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A STRONG CONVERGENCE FOR FINDING A COMMON FIXED

POINT OF A REPRESENTATION OF NONEXPANSIVE MAPPINGS

AND W -MAPPINGS IN BANACH SPACES

EBRAHIM SOORI1, SEYEDEH AKRAM SHAHANSHAHI1, §

Abstract. In this paper, a strong convergence for finding an element of the set of
common fixed points of a representation and W -mappings of nonexpansive mappings
is introduced. Then, the strong convergence of the proposed implicit scheme to the
common fixed point of a representation of nonexpansive mappings and W -mappings will
be proved.
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1. Introduction

Suppose that C is a nonempty closed and convex subset of a Banach space E and E∗ is
the dual space of E. Let 〈., .〉 denotes is the pairing between E and E∗. The normalized
duality mapping J : E → E∗ is defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}
for all x ∈ E. In this paper, J is used to show the single-valued normalized duality
mapping. Suppose that U = {x ∈ E : ‖x‖ = 1}. E is called smooth or said to have a
Gâteaux differentiable norm if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x, y ∈ U . A Banach space E is smooth if the duality mapping J of E is
single valued. If E is smooth, then J is norm to weak-star continuous; for more details,
see [9].

Suppose that C is a nonempty closed and convex subset of a Banach space E. A
mapping T of C into itself is called nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ C
and a mapping f is called α-contraction on E if ‖f(x)− f(y)‖ ≤ α‖x− y‖, x, y ∈ E such
that 0 ≤ α < 1.
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In this paper, motivated by [5], the following strong convergence is studied for finding
a common element of the set of fixed points of a representation S = {Tt : t ∈ S} of a
semigroup S as nonexpansive mappings from C into itself and the set of fixed point of
W -mappings, with respect to a left regular sequence of means defined on an appropriate
subspace of bounded real-valued functions of the semigroup. On the other hand, our aim is
to show that there exists a sunny nonexpansive retraction P from C onto Fix(S) ∩ Fix(Wn)
and x ∈ C such that the following sequence {zn} converges strongly to Px.

zn = εnf(Wnzn) + (1− εn)TµnWnzn (n ∈ N).

2. Preliminaries

Suppose that S is a semigroup. The Banach space of all bounded real-valued functions
defined on S with supremum norm is denoted by B(S). For each s ∈ S and f ∈ B(S), ls
and rs are defined in B(S) by (lsf)(t) = f(st) and (rsf)(t) = f(ts), (t ∈ S).
Suppose that X is a subspace of B(S) containing 1 and let X∗ be its topological dual
space. An element µ of X∗ is said to be a mean on X if ‖µ‖ = µ(1) = 1. µt(f(t)) is often
written instead of µ(f) for µ ∈ X∗ and f ∈ X. Suppose that X is left invariant (resp.
right invariant), i.e. ls(X) ⊂ X (resp. rs(X) ⊂ X) for each s ∈ S. A mean µ on X is
called left invariant (resp. right invariant) if µ(lsf) = µ(f) (resp. µ(rsf) = µ(f)) for each
s ∈ S and f ∈ X. X is called left (resp. right) amenable if X has a left (resp. right)
invariant mean. X is amenable if X is both left and right amenable. As is well known,
B(S) is amenable when S is a commutative semigroup (see page 29 of [9]). A net {µα} of
means on X is said to be left regular if

lim
α
‖l∗sµα − µα‖ = 0,

for each s ∈ S, where l∗s is the adjoint operator of ls.
Suppose that f is a function of semigroup S into a reflexive Banach space E such that

the weak closure of {f(t) : t ∈ S} is weakly compact and Suppose that X is a subspace of
B(S) containing all the functions t → 〈f(t), x∗〉 where x∗ ∈ E∗. It is concluded from [3]
that for any µ ∈ X∗, there exists a unique element fµ in E such that 〈fµ, x∗〉 = µt 〈f(t), x∗〉
for all x∗ ∈ E∗ and such fµ is denoted by

∫
f(t) dµ(t). Moreover, if µ is a mean on X then∫

f(t) dµ(t) ∈ co {f(t) : t ∈ S}(see [4] for example).
Suppose that C is a nonempty closed and convex subset of E. Then, a family S = {Ts :

s ∈ S} of mappings from C into itself is said to be a representation of S as nonexpansive
mapping on C into itself if S satisfies the following:

(1) Tstx = TsTtx for all s, t ∈ S and x ∈ C;
(1) for every s ∈ S the mapping Ts : C → C is nonexpansive.

