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ESTIMATION OF THE LOCATION AND SCALE PARAMETERS OF

MOYAL DISTRIBUTION

TALHA ARSLAN1, SUKRU ACITAS2, BIRDAL SENOGLU3, §

Abstract. In this study, we estimate the parameters of the Moyal distribution by using
well-known and widely-used maximum likelihood (ML) and method of moments (MoM)
methodologies. The ML estimators of the location and scale parameters of the Moyal
distribution cannot be obtained in closed forms therefore iterative methods should be
utilized. To make the study complete, modifed ML (MML) estimators for the location
and the scale parameters of the Moyal distribution are also derived. The MML estimators
are in closed forms and asymptotically equivalent to the ML estimators. Efficiencies of the
MML estimators are compared with their ML and MoM counterparts using Monte-Carlo
(MC) simulation study. Results of the simulation study show that the ML estimators
are more efficient than the MML and MoM estimators for small sample sizes. However
when the sample size increases performances of the ML and MML estimators are almost
same in terms of the Defficiency (Def) criterion as expected. At the end of the study, a
real data set is used to show the implementation of the methodology developed in this
paper.

Keywords: Moyal Distribution, Maximum Likelihood, Modified Maximum Likelihod,
Method of Moments, Efficiency.
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1. Introduction

The Moyal distribution which is an approximation to the Landou distribution was pro-
posed to model the energy loss by ionization for a fast charged particle and the number of
ion pairs produced in this process; see Moyal [11]. It is also used in considering quantum
resonance and atomic structure of the absorber. Although the Moyal distribution has a
wide usage in Physics, it has not drawn enough attention in Statistics literature. To the
best of our knowledge, there are limited number of studies about the Moyal distribution.
For example, Cordeiro et al. [9] proposed the beta-Moyal as an extension of the Moyal
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distribution. Genc et al. [10] considered a scale-mixture extension of the Moyal distribu-
tion which is more flexible than the Moyal and beta-Moyal distributions in terms of the
range of the kurtosis and skewness values. Bahdi and Ravi [7] introduced a generalized
form of the Moyal distribution and used it to model the actuarial data set.

In this study, well-known and widely-used maximum likelihood (ML) methodology is
used to estimate the parameters of the Moyal distribution. In estimating the parameters
of the Moyal distribution, modified ML (MML) methodology proposed by Tiku [14, 15] is
also used to avoid computational complexities encountered in iterative procedures such as
(i) convergence to wrong root, (ii) convergence to multiple root and (iii) nonconvergence
of iterations; see for example Barnett [8], Puthenpura and Sinha [12], and Vaughan [16].

In the Monte-Carlo simulation study, the ML and MML estimators are compared with
respect to bias, mean squares error (MSE) and Defficiency (Def) criteria. To make the
study complete, method of moments (MoM) estimators of the location and scale parametrs
of the Moyal distribution are also included into the study.

The rest of the paper is organized as follows. The Moyal distribution and some statistical
properties of it are provided in Section 2. Section 3 includes a brief description of the
parameter estimation methodologies used in the study. The results of the Monte-Carlo
(MC) simulation study are presented in Section 4. Section 5 is reserved to application
in which exceedances of Wheaton River flood data set is modeled. The paper is finalized
with some concluding remarks.

2. The Moyal Distribution

The probability density function (pdf) of the Moyal distribution is given by

f(w) =
1√
2π

exp

[
−1

2
w − 1

2
exp (−w)

]
; w ∈ R. (1)

It can be extended to location-scale family by using transformationX = µ+Wσ. Resulting
distribution is called as two-parameter Moyal distribution and has the following pdf:

fX(x;µ, σ) =
1

σ
√

2π
exp

[
−1

2

(
x− µ
σ

)
− 1

2
exp

(
−
(
x− µ
σ

))]
;x ∈ R, µ ∈ R, σ ∈ R+.

