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STUDY OF SUBCLASSES OF STARLIKE AND CONVEX FUNCTIONS

M. I. FAISAL, §

Abstract. In this article, we introduce new subclasses of starlike and convex functions
by using a new differential operator defined in the open unit disk U. We study the
geometric properties of such subclasses of starlike and convex functions. The vertices,
co-vertices, coordinates of foci and equation of directrix are discussed in detail. Finally,
we investigate various convolution properties of these subclasses.
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1. Introduction

Differential operators based on complex valued functions plays an important role in geo-
metric function theory. In recent years, more and more researchers have been interested
in studying the differential operators. They have not only introduced new differential
operators but also used them for introducing new subclasses of analytic functions. Our
motivation by the research works is based on differential operators, ( see for example
[1, 2, 3, 4, 5, 6, 7]). The articles provides an idea to introduce a new differential operator
for forming new subclasses of analytic functions.
Let

f(z) = a1z +

∞∑
n=2

anz
n, (1)

and

fi(z) = a1,iz +
∞∑
n=2

an,iz
n, gj(z) = b1,jz +

∞∑
n=2

bn,jz
n. (2)

The functions analytic and univalent in U = {z ∈ C : |z| < 1} of the form (1) with a1 = 1
are said to form the class A, and for fi, gi we suppose they have the form (1).
The convolution f ∗ g of the functions f and g, given by (1) is defined by (f ∗ g) (z) =
a1b1z +

∑∞
n=2 anbnz

n = (g ∗ f) (z) .
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We define the differential operator Θm
β,γf(z) in 2012 (cf. [8]), as follows:

Θ0
β,γf(z) = f(z),

((γ + 1) + β)Θ1
β,γf(z) = (β)f(z) + (γ + 1)zf ′(z)

= Θβ,γf(z),

Θ2
β,γf(z) = Θβ,γ(Θ1

β,γf(z)),

...

Θm
β,γf(z) = Θβ,γ(Θm−1

β,γ f(z)), m ∈ N. (3)

If f belongs to A then by using (3),

Θk
β,γf(z) = z +

∞∑
n=2

(
β + n(γ + 1)

β + (γ + 1)

)k
anz

n, k ∈ N0 = N ∪ {0}. (4)

Consider,

fβ,γ(z) = z +
∞∑
n=2

(
β + n(1 + γ)

β + (1 + γ)

)k
zn.

and define
fβ,γ(z) ∗ [fβ,γ(z)]−1 =

z

(1− z)µ
, µ > 0, z ∈ U. (5)

After doing calculation and then using (5), we get

Υk,µ
β,γf(z) = z +

∞∑
n=2

(µ)n−1
(n− 1)!

(
β + (1 + γ)

β + n(1 + γ)

)k
anz

n. (6)

For, 0 ≤ ρ < 1, 0 ≤ δ < 1 and η ≥ 0, let 	µβ,γ(k, ρ, δ, η) denote the class of analytic

functions f given by (1) with a1 = 1 and satisfying the analytic criterion

<

{
z[Υk,µ

β,γf(z)]′

(1− ρ)Υk,µ
β,γf(z) + ρz[Υk,µ

β,γf(z)]′
− δ

}
> η

∣∣∣∣∣ z[Υk,µ
β,γf(z)]′

(1− ρ)Υk,µ
β,γf(z) + ρz[Υk,µ

β,γf(z)]′
− 1

∣∣∣∣∣ .
(7)

In case, for ρ = 0, if f ∈ 	µβ,γ(k, ρ, δ, η), then z[Υk,µ
β,γf(z)]′/Υk,µ

β,γf(z) belongs to the region

of complex plane i.e. {w : <(w − δ) > η|w − 1|} which contains w = 1 and is bounded

by an ellipse

(
u− η2−δ

η2−1

)2

η2(1−δ)2

(η2−1)2

+ v2

(1−δ)2

η2−1

= 1 with vertices at the points
(
η−δ
η−1 , 0

)
,
(
η+δ
η+1 , 0

)
,(

η2−δ
η2−1 ,

1−δ√
η2−1

)
and

(
η2−δ
η2−1 ,

δ−1√
η2−1

)
respectively. By using vertices and co-vertices of

ellipse, one can easily get the coordinates of foci and equation of directrix.