The set of common fixed points of S is denoted by Fix(S), that is Fix(S) =
⋂
s∈S
{x ∈ C :

Tsx = x}.

Definition 2.1. Defined the mapping Wn : C −→ C as follows:

Un,1 = λn,1T1 + (1− λn,1)I,
Un,2 = λn,2T2Un,1 + (1− λn,2)I,

...

Un,N−1 = λn,N−1TN−1Un,N−2 + (1− λn,N−1)I,
Wn = Un,N = λn,NTNUn,N−1 + (1− λn,N )I,
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where {λn,i}Ni=1 ⊂ [0, 1].
The following results hold for the mappings Wn.

Theorem 2.1. ([8]). Let C be a nonempty closed convex subset of a strictly convex
Banach space. Let {Ti}i∈N be a sequence of nonexpansive mappings of C into itself such

that
∞⋂
i=1

Fix(Ti) 6= ∅ and let {λi} be a real sequence such that 0 ≤ λi ≤ b < 1 for every

i ∈ N. Then

(1) Wn is nonexpansive and Fix(Wn) =
n⋂

i=1

Fix(Ti) for each n ≥ 1,

(2) for each x ∈ C and for each positive integer j, the limit lim
n→∞

Un,jx exists.

(3) The mapping W : C → C defined by

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1 (x ∈ C),

is a nonexpansive mapping satisfying Fix(W) =

∞⋂
i=1

Fix(Ti) and it is called the

W -mapping generated by {Ti}i∈N, and {λi}i∈N.

Theorem 2.2. ([10]). Let C be a nonempty closed convex subset of H, {Ti}∞i=1 be a

sequence of nonexpansive mappings of C into itself such that

∞⋂
i=1

Fix(Ti) 6= ∅, {λi} be a

real sequence such that 0 < λi ≤ b < 1, (i ≥ 1). If D is any bounded subset of C, then
lim
n→∞

sup
x∈D
‖Wx−Wnx‖ = 0.

Let K be a nonempty subset of a Banach space X and {xn} be a sequence in K. The
set of the asymptotic center of {xn} with respect to K, defined by

A({xn}) =

{
x ∈ K : lim sup

n→∞
‖xn − x‖ = inf

y∈K
lim sup
n→∞

‖xn − y‖
}
.

Lemma 2.1. ([1]). Let X be a uniformly convex Banach space satisfying the Opial’s
condition and K be a nonempty closed convex subset of X. If a sequence {zn} ⊂ K
converges weakly to a point z0, then {z0} is the asymptotic center of {zn} with respect to
K.

Theorem 2.3. ([6]). Suppose that S is a semigroup, let C be a closed, convex subset of
a reflexive Banach space E, S = {Ts : s ∈ S} be a representation of S as nonexpansive
mapping from C into itself such that weak closure of {Ttx : t ∈ S} is weakly compact for
each x ∈ C and X be a subspace of B(S) such that 1 ∈ X and the mapping t→ 〈T (t)x, x∗〉
be an element of X for each x ∈ C and x∗ ∈ E, and µ be a mean on X. If we write Tµx
instead of

∫
Ttx dµ(t), then the following statements are held:

(i) Tµ is a nonexpansive mapping from C into C,
(ii) Tµx = x for each x ∈ Fix(S),
(iii) Tµx ∈ co {Ttx : t ∈ S} for each x ∈ C,
(iv) If X is rs-invariant for each s ∈ S and µ is right invariant, then TµTt = Tµ for

each t ∈ S.

