

L
−

L

k

C1CCC2

Figure 2. Complex α−plane.

addition and subtraction of the resulting equations lead to

(k + α)

N+(α)

∼
U(α) =

1

2πi

∫
L−

eiτ l
(k − τ)

N−(τ)

∼
U(τ)dτ

(τ + α)
+

2k

i(k − α)N+(k)
(45)

(k + α)

N+(α)

∼
L(α) = − 1

2πi

∫
L−

eiτ l
(k − τ)

N−(τ)

∼
L(τ)dτ

(τ + α)
− 2k

i(k − α)N+(k)
(46)

where
∼
U(α) = U(α) + L(−α) (47)
∼
L(α) = U(α)− L(−α) (48)

These coupled system of integral equations will be solved by applying the method of

successive approximations for kl � 1. In accordance with this approach,
∼
U(α) and

∼
L(α)

have the asymptotic representation

∼
U(α) =

∼
U

(1)

(α) +
∼
U

(2)

(α) +
∼
U

(3)

(α) + ...

∼
L(α) =

∼
L
(1)

(α) +
∼
L
(2)

(α) +
∼
L
(3)

(α) + ...
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where
∼
U

(1)

(α) and
∼
L
(1)

(α) are the first-order solutions and obtained by setting the inte-
grals in Eqs. (45) and (46) to zero as

∼
U

(1)

(α) =
2kN+(α)

i(k − α)N+(k)(k + α)
(49)

∼
L
(1)

(α) = − 2kN+(α)

i(k − α)N+(k)(k + α)
(50)

and
∼
U

(2)

(α) and
∼
L
(2)

(α) are the second-order solutions determined by replacing the un-
known functions appearing in the integrands by their first-order approximations as

∼
U

(2)

(α) =
∼
L
(2)

(α) = − kN+(α)

πN+(k)(k + α)
I1 (α) (51)

with

I1 (α) =

∫
L−

eiτ l
[N+(τ)]2

N(τ)(k + τ)

dτ

(τ + α)
(52)

According to Jordan’s lemma, the evaluation of I1 (α) is carried out by way of contour
deformation onto the branch-cuts C1 +C2. Using the properties

J1(e
iπKa) = −J1(Ka), Y1(e

iπKa) = −Y1(Ka)− 2iJ1(Ka), H
(1)
1 (eiπKa) = H

(2)
1 (Ka)

(53)

and making the substitution
√
τ − k = eiπ/4

√
t on C1 and

√
τ − k = −eiπ/4

√
t on C2 gives

I1 (α) =
2ieikl [N+ (k)]2

πkb
β(b, l;α) (54)

where

β(b, l;α) =

∞∫
0

e−tl

K2
[
J2
1 (Kb) + Y 2

1 (Kb)
] 1

[t− i(k + α)]
dt (55)

This integral will be solved numerically. The higher-order terms can be derived by fol-
lowing the same procedure and the approximate solution of the modified Wiener-Hopf
equation can be written as

F
′
1(b, α) =

πkb

iN+(k)N+(α)
− iei(α+k)l (k − α)N+(k)

πN−(α)
β(b, l;α). (56)

3. ANALYSIS OF THE FIELDS

The radiated field in the region ρ > b,−∞ < z < ∞, namely, u2(ρ, z) can be obtained
by evaluating the following integral

u2(ρ, z) = − 1

2π

∫
L

F
′
1(b, α)

H
(1)
0 (Kρ)

KH
(1)
1 (Kb)

e−iαzdα (57)
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where L is a straight line parallel to the real α−axis, lying in the strip Im(−k) <Im(α) <Im(k).
This integral can be evaluated asymptotically through the saddle point technique. Taking

into account the asymptotic expansion of H
(1)
0 (Kρ) as Kρ→∞

H
(1)
0 (Kρ)→

√
2

πKρ
ei(Kρ−π/4) (58)

and using the change of variables α = −k cos θ, the radiated field takes the form:

u2(r, θ) = D(θ)
eikr

r
(59)

where

D(θ) =
i

H
(1)
1 (kb sin θ) sin θ

{
ib

N+ (k)N− (k cos θ)

+i
eikl(1−cos θ)

π2
(1 + cos θ)N+ (k)

N+ (k cos θ)
β (b, l,−k cos θ)

}
(60)

where r and θ are the spherical coordinates defined by

ρ = r sin θ (61)

z = r cos θ (62)

The reflected field in the region z < 0, a < ρ < b can be obtained from the inverse Fourier
transform of F− (ρ, α) . By using (18) , we write

u1(ρ, z) = − 1

2π

∫
L

F
′
1(b, α)

K[Y0(Kρ)J1(Ka)− J0(Kρ)Y1(Ka)]

K2[J1(Kb)Y1(Ka)− J1(Ka)Y1(Kb)]
e−iαzdα (63)

According to Jordan’s lemma, the integral is calculated by closing the contour in the
upper half plane and evaluating the residues contributions from the simple poles occuring
at the zeros of K2[J1(Kb)Y1(Ka)−J1(Ka)Y1(Kb)] lying in the upper half of the α−plane,
namely at α = k and α = δ′ms. The reflection coefficient R of the fundamental mode is
computed from the contribution of the first pole at α = k. The result is