⊕µ,kβ,γ(ρ, δ, η) denote the class of analytic functions f given by (1) with a1 = 1 and

satisfying the analytic criterion

<

{
[Υk,µ

β,γf(z)]′ + z[Υk,µ
β,γf(z)]′′

[Υk,µ
β,γf(z)]′ + ρz[Υk,µ

β,γf(z)]′′
− δ

}
> η

∣∣∣∣∣ [Υk,µ
β,γf(z)]′ + z[Υk,µ

β,γf(z)]′′

[Υk,µ
β,γf(z)]′ + ρz[Υk,µ

β,γf(z)]′′
− 1

∣∣∣∣∣ . (8)

For ρ = 0, if f ∈ ⊕µ,kβ,γ(ρ, δ, η), then z[Υk,µ
β,γf(z)]′′/[Υk,µ

β,γf(z)]′ belongs to the region of com-

plex plane i.e. {w : <(1 + w − δ) > η|w|} which contains w = 1 and is bounded by an el-

lipse

(
u− 1−δ

η2−1

)2

η2(1−δ)2

(η2−1)2

+ v2

(1−δ)2

η2−1

= 1 with vertices at the points
(
1−δ
η−1 , 0

)
,
(
δ−1
η+1 , 0

)
,

(
1−δ
η2−1 ,

1−δ√
η2−1

)
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and

(
1−δ
η2−1 ,

δ−1√
η2−1

)
respectively. By using vertices and co-vertices of ellipse, one can easily

get the coordinates of foci and equation of directrix.
For ρ = k = 0, I get the uniformly starlike and convex functions, first studied by Goodman
[9, 10] and Ronning [11, 12] respectively. For class of α-uniformly convex function, I refer
for study [13]. For special cases of the classes given by (7) and (8), I refer some other

papers (for example [14]-[20]). For sake of convenience, we consider φ(β, γ) =
(
β+(γ+1)
β+n(γ+1)

)
.

A function f defined by (1) belongs to class 	µβ,γ(k, ρ, δ, η) if

∞∑
n=2

(µ)n−1
(n− 1)!

(φ(β, γ))k [n(1 + η)− (δ + η)(1 + nρ− ρ)] |an| ≤ (1− δ). (9)

The class 	µβ,γ(k, ρ, δ, η) is nonempty and having the functions of the form

f(z) = a1z +
∞∑
n=2

(β + n(1 + γ))k(1− δ)(n− 1)!

(µ)n−1(β + (1 + γ))k [n(1 + η)− (δ + η)(1 + nρ− ρ)]
λnz

n,

where λn ≥ 0 and
∞∑
n=2

λn ≤ 1; satisfy the inequality given in (9). Similarly, a function f

defined by (1) belongs to class ⊕µ,kβ,γ(ρ, δ, η) if

∞∑
n=2

(µ)n−1
(n− 1)!

(φ(β, γ))k n [n(1 + η)− (δ + η)(1 + nρ− ρ)] |an| ≤ (1− δ). (10)

2. Main Results (Convolution Properties)

Theorem 2.1. Let the functions fi |ri=1 and gj |qj=1 defined by (2) belong to the class

	µβ,γ(k + 1, ρ, δ, η) and 	µβ,γ(k, ρ, δ, η) respectively. Then convolution of f1 ∗ f2 ∗ · · · ∗ fr ∗
g1 ∗ g2 ∗ · · · ∗ gq(z) belongs to 	µβ,γ(r(k + 2) + q(k + 1)− 1, ρ, δ, η).

Proof. For sake of convenience, let convolution of

f1 ∗ f2 ∗ · · · ∗ fr ∗ g1 ∗ g2 ∗ · · · ∗ gq = G;

then obviously,

G(z) =

[
r∏
i=1

|a1,i|

] q∏
j=1

|b1,j |

 z +

∞∑
n=2

[
r∏
i=1

|an,i|

] q∏
j=1

|bn,j |

 zn.
Since fi ∈ 	µβ,γ(k + 1, ρ, δ, η), then by using (9), we have

∞∑
n=2

(µ)n−1
(n− 1)!