Remark 2.1. Each uniformly convex Banach space is strictly convex and reflexive (see
for example, Theorem 4.1.6 in [9]).
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Suppose that D is a subset of B where B is a subset of a Banach space E and let P be
a retraction of B onto D, that is, Px = x for each x ∈ D. Then P is said to be sunny, if
for each x ∈ B and t ≥ 0 with Px+ t(x−Px) ∈ B, P (Px+ t(x−Px)) = Px. A subset D
of B is said to be a sunny nonexpansive retract of B if there exists a sunny nonexpansive
retraction P of B onto D. If E is smooth and P is a retraction of B onto D, then P is
sunny and nonexpansive if and only if for each x ∈ B and z ∈ D, 〈x−Px , J(z−Px)〉 ≤ 0,
for more details, see [9].

Throughout the rest of this paper, the open ball of radius r centered at 0 is denoted
by Br. Let C be a nonempty closed convex subset of a Banach space E. For ε > 0
and a mapping T : C → C, Fε(T ) is the set of ε-approximate fixed points of T , i.e.
Fε(T ) = {x ∈ C : ‖x− Tx‖ ≤ ε}.

3. Main results

In this section, a strong convergence approximation scheme for finding a common el-
ement of the set of common fixed points of a representation of nonexpansive mappings
and fixed points of W -mappings will be studied. First, a Lemma that will be used in the
sequel is proved.

Lemma 3.1. Let S be a semigroup, C be a nonempty compact convex subset of a real
strictly convex, reflexive and smooth Banach space E, {Ti}i∈N be family of nonexpansive
self mappings on C. Suppose that S = {Ts : s ∈ S} be a representation of S as nonex-
pansive mapping from C into itself, and Ti(Fix(S)) ⊆ Fix(S) for all i ∈ N. If X is left
amenable and C is a compact convex subset of E, then Fix(S) ∩ Fix(W) is a sunny non-
expansive retract of C and the sunny nonexpansive retraction of C onto Fix(S) ∩ Fix(W)
is unique.

Proof. Suppose that x ∈ C is fixed and let µ be a left invariant mean on X. Then, by the
Banach contraction principle, a sequence {xn} in C is found such that,

xn =
1

n
x+

(
1− 1

n

)
TµWnxn (1)

for each n ∈ N, then the strong convergence of the sequence {xn} to an element of
Fix(S) ∩ Fix(W) will be proved. For each z ∈ Fix(S) ∩ Fix(Wn) and n ∈ N,

〈xn − x, J(xn − z)〉 ≤ 0,

where J is the duality mapping of E. Indeed, for each z ∈ Fix(S) ∩ Fix(W) and x∗ ∈ E∗,

〈TµWnz, x
∗〉 = µt 〈T (t)Wnz, x

∗〉 = µ 〈z, x∗〉 = 〈z, x∗〉

and hence z = TµWnz for each z ∈ Fix(S) ∩ Fix(W). Therefore, from (1),

〈xn − x, J(xn − z)〉 = (n− 1) 〈TµWnxn − xn, J(xn − z)〉
= (n− 1)(〈TµWnxn − TµWnz, J(xn − z)〉+ 〈z − xn, J(xn − z)〉)
6 (n− 1)

(
‖TµWnxn − TµWnz‖‖xn − z‖ − ‖xn − z‖2

)
6 (n− 1)

(
‖xn − z‖2 − ‖xn − z‖2

)
= 0.

Furthermore, from (1),

‖xn − TµWnxn‖ =
1

n
‖x− TµWnxn‖



944 TWMS J. APP. ENG. MATH. V.10, N.4, 2020

for each n ∈ N, hence lim
n→∞

‖xn − TµWnxn‖ = 0.

Let {xni} and {xnj} be subsequences of {xn} such that {xni} and {xnj} converge
strongly to y and z, respectively. It will be shown that y = z. The mapping W : C → C,
given by Wx := lim

n
Wnx satisfies

lim sup
n→∞

‖Wny −Wy‖ = 0. (2)

Note that,

‖y − Tµy‖ 6 lim
i→∞

(
‖y − xni‖+ ‖xni − TµWnixni‖+ ‖TµWnixni − TµWniy‖

)
6 lim

i→∞
‖Wnixni −Wniy‖

6 lim
i→∞
‖xni − y‖ = 0,

for each i ∈ N, therefore y = Tµy and y ∈ Fix(S), hence, by our assumption, Tiy ∈ Fix(S)
for all i ∈ N and then Wny ∈ Fix(S). Hence, TµWny = Wny, therefore by Theorems 2.1
and 2.2 TµWy = Wy. Consider the set of the asymptotic center A(xnj ) of {xnj} with
respect to H. Since xnj ⇀ y, Lemma 2.1 implies that A(xnj ) = {y}. It is concluded by
the definition of A(xnj ) that

lim sup
j→∞

‖xnj − z‖ 6 lim sup
j→∞

‖xnj − Ttxnj‖ (t ∈ S).