R = − ibF
′
1(b, k)

k (a2 − b2)
(64)

Similarly, the transmission field T of the fundamental mode is obtained by evaluating the
integral in (63) for z > l. This integral is computed by closing the contour in the lower
half of the complex α−plane. According to Jordan’s lemma and residue theorem, α = −k
contribution gives

T = − ibF
′
1(b,−k)

k (a2 − b2)
(65)

4. NUMERICAL RESULTS

In order to provide a comparison of the derivations presented, the subproblem which
considers radiation from an annular duct with an infinite centerbody is analyzed. For this
purpose, annular duct is formed as shown in Fig. 3. Using the Wiener-Hopf technique,
the radiated field is expressed as below:

urad(r, θ) =
kb

H
(1)
1 (kb sin θ) sin θN− (k cos θ)N+ (k)

eikr

r
(66)
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Figure 3. Geometry of the subproblem.
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Figure 4. Comparison for b/a = 1.5.
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Figure 5. Effect of truncation number N on the fields .

Fig. 4 shows that the radiated field solution of the original problem approximates perfectly
to the radiated field of the subproblem when l→∞.

Some graphical results displaying the effects of various parameters such as radii of the
walls and gap width on radiated, reflected and transmitted fields are presented. From Fig.
5 we can see that the magnitudes of the reflected and transmitted fields become insensitive
to the truncation number for N > 5. For this reason, in all numerical computations N is
chosen as 20.
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Figure 6. Effect of the b/a on the radiated field.
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Figure 7. Effect of the kl on the radiated field.
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Figure 8. Effect of the b/a on the reflection coefficient.

Figures 6 and 7 display the effects of b/a and kl to the radiated field. In Fig. 6, it
is noticed that the amplitude of the radiated field is oscillating for increasing θ. On the
other hand, it is seen in Fig. 7 that width of the slot has less impact on the radiated field
when the observation angle is much more than 50◦.

Variation of the amplitudes of reflected and transmitted fields are presented in Figures
8 and 9. It is deduced that with increasing values of b/a, the magnitude of the reflected
field increases, while the transmitted field decreases.
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Figure 9. Effect of the b/a on the transmission coefficient.
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Figure 10. Effect of the kl on the transmission coefficient.

Fig. 10 depicts the variation of the amplitude of the transmission coefficient with respect
to kl for different values of ka. As it can be seen, the amplitude increases as the gap length
approaches zero.

5. CONCLUSIONS

In this work, radiation of a plane sound wave by a rigid circular duct with a finite gap
on its outer wall is considered to reveal the influence of the finite gap on the radiation
phenomena. By applying direct Fourier transform, the boundary value problem is formu-
lated as a Wiener-Hopf equation, which is solved via a pair of Fredholm integral equations.
At the end of the analysis, the inverse Fourier transform is applied to determine the ex-
plicit expressions of the reflection, transmission coefficients and radiated field. Also, some
numerical results are presented to show the effects of some physical parameters to the
fields. Also, it is possible to extend the method for the problem where a perforated tube
is located at the finite gap or a mean flow exists in the duct.

References

[1] Demir A., Rienstra S. W. (2006). Sound radiation from an annular duct with jet flow and a lined
centerbody. 12th AIAA/CEAS Aeroacoustics Conf. Cambridge, MA, USA.

[2] Auregan Y., Pagneux V. (2015). Slow sound in lined ducts. J. Acoust. Soc. Am., 138, (2), pp. 605-613.
[3] Rawlins A. D. (1995). A bifurcated circular waveguide problem. IMA J. Appl. Math., 54, pp. 59-81.



H. OZTURK: RADIATION OF ACOUSTIC WAVES FROM A CIRCUMFERENTIAL SLOT... 701

[4] Zhang X., Chen X.X., Morfey C.L. (2005). Acoustic radiation from a semi-infinite duct with a subsonic
jet. Int. J. of Aeroacoustics. 4, (1), pp. 169-184.

[5] Mittra R., Lee S. W. (1971). Analytical techniques in the theory of guided waves. Macmillan. New
York.

[6] Selamet A., Ji Z. L. (2000). Acoustic attenuation performance of circular expansion chambers with
single-inlet and double-outlet. J. Sound Vib., 229, (1), pp. 3-19.

[7] Selamet A., Ji Z. L. (1999). Acoustic attenuation performance of circular expansion chambers with
extended inlet outlet. J. Sound Vib., 223, (2), pp. 197-212.

[8] Munjal M. (1987). Acoustics of Ducts and Mufflers. John Wiley and Sons. New York.

[9] Çınar G., Öztürk H., Yanaz Çınar Ö. (2011). Reflection and transmission of plane acoustic waves
in an infinite annular duct with a finite gap on the inner wall. Math. Meth. Appl. Sci., 34, (2), pp.
220-230.

[10] Rawlins A. D. (1978). Radiation of sound from an unflanged rigid cylindrical duct with an acoustically
absorbing internal surface. Proc. Roy. Soc. Lond. A., 361, pp. 65-91.
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