(φ(β, γ))k+1[n(1 + η)− (δ + η)(1 + nρ− ρ)]
∣∣an,i∣∣ ≤ (1− δ)

∣∣a1,i∣∣.
Or ∣∣an,i∣∣ri=1

≤ (φ(β, γ))−k−2
∣∣a1,i∣∣ri=1

. (11)

Similarly if gj ∈ 	µβ,γ(k, ρ, δ, η), then

∞∑
n=2

(µ)n−1
(n− 1)!

(φ(β, γ))k[n(1 + η)− (δ + η)(1 + nρ− ρ)]
∣∣bn,j∣∣ ≤ (1− δ)

∣∣b1,j∣∣. (12)

This implies that ∣∣bn,j∣∣qi=1
≤ (φ(β, γ))−k−1

∣∣b1,j∣∣qi=1
. (13)
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Now we have to do that
∞∑
n=2

(µ)n−1
(n− 1)!

(φ(β, γ))t[n(1 + η)− (δ + η)(1 + nρ− ρ)]
[ r∏
i=1

∣∣an,i∣∣][ q∏
j=1

∣∣bn,j∣∣]
≤ (1− δ)

[ r∏
i=1

∣∣a1,i∣∣][ q∏
j=1

∣∣b1,j∣∣].
Applying simultaneously (11), (12) and (13) for |ri=1, j = q and |q−1j=1 respectively. Consider

[t = r(k + 2) + q(k + 1)− 1)]
∞∑
n=2

(µ)n−1
(n− 1)!

(φ(β, γ))t[n(1 + η)− (δ + η)(1 + nρ− ρ)]
[ r∏
i=1

∣∣an,i∣∣][ q∏
j=1

∣∣bn,j∣∣]
≤
∞∑
n=2

(µ)n−1
(n− 1)!

(φ(β, γ))t[n(1 + η)− (δ + η)(1 + nρ− ρ)]
[
(φ(β, γ))−r(k+2)

×(φ(β, γ))−(q−1)(k+1)
∣∣bn,q∣∣ r∏

i=1

∣∣a1,i∣∣][ q−1∏
j=1

∣∣b1,j∣∣]
=

∞∑
n=2

(µ)n−1
(n− 1)!

(φ(β, γ))k[n(1 + η)− (δ + η)(1 + nρ− ρ)]
∣∣bn,q∣∣[ r∏

i=1

∣∣a1,i∣∣ q−1∏
j=1

∣∣b1,j∣∣]
≤ (1− δ)

[ r∏
i=1

∣∣a1,i∣∣][ q∏
j=1

∣∣b1,j∣∣]⇒ G ∈ 	µβ,γ(r(k + 2) + q(k + 1)− 1, ρ, δ, η).

This completes the proof of Theorem 2.1. �

Corollary 2.1. Let the functions fi |ri=1 and gj |qj=1 defined by (2) belong to the class

	µβ,γ(k + 1, ρ, δ, η) and 	µβ,γ(k − 1, ρ, δ, η) respectively. Then convolution of f1 ∗ f2 ∗ · · · ∗
fr ∗ g1 ∗ g2 ∗ · · · ∗ gq(z) belongs to 	µβ,γ(r(k + 2) + qk − 1, ρ, δ, η).

Corollary 2.2. Let the functions fi |ri=1 and gj |qj=1 defined by (2) belong to the class

	µβ,γ(k, ρ, δ, η) and 	µβ,γ(k, ρ, δ, η) respectively. Then convolution of f1 ∗ f2 ∗ · · · ∗ fr ∗ g1 ∗
g2 ∗ · · · ∗ gq(z) belongs to 	µβ,γ((r + q)(k + 1)− 1, ρ, δ, η).

Theorem 2.2. Let the function fi |ri=1 defined by (2) belongs to the class 	µβ,γ(k+1, ρ, δ, η).

Then convolution of f1 ∗ f2 ∗ · · · ∗ fr belongs to 	µβ,γ(r(k + 2)− 1, ρ, δ, η).

Proof. We consider f1 ∗ f2 ∗ · · · ∗ fr = G. Since fi ∈ 	µβ,γ(k + 1, ρ, δ, η), this implies that

∞∑
n=2

(µ)n−1
(n− 1)!