for all z ∈ A(xnj ). Since A(xnj ) = {y}, xnj → y. Using (2),

lim sup
j→∞

‖xnj −Wy‖ 6 lim sup
j→∞

‖xnj − TµWnjxnj‖+ lim sup
j→∞

‖TµWnjxnj − TµWnjy‖

+ lim sup
j→∞

‖TµWnjy −Wy‖

6 lim sup
j→∞

‖xnj − TµWnjxnj‖+ lim sup
j→∞

‖xnj − y‖

+ lim sup
j→∞

‖Wnjy −Wy‖ = 0.

This implies that W (y) = y. Hence, y ∈ Fix(W). Therefore, y ∈ Fix(S)∩Fix(W). Because
C is bounded, so there exists a positive number M such that ‖f(Wnzn)−TµWnzn‖2 < M .
Furthermore,

〈y − x, J(y − z)〉 = lim
i→∞
〈xni − x, J(xni − z)〉 6 0.

Similarly, 〈z − x, J(z − y)〉 6 0 and hence y = z. Thus, {xn} converges strongly to an
element of Fix(S)∩Fix(W). Let us define a mapping P from C into itself by Px = lim

n→∞
xn.

Then for each z ∈ Fix(S) ∩ Fix(W),

〈x− Px, J(z − Px)〉 = lim
n→∞

〈xn − x, J(xn − z)〉 6 0. (3)

Therefore, P is a sunny nonexpansive retraction from C onto Fix(S) ∩ Fix(W).
Let Q be another sunny nonexpansive retraction from C onto Fix(S) ∩ Fix(W). For

each x ∈ C and z ∈ Fix(S) ∩ Fix(W), it is concluded that

〈x−Qx, J(z −Qx)〉 6 0. (4)

Putting z = Qx in (3) and z = Px in (4), it is implied that

〈x− Px, J(Qx− Px)〉 6 0 and 〈x−Qx, J(Px−Qx)〉 6 0

and hence 〈Qx − Px, J(Qx − Px)〉 6 0. Therefore, This implies that Qx = Px, so it
completes the proof. �
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Theorem 3.1. Let S be a semigroup, and C a nonempty compact convex subset of a real
strictly convex, reflexive and smooth Banach space E and, {Ti}i∈N a family of nonexpansive
self mappings on C. Suppose that S = {Ts : s ∈ S} be a representation of S as nonexpan-
sive mapping from C into itself such that Fix(S) ∩ Fix(W) 6= ∅ and Ti(Fix(S)) ⊆ Fix(S)
for each i ∈ N. Let X be a left invariant subspace of B(S) such that 1 ∈ X, and the
function t 7→ 〈Ttx, x∗〉 is an element of X for each x ∈ C and x∗ ∈ E∗. Let {µn} be a
left regular sequence of means on X. Suppose that f is an α-contraction on C. Let εn be
a sequence in (0, 1) such that lim

n
εn = 0. Then there exists a unique sunny nonexpansive

retraction P from C onto Fix(S) ∩ Fix(W) and x ∈ C such that the following sequence
{zn} generated by

zn = εnf(Wnzn) + (1− εn)TµnWnzn (n ∈ N), (5)

strongly converges to Px which is the unique solution of the following variational inequality

〈x− Px, J(z − Px)〉 6 0 (z ∈ Fix(S) ∩ Fix(W)).

Proof. From Proposition 1.7.3 and Theorem 1.9.21 in [1], any compact subset C of a
reflexive Banach space E is weakly compact and from Proposition 1.9.18 in [1], any closed
convex subset of a weakly compact subset C of a Banach space E is itself weakly compact
and by Proposition 1.9.13 in [1], any convex subset C of a normed space E is weakly closed
if and only if C is closed. Therefore, weak closure of {Ttx : t ∈ S} is weakly compact for
each x ∈ C.