(2)
Its cumulative distribution function (cdf) is also formulated as follows:

FX(x;µ, σ) = Γ

[
1

2
exp

(
−
(
x− µ
σ

)
,

1

2

)]
, (3)

where µ and σ are the location and the scale parameters, respectively. Here,
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stands for the upper incomplete gamma function.

Lemma 2.1. Quantile function of the two-parameter Moyal distribution is

Xp = µ− σ ln
[
2Γ− (p, 0.5)

]
, 0 < p < 1 (4)

where Γ− (·, ·) is inverse of the upper incomplete gamma function.

Proof. It is trivial since Xp is the solution of the equation
∫ Xp
−∞ fX(x;µ, σ)dx = p. �

Remark 2.1. The median of the two-parameter Moyal distribution is easily obtained by
taking p = 0.5.
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The moment genarating function (mgf) of the two-parameter Moyal distribution is given
as follows:

MX(t) = E
[
etX
]

=
2−tσeµt√

π
Γ

(
1

2
− tσ

)
, tσ < 0.5. (5)

The pdf and cdf plots of the two-parameter Moyal distribution for certain values of the
parameters are given in Figure 1.
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Figure 1. The pdf and cdf plots of the two-parameter Moyal distribution
for certain values of the parameters.

Remark 2.2. The skewness (
√
β1) and kurtosis (β2) values of the two-parameter Moyal

distribution are calculated as 1.54 and 7.00, respectively.

Lemma 2.2. The cumulant generating function, κX(t), of the two-parameter Moyal dis-
tribution is

κX(t) = µt− tσ ln 2− 0.5 lnπ + ln

[
Γ

(
1

2
− tσ

)]
. (6)

Proof. It can easily be obtained by using the transformation ln
[
E
(
etX
)]

. �

In the rest of the paper, the two-parameter Moyal distribution is called as the Moyal
distribution for the sake of simplicity.

3. The Parameter Estimation

In this section, the ML methodology utilizing iterative techniques is considered to obtain
the estimates of the location and scale parameters of the Moyal distribution. The MML
and MoM methodologies giving the explicit estimators of the unknown model parameters
are also described.

3.1. The ML methodology. Let x1, x2, . . . , xn be a random sample from the Moyal
distribution, then the log-likelihood (lnL) function is expressed as follows:

lnL = C − n lnσ − 1

2

n∑
i=1

zi −
1

2

n∑
i=1

exp (−zi) (7)

where C = −n
2 ln(2π) and zi =

(xi−µ
σ

)
.

The ML estimates of the parameters µ and σ are the solutions of the following likelihood
equations:

∂ lnL

∂µ
=

1

2σ

n∑
i=1

g (zi) = 0 (8)
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and

∂ lnL

∂σ
= −n

σ
+

1

2σ

n∑
i=1

zig (zi) = 0 (9)

where g (z) = 1− exp (−z).

Remark 3.1. The solutions of the likelihood equations are obtained iteratively due to the
nonlineer functions of the parameters. Here, Newton-Raphson (NR) method is preferred
among various different iterative techniques to solve the equations in (8) and (9), simu-
latenously. In the NR method, we first need the Hessian matrix H defined below

H =


∂2 lnL

∂µ2
∂2 lnL

∂µ∂σ
∂2 lnL

∂σ∂µ

∂2 lnL

∂σ2

 . (10)

The elements of the H matrix and the Fisher information matrix denoted by I are given
in the Appendix; see Arslan and Senoglu [6] in the context of the Jones and Faddy’s skew t
distribution. The Rao-Cramer lower bounds (RCLB) for the parameters µ and σ are also
given in the Appendix. Obviously, RCLB(µ) =

(
I−1
)
11

and RCLB(σ) =
(
I−1
)
22

.

3.2. The MML methodology. This methodology originated by Tiku [14, 15] is utilized
to avoid the computational complexities encountered in the ML methodology. It results in
closed form estimators called as the MML estimators. The MML methodology is asymp-
totically equivalent to the ML methodology and therefore has all the attractive asymptotic
properties of it.