(φ(β, γ))k+1[n(1 + η)− (δ + η)(1 + nρ− ρ)] |an,i| ≤ (1− δ) |a1,i| . (14)

Or
|an,i|ri=1 ≤ (φ(β, γ))−k−2 |a1,i|ri=1 . (15)

By using (14) and (15) for i = r and i = 1, 2, · · · , r − 1 respectively, we get

∞∑
n=2

(µ)n−1
(n− 1)!

(φ(β, γ))r(k+2)−1[n(1 + η)− (δ + η)(1 + nρ− ρ)]

[
r∏
i=1

|an,i|

]

≤
∞∑
n=2

(µ)n−1
(n− 1)!

(φ(β, γ))r(k+2)−1[n(1 + η)− (δ + η)(1 + nρ− ρ)] |an,r| ×
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(φ(β, γ))−(r−1)(k+2)

r−1∏
i=1

|a1,i|

]

=
∞∑
n=2

(µ)n−1
(n− 1)!

(φ(β, γ))k+1[n(1 + η)− (δ + η)(1 + nρ− ρ)] |an,r|

[
r−1∏
i=1

|a1,i|

]

≤ (1− δ)

[
r∏
i=1

|a1,i|

]
.

Hence the proof is complete. �

Theorem 2.3. If the function gi |qi=1 defined by (2) belongs to the class 	µβ,γ(k, ρ, δ, η).

Then convolution of g1 ∗ g2 ∗ · · · ∗ gq belongs to the class 	µβ,γ(q(k + 1)− 1, ρ, δ, η).

Proof. Let gi ∈ 	µβ,γ(k, ρ, δ, η), this implies that

∞∑
n=2

(µ)n−1
(n− 1)!

(φ(β, γ))k[n(1 + η)− (δ + η)(1 + nρ− ρ)] |bn,i| ≤ (1− δ) |b1,i| , (16)

and

(µ)n−1
(n− 1)!

(φ(β, γ))k[n(1 + η)− (δ + η)(1 + nρ− ρ)] |bn,i|qi=1 ≤ (1− δ) |b1,i|qi=1 ,

or
|bn,i|qi=1 ≤ (φ(β, γ))−k−1 |b1,i|qi=1 . (17)

Now we need to do that
∞∑
n=2

(µ)n−1
(n− 1)!

(φ(β, γ))q(k+1)−1[n(1 + η)− (δ + η)(1 + nρ− ρ)]

[
q∏
i=1

|bn,i|

]

≤ (1− δ)

[
q∏
i=1

|b1,i|

]
.

Using (16) and (17) for i = r and i = 1, 2, · · · , q − 1, we have

∞∑
n=2

(µ)n−1
(n− 1)!

(φ(β, γ))q(k+1)−1[n(1 + η)− (δ + η)(1 + nρ− ρ)]

[
q∏
i=1

|bn,i|

]

≤
∞∑
n=2

(µ)n−1
(n− 1)!

(φ(β, γ))q(k+1)−1[n(1 + η)− (δ + η)(1 + nρ− ρ)] |bn,q| ×[
(φ(β, γ))−(q−1)(k+1)

q−1∏
i=1

|b1,i|

]

≤ (1− δ)

[
q∏
i=1

|b1,i|

]
.

This completes proof of Theorem 2.3. �

Similarly, we can prove the following Theorems.

Theorem 2.4. Let the functions fi |ri=1 and gj |qj=1 defined by (2) belong to the class

	µβ,γ(k − 1, ρ, δ, η) and 	µβ,γ(k − 1, ρ, δ, η). Then Hadamard product of f1 ∗ f2 ∗ · · · ∗ fr ∗
g1 ∗ g2 ∗ · · · ∗ gq(z) belongs to the class Rµβ,γ((r + q)k − 1, ρ, δ, η).
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Theorem 2.5. Let the functions fi |ri=1 and gj |qj=1 defined by (2) belong to the class

	µβ,γ(k − 1, ρ, δ, η) and 	µβ,γ(0, ρ, δ, η). Then Hadamard product of f1 ∗ f2 ∗ · · · ∗ fr ∗ g1 ∗
g2 ∗ · · · ∗ gq(z) belongs to the class Rµβ,γ(rk + q − 1, ρ, δ, η).
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