The proof will be presented in five steps.
Step 1. The existence of zn which satisfies (5).

The mapping Nn given by

Nnx := εnf(Wnx) + (1− εn)TµnWnx (x ∈ C)

is a contraction for every n ∈ N. Because, 0 ≤ βn < 1 where βn = (1 + εn(α−1)), for each
(n ∈ N). Then

‖Nnx−Nny‖ 6 εn‖f(Wnx)− f(Wny)‖+ (1− εn)‖TµnWnx− TµnWny‖
6 εnα‖Wnx−Wny‖+ (1− εn)‖Wnx−Wny‖
6 εnα‖x− y‖+ (1− εn)‖x− y‖
6 (1− εn(α− 1))‖x− y‖ = βn‖x− y‖.

Hence, from the Banach contraction principle [9], there exists a unique point zn ∈ C such
that Nnzn = zn.

Step 2. lim
n→∞

‖zn − Ttzn‖ = 0, for each t ∈ S.
Let t ∈ S and ε > 0. By Lemma 1 in [7], there exists δ > 0 such that coFδ(Tt) + 2Bδ ⊆
Fε(Tt). Also, from Corollary 2.8 in [2], there exists a natural number N such that

∥∥∥ 1

N + 1

N∑
i=0

Ttisy − Tt
( 1

N + 1

N∑
i=0

Ttisy
)∥∥∥ ≤ δ, (6)

for each s ∈ S and y ∈ C. Suppose that p ∈ Fix(S)∩Fix(W) and M0 be a positive number
such that, sup

y∈C
‖y‖ ≤M0. Let t ∈ S, since {µn} is strongly left regular, there exists N0 ∈ N
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such that ‖µn − l∗tiµn‖ ≤
δ

(3M0)
for all n ≥ N0 and i = 1, 2, · · · , N . Therefore,

sup
y∈C

∥∥∥Tµny − ∫ 1

N + 1

N∑
i=0

Ttisy dµn(s)
∥∥∥

= sup
y∈C

sup
‖x∗‖=1

∣∣∣〈Tµny, x∗〉 − 〈∫ 1

N + 1

N∑
i=0

Ttisy dµn(s), x∗
〉∣∣∣

= sup
y∈C

sup
‖x∗‖=1

∣∣∣ 1

N + 1

N∑
i=0

(µn)s〈Tsy, x∗〉 −
1

N + 1

N∑
i=0

(µn)s〈Ttisy, x∗〉
∣∣∣

≤ 1

N + 1

N∑
i=0

sup
y∈C

sup
‖x∗‖=1

∣∣∣(µn)s〈Tsy, x∗〉 − (l∗tiµn)s〈Tsy, x∗〉
∣∣∣

≤ max
i=1,2,··· ,N

‖µn − l∗tiµn‖(M0 + 2‖p‖)

≤ max
i=1,2,··· ,N

‖µn − l∗tiµn‖(3M0)

≤δ (n ≥ N0). (7)

From Theorem 2.3, it is concluded that∫
1

N + 1

N∑
i=0

Ttisy dµn(s) ∈ co

{
1

N + 1

N∑
i=0

Tti(Tsy) : s ∈ S

}
. (8)

It follows from (6)-(8) that

Tµny ∈ co

{
1

N + 1

N∑
i=0

Ttisy : s ∈ S

}
+Bδ

⊂ coFδ(Tt) + 2Bδ ⊂ Fε(Tt),

for each y ∈ C and n ≥ N0. Hence, lim sup
n→∞

sup
y∈C
‖Tt(Tµny) − Tµny‖ ≤ ε. Since ε > 0 is

arbitrary, it is implied that

lim sup
n→∞

sup
y∈C
‖Tt(Tµny)− Tµny‖ = 0. (9)