The steps of the MML methodology are explained as follows:

Step 1: Standardized observations zi are ordered in ascending way, i.e.

z(1) ≤ z(2) ≤ . . . ≤ z(n)
.

Step 2: Nonlinear function g(z(i)) = 1 − exp(−z(i)) is linearized using the first two
terms of Taylor series expansion around the expected values of the standardized
order statistics t(i) = E(z(i)) (i = 1, 2, . . . , n). This results in

g
(
z(i)
) ∼= αi − βiz(i) (11)

where

αi = 1− exp(−t(i)
)
− t(i) exp

(
− t(i)

)
, βi = exp

(
−t(i)

)
, i = 1, 2, . . . , n.

Remark 3.2. It should be noted that t(i) = E
(
z(i)
)

values cannot be obtained exactly. We
therefore use their approximate values using the following equality:

t(i) = F−1
(

i

n+ 1

)
, i = 1, 2, . . . , n

where F−1(·) is inverse of the cdf of standard Moyal distribution.

After incorporating equation (11) into the likelihood equations in (8) and (9), we obtain
the following modified likelihood equations:

∂ lnL∗

∂µ
=

1

2σ

n∑
i=1

(
αi + βiz(i)

)
= 0 (12)
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and
∂ lnL∗

∂σ
= −n

σ
+

1

2σ

n∑
i=1

z(i)
(
αi + βiz(i)

)
= 0. (13)

Solutions of these equations are the following MML estimators:

µ̂MML = x̄w −
∆

m
σ̂MML and σ̂MML =

B +
√
B2 + 4nC

2
√
n(n− 1)

(14)

where

x̄w =

n∑
i=1

βix(i)

m
, m =

n∑
i=1

βi, ∆ =
n∑
i=1

αi,

B =
1

2

n∑
i=1

αi(x(i) − x̄w) and C =
1

2

n∑
i=1

βi(x(i) − x̄w)2.

Remark 3.3. The denominator of the σ̂MML is replaced by 2
√
n (n− 1) for bias correc-

tion.

The MML methodology gives small weights to the outlying observations to deplete their
dominant effects. This property makes the MML estimators insensitive to the outlying
observations; see e.g. Acitas et al. [1] and references therein for further information.

3.3. The MoM methodology. The MoM estimators of the location and scale param-
eters of the Moyal distribution are obtained by equating the theoretical moments to the
corresponding sample moments and solving them with respect to the parameters of inter-
est. By using the definition of the MoM methodology, estimators of the parameters µ and
σ are obtained as follows:

µ̂MoM = x̄+ [ln 2 + Ψ(0, 0.5)] σ̂MoM (15)

and

σ̂MoM = s
/√

Ψ(1, 0.5) (16)

respectively. Here,

x̄ =
1

n

n∑
i=1

xi, s =

√√√√ 1

n

n∑
i=1

(xi − x̄)2, and Ψ(r − 1, k) =
dr ln Γ(k)

dkr

are sample mean, sample standart deviation and well-known polygamma function, respec-
tively.

4. The Simulation Study

In this section, performances of the ML, MML and MoM estimators are compared via
the MC simulation study. In the MC simulation, four different sample sizes n = 10, 20
(small), n = 50 (moderate) and n = 100 (large) are considered. Without loss of generality,
the location parameter µ and scale parameter σ are taken to be 0 and 1, respectively. All
the simulations are conducted for b100, 000/nc MC runs where b·c denotes the integer
value function. MATLAB2017a software is utilized for all computations. In the ML
estimation procedure, initial values for µ̂ and σ̂ are taken as µ0 = µ̂MML and σ0 = σ̂MML,
respectively.
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The performances of the ML, MML and MoM estimators are compared by using bias
and mean squares error (MSE) criteria. Def criterion defined as the natural measure of the
joint efficiency of the estimators of unknown parameters is also used in the comparisons.
It is formulated as follows:

Def(µ̂, σ̂) = MSE(µ̂) +MSE(σ̂), (17)

see for example Akgul et al. [2, 3]. The results of the simulation study are tabulated in
Table 1.