Suppose that t ∈ S and ε > 0, then there exists δ > 0, which satisfies (6). Put
L0 = (1+α)2M0 +‖f(p)−p‖. Therefore from the condition lim

n
εn = 0 and from (9) there

exists a natural number N1 such that Tµny ∈ Fδ(Tt) for each y ∈ C and εn <
δ

2L0
for each

n ≥ N1. Since p ∈ Fix(S) ∩ Fix(W), it is concluded that

εn‖f(Wnzn)− TµnWnzn‖ ≤εn(‖f(Wnzn)− f(Wnp)‖+ ‖f(Wnp)− p‖
+ ‖TµnWnp− TµnWnzn‖)
≤εn (α‖Wnzn −Wnp‖+ ‖(f(Wnp)− p‖+ ‖Wnp−Wnzn‖)
≤εn (α‖zn − p‖+ ‖f(p)− p‖+ ‖zn − p‖)
≤εn ((1 + α)‖zn − p‖+ ‖f(p)− p‖)
≤εn ((1 + α)2M0 + ‖f(p)− p‖)

=εnL0 ≤
δ

2
,
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for each n ≥ N1. Note that

zn = εnf(Wnzn) + (1− εn)TµnWnzn

= TµnWnzn + εn (f(Wnzn)− TµnWnzn)

∈ Fδ(Tt) +B δ
2

⊆ Fδ(Tt) + 2Bδ

⊆ Fε(Tt).

for each n ≥ N1. Then

‖zn − Ttzn‖ ≤ ε (n ≥ N1).

Since ε > 0 is arbitrary, it is implied that lim
n→∞

‖zn − Ttzn‖ = 0.

Step 3. S{zn} ⊂ Fix(S) ∩ Fix(W), where S{zn} is the set of strongly limit points of
{zn}.
Suppose that z ∈ S{zn}, and consider a subsequence {znj} of {zn} such that znj → z.
Then,

‖Ttz − z‖ ≤‖Ttz − Ttznj‖+ ‖Ttznj − znj‖+ ‖znj − z‖
≤2‖znj − z‖+ ‖Ttznj − znj‖,

then by Step 2,

‖Ttz − z‖ ≤ 2 lim
j
‖znj − z‖+ lim

j
‖Ttznj − znj‖ = 0,

so z ∈ Fix(S).
Clearly, lim

j
‖znj − TµnjWnjznj‖ = 0. Indeed,

lim
j
‖znj − TµnjWnjznj‖

= lim
j
‖εnjf(Wnjznj ) + (1− εnj )TµnjWnjznj − TµnjWnjznj‖

= lim
j
εnj‖f(Wnjznj )− TµnjWnjznj‖

= 0,

therefore,

lim sup
j
‖znj − TµnjWznj‖ 6 lim sup

j
‖znj − TµnjWnjznj‖

+ lim sup
j
‖TµnjWnjznj − TµnjWznj‖

6 lim sup
j
‖Wnjznj −Wznj‖

6 lim sup
j

(‖Wnjznj −Wnjz‖+ ‖Wnjz −Wz‖+ ‖Wz −Wznj‖)

6 2 lim sup
j

(‖znj − z‖+ ‖Wnjz −Wz‖) = 0,

so

lim sup
j
‖znj − TµnjWznj‖ = 0. (10)
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Then from (10) and from the condition that Ti(Fix(S)) ⊆ Fix(S), it is concluded that
W (Fix(S)) ⊆ Fix(S). Hence Tt(Wz) = Wz and Tµnj (Wz) = Wz, then it is implied that

lim sup
j
‖znj −Wz‖ 6 lim sup

j
‖znj − TµnjWznj‖+ lim sup

j
‖TµnjWznj − TµnjWz‖

+ lim sup
j
‖TµnjWz −Wz‖

6 lim sup
j
‖znj − z‖ = 0,

then z ∈ Fix(W). Hence, S(zn) ⊂ Fix(S) ∩ Fix(W).
Step 4. There exists a unique sunny nonexpansive retraction P of C onto Fix(S)∩Fix(Wn)
and x ∈ C such that

Γ := lim sup
n
〈x− Px , J(zn − Px)〉 ≤ 0. (11)

By Lemma 3.1, there exists a unique sunny nonexpansive retraction P from C onto
Fix(S) ∩ Fix(W). The Banach Contraction Mapping Principle guarantees that fP has
a unique fixed point x ∈ C. Next, it will be proved that

Γ = lim sup
n
〈x− Px , J(zn − Px)〉 ≤ 0.

Since C is a compact subset of E, a subsequence {znj} of {zn} can be found with the
following properties:

(i) lim
j
〈x− Px , J(znj − Px)〉 = Γ;

(ii) {znj} converges strongly to a point z;

from Step 3, z ∈ Fix(S) ∩ Fix(W). Since E is smooth, it is implied that

Γ = lim
j
〈x− Px , J(znj − Px)〉 = 〈x− Px , J(z − Px)〉 ≤ 0.

Also fPx = x, so (f − I)Px = x− Px. Now,

εn(α− 1)‖zn − Px
∥∥2

≥
[
εnα
∥∥zn − Px∥∥+ (1− εn)‖zn − Px‖

]2
− ‖zn − Px‖2

≥
[
εn
∥∥f(Wnzn)− f(WnPx)

∥∥+ (1− εn)‖TµnWnzn − Px‖
]2

− ‖zn − Px‖2

≥2
〈
εn

(
f(Wnzn)− f(WnPx)

)
+ (1− εn)(TµnWnzn − Px)

− (zn − Px) , J(zn − Px)
〉

=− 2εn〈(f − I)Px , J(zn − Px)〉
=− 2εn〈x− Px , J(zn − Px)〉,

for all n ∈ N (see page 99 in [9]), hence,

‖zn − Px‖2 ≤
2

1− α
〈x− Px , J(zn − Px)〉. (12)

Step 5. {zn} strongly converges to Px.
Indeed, since Px ∈ Fix(S) ∩ Fix(W), by applying (11), (12), it is deduced that

lim sup
n
‖zn − Px‖2 ≤

2

1− α
lim sup

n
〈x− Px , J(zn − Px)〉 ≤ 0.
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That is zn → Px. �

4. Numerical example

Example 4.1. Consider Theorem 3.1. Let S = {0, 1, 2, 3, · · · , }, E = R and C = [0, 1].
Let µ(g) = g(0) for each g ∈ B(S). If g = 1 then µ(1) = 1(0) = 1. Also,

1 = µ(1) 6 ‖µ‖ = sup
‖g‖61

‖µ(g)‖ = sup
‖g‖61

|g(0)| 6 1

⇒ ‖µ‖ = 1⇒ ‖µ‖ = µ(1) = 1,

so µ is a mean and obviously µ is invariant. Let T : C −→ C be a nonexpansive mapping
and let T 0 = I and S = {T k : k ∈ S}. It is obvious that µ(g) = µk(g(k)) for each k ∈ S
and g ∈ B(S). Consider g : k −→

〈
T kx, y

〉
for each x ∈ C and y ∈ R. Then, it is implied

for each x, y ∈ C that

µ(g) = µk(g(k)) = µk

〈
T kx, y

〉
= 〈T 0x, y〉 = 〈x, y〉,

also, 〈Tµx, y〉 = µk
〈
T kx, y

〉
then 〈Tµx, y〉 = 〈x, y〉 so Tµx = x hence Tµ = I. Suppose that

{Ti : Ti = I, for each i = 1, 2, 3, . . .} be the family of nonexpansive mapping in Theorem
3.1. Let f(x) = 1

2x be our contraction mapping and P = 0 be the desired retraction from
[0, 1] onto Fix(S) ∩ Fix(W) = {0} then using Table 1 and as in Figure 1, the sequence
{zn} generated by (5) is converged to P0 = 0.

Table 1. f(x) = 1
2x, N = 20, i = 1, · · · , 20.

n λn,i Wn zn
1 1

2
0.5128 I 0

2 1
3

0.6780 I 0

3 1
4

0.7595 I 0

...
...

...
...

8 1
9

0.8939 I 0

9 1
10

0.9045 I 0

10 1
11

0.9132 I 0

...
...

...
...

18 1
19

0.9499 I 0

19 1
20

0.9524 I 0

20 1
21

0.9547 I 0

Figure 1. Convergence behavior of the generated sequences by Example (4.1).
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5. Conclusion

Firstly, an algorithm in a Banach space is introduced. Then a nonexpansive retraction
is found and the convergence of the proposed scheme to an element in the range of the
retraction is proved.
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