Table 1. The simulated bias, variance, MSE and Def values of the ML,
MML and MoM estimators.

µ = 0 σ = 1
Estimator Bias Variance MSE Bias Variance MSE Def

n = 10

ML -0.078 0.252 0.258 0.079 0.067 0.073 0.332

MML -0.194 0.265 0.302 0.022 0.076 0.077 0.379

MoM -0.074 0.278 0.283 0.057 0.116 0.119 0.403

n = 20
ML -0.035 0.118 0.119 0.041 0.034 0.035 0.154
MML -0.095 0.121 0.130 0.015 0.036 0.036 0.166

MoM -0.035 0.140 0.142 0.030 0.063 0.063 0.205

n = 50

ML -0.020 0.043 0.044 0.014 0.013 0.013 0.057

MML -0.045 0.044 0.046 0.005 0.013 0.013 0.059

MoM -0.018 0.053 0.053 0.007 0.026 0.026 0.079

n = 100
ML -0.010 0.023 0.023 0.008 0.007 0.007 0.030
MML -0.023 0.024 0.024 0.004 0.007 0.007 0.031

MoM -0.009 0.030 0.030 0.005 0.014 0.014 0.044

Following conclusions are drawn from Table 1 using the bias criterion. The ML, MML
and MoM estimators of µ have negligible biases. It should be noted that the MML
estimator of µ has the largest bias for all sample sizes. On the other hand, the MML
estimator of σ has the lowest bias.

We conclude that the ML estimators of the location and scale parameters are more effi-
cient than their rivals in terms of the MSE criteria for all sample sizes. The performances
of the MML estimators are also promosing since the MSEs of them are very similar to
those obtained for the ML estimators for small sample sizes.

It is clear that the ML estimators are more preferable than the MML and MoM estima-
tors according to the Def criterion. The MML estimators gain efficiency when the sample
size increases. Therefore, we suggest to use the ML and MML estimators for estimating
the unknown parameters of the Moyal distribution.

As it is indicated previously, obtaining the ML estimates of the parameters of the Moyal
distribution requires iterative methods and this may causes some problems. On the other
hand, the MML estimators are easily obtained from the sample observations without any
iterative computations. As a result, the MML estimators can be preferred if our focus is
to avoid the computational complexities besides having efficient estimators.

5. Application

In this section, the Wheaton River flood data which corresponds to the exceedances of
flood peaks (in m3/s) of the Wheaton River near Carcross in Yukon Territory, Canada are
modelled using the Moyal distribution to show the implementation of the methodology
developed in this paper; see Table 2. Akinsete et al. [5] model this data set using the beta-
Pareto distribution and later on Cordeiro et al. [9] consider the beta-Moyal distribution
for modeling mentioned data set.
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Table 2. The Exceedances of Wheaton River flood data (1958–1984), n =
72.

1.7 1.4 0.6 9.0 5.6 1.5 2.2 18.7 2.2 1.7 30.8 2.5
14.4 1.1 0.4 20.6 5.3 8.5 25.5 11.6 14.1 22.1 39.0 0.3
15.0 11.0 7.3 7.0 20.1 0.4 2.8 14.1 13.3 4.2 25.5 3.4
11.9 27.4 1.0 7.1 20.2 16.8 0.7 1.9 1.1 2.5 22.9 1.7
9.9 10.4 21.5 27.6 5.3 9.7 13.0 14.4 0.1 10.7 36.4 27.5
12.0 9.3 1.7 37.6 1.1 0.6 30.0 3.6 2.7 64.0 2.5 27.0

The location and scale parameters of the Moyal distribution are estimated using the
ML and MML methods since the MoM method fails to exhibit a good performance; see
Table 1.

The estimated values of the location and scale parameters of the Moyal distribution
along with the lnL, Akaike Information Criterion (AIC) and Bayesian Information Cri-
terion (BIC) values are given in Table 3. See Akaike [4] and Schwarz [13] for detailed
information about the AIC and BIC, respectively.

Table 3. The parameter estimates of the Moyal distribution.

µ̂ σ̂ lnL AIC BIC

Moyal Distribution
ML 5.4092 4.8127 -199.9580 403.9519 408.4693
MML 5.7979 4.8502 -200.0661 404.1322 408.6855

The histogram of the Wheaton River flood data along with the fitted densities based
on the ML and MML estimates and the likelihood surface plot based on the ML estimates
are given in Figure 2.
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Figure 2. The histogram of the Wheaton River flood data along with the
fitted densities and the likelikood surface plot based on the ML estimates.

It is clear from the lnL, AIC and BIC values given in Table 3 that the ML estimates
are more preferable than the MML estimates. It should be noted that likelihood function
attains its maximum under the ML estimates. While the ML estimates are obtained
iteratively, the MML estimators are obtained in closed forms. Furthermore, the lnL,
AIC and BIC values based on the ML and MML estimates are very close to each other.
Therefore, the MML estimates can also be preferred for this data.
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6. Conclusions

In this study, estimation of the location parameter µ and scale parameter σ of the Moyal
distribution is considered using the ML, MML and MoM methodologies. MC simulation
study is conducted to compare the performances of these estimators. Simulation results
show that the performances of the ML and MML estimators of the location and scale
parameters of the Moyal distribution are better than the MoM estimators based on the Def
criteria; see Table 1. Furthermore, the MML and ML estimators have more or less the same
performances as the sample size increases. However, ML estimators are obtained using
iterative methods. It is well known that using iterative methods causes some problems as
mentioned in the text. On the other hand, the MML estimators are easily obtained from
the sample observations without any iterative computations. Therefore, we suggest to use
the MML estimators as an alternative to the ML estimators for estimating the location
and scale parameters of the Moyal distribution.
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Appendix

The elements of the H and I matrices and the RCLB values for the location parameter µ and scale
parameter σ of the Moyal distribution are given as shown below.

A1-Elements of the H matrix:

∂2 lnL

∂µ2
= − 1

2σ2

n∑
i=1

exp
[
−
(xi − µ

σ

)]
,

∂2 lnL

∂µ∂σ
=
∂2 lnL

∂σ∂µ
= − n

2σ2
+

1

2σ2

n∑
i=1

exp
[
−
(xi − µ

σ

)]
− 1

2σ2

n∑
i=1

(xi − µ

σ

)
exp

[
−
(xi − µ

σ

)]
and

∂2 lnL

∂σ2
=

n

σ2
− 1

σ2

n∑
i=1

xi − µ

σ
+

1

σ2

n∑
i=1

(xi − µ

σ

)
exp

[
−
(xi − µ

σ

)]
− 1

2σ2

n∑
i=1

(xi − µ

σ

)2
exp

[
−
(xi − µ

σ

)]
.

A2-Elements of the I matrix:

I =

−E
(
∂2 lnL

∂µ2

)
−E

(
∂2 lnL

∂µ∂σ

)
−E

(
∂2 lnL

∂σ∂µ

)
−E

(
∂2 lnL

∂σ2

)
 =

n

2σ2

[
1 1.27036

1.27036 4.54862

]

A3-RCLB values for the location parameter µ and scale parameter σ:

RCLB(µ) =
(
I−1)

11
= 1.5459

2σ2

n
and

RCLB(σ) =
(
I−1)

22
= 0.3407

2σ2

n
.

Covariance between the estimators of the parameters µ and σ is equal to the off-diagonal element of the

matrix I, i.e.
(
I−1
)
12

=
(
I−1
)
21

= −0.4329
2σ2

n
.
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