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RESULTS ON MAJORITY DOM-CHROMATIC SETS OF A GRAPH

J. JOSELINE MANORA1, R. MEKALA2, §

Abstract. A majority dominating set S ⊆ V (G) is said to be majority dominating
chromatic set if S satisfies the condition χ(〈S〉) = χ(G). The majority dom-chromatic
number γMχ(G) is the minimum cardinality of majority dominating chromatic set. In
this article we investigated some inequalities on Majority dominating chromatic sets of a
connected and disconnected graph G. Also characterization theorems and some results
on majority dom-chromatic number γMχ(G) for a vertex color critical graph and biparte
graph are determined. we established the relationship between three parameters namely
χ(G), γM (G) and γMχ(G) for some graphs.

Keywords: Majority dominating set, Majority dominating chromatic set, Majority dom-
chromatic number.
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1. Introduction

All the graphs G = (V,E) considered here are simple, finite and undirected. The
concept of domination is early discussed by Ore and Berge in 1962. Then Haynes et.al [2]
defined the domination number γ(G) as the minimum cardinality of a minimal dominating
set D ⊆ V (G) such that each vertex of (V − D) is adjacent to some vertex in D. The
majority dominating number γM (G) was introduced by Joseline Manora and Swaminathan
[6] is the smallest cardinality of a minimal majority dominating set S ⊆ V (G) of vertices

and S satisfies |N [S]| ≥
∣∣∣⌈ (V (G))

2

⌉∣∣∣.
Janakiraman and Poobalaranjani [3] defined the dom-chromatic set as a dominating

set S ⊆ V (G) such that the induced subgraph 〈S〉 satisfies the property χ(〈S〉) = χ(G).
The minimum cardinality of a dom-chromatic S is called dom-chromatic number and it is
denoted by γch(G) or γχ(G).
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Definition 1.1. [4] A majority dom-chromatic number γMχ(G) is defined as the smallest
cardinality of the majority dom-chromatic set (MDC set) S of V (G) if S is a majority
dominating set and it satisfies the property χ(〈S〉) = χ(G).

Results 1.2.
(i) [4] Let G = mK2,m ≥ 1 with p = 2m. Then γMχ(G) = dp4e+ 1, p ≥ 2.

(ii) [4] For any graph G,max{χ(G), γM (G)} ≤ γMχ(G) ≤ p
.

(iii) [4] Let G be any graph of order p. Then γMχ(G) = p if and only if G is vertex χ
- critical.

(iv) [6] For a cycle Cp, γM (Cp) = dp6e.

(v) [6] For a path Pp, γM (Pp) = dp6e.

Definition 1.3. [5] If a vertex with degree d(u) ≥ dp2e − 1 then u is called a majority
dominating vertex. A full degree vertex is a majority dominating vertex but a majority
dominating vertex is not a full degree vertex.

2. Some Inequalities On Majority Dom-Chromatic Sets.

In this section, Inequality between the sum of the degrees of all vertices of a MDC set
S of G and the complement of S i.e., (V − S) in a graph G is discussed. We determine
some inequalities such as

|V − S| ≤
∑
vi∈S

deg (vi) and |V − S| ≥
∑
vi∈S

deg (vi) with respect to the MDC set S of a

connected graph G.

Theorem 2.1. If S is a MDC set with two majority dominating vertices of a connected
graph G then |V − S| ≤

∑
vi∈S

deg(vi).

Proof: Let vi ∈ V (G) be a majority dominating vertex such that d(vi) ≥ dp2e − 1 and
S = {v1, v2} be a MDC set with only two majority dominating vertices of G.

Case 1. The graph G is a tree.

Since d(vi) ≥ dp2e − 1, i = 1, 2, for all vi ∈ S. It implies that χ(G) = 2, γM (G) = 1

then
∑
vi∈S

deg(vi) = d(v1) + d(v2) ≥
⌈p

2

⌉
− 1 +

⌈p
2

⌉
− 1

∑
vi∈S

deg(vi) = p− 2 or p if p is even or odd

Therefore |V − S| = p− 2 ≤
∑
vi∈S

deg(vi).

Case 2. The graph G is not a tree and G contains two majority dominating vertices.
Then G is not complete but G consists of triangles. It implies that χ(G) = 3, γM (G) = 1.
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Then S = {v1, v2, v3} be a majority dominating chromatic set of G where v3 is joined with
a majority dominating vertex v1 or v2 of G.

Therefore
∑
vi∈S

deg(vi) = d(v1) + d(v2) + d(v3) ≥
⌈p

2

⌉
− 1 +

⌈p
2

⌉
− 1 + 2

≥ p or p+ 2

Hence |V − S| = p− 3 <
∑

(vi∈S)

deg(vi).

In the above cases, we obtain |V − S| ≤
∑

(vi∈S)
deg(vi). �

Example 2.2. Consider the following Hajos graph with p = 10.

For the graph H,χ(H) = 3, γM (H) = 1

Then S = {v2, v3, v5} is the MDC set of H.∑
vi∈S

deg(vi) = d(v2) + d(v3) + d(v5) = 14 and |V − S| = 7 <
∑
vi∈S

deg(vi).

�

Proposition 2.3. Let G be a non-trivial connected graph with atleast one full degree
vertex. If S is a majority dom-chromatic set of G then

|V − S| <
∑
ui∈S

deg(ui).

Proof: The graph G contains atleast one full degree vertex u1 ∈ V (G) then d(u1) = p−1.

Case 1. The graph G is complete.
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Then the graph G contains all vertices are full degree vertices. Since χ(G) = p,
S = {u1, u2, · · · , up} is a MDC set of G.

Therefore |V − S| = 0 and
∑
ui∈S

deg(ui) = p(p− 1)⇒ |V − S| <
∑
ui∈S

deg(ui).

Case 2. The graph G is not complete.

SubCase 1. If G has only one full degree vertex u and it is not tree then G contains a
triangle. Since χ(G) = 3, S = {u, u1, u2} is a MDC set of G. It implies that |V −S| = p−3.∑

ui∈S
deg(ui) = (p− 1) + 3 + 3 = p+ 5. Hence, |V − S| <

∑
ui∈S

deg(ui).

SubCase 2. If G has only one full degree vertex and the graph G is a tree.

Consider S = {u1, u2} be the MDC set of G which contains a full degree vertex u1. Then
γMχ(G) = 2 . Hence |V − S| ≤ p− 2.

Also
∑
ui∈S

deg(ui) = d(u1) + d(u2) ≥ p− 1 + 1 = p. Hence, |V − S| <
∑
ui∈S

deg(ui).

SubCase 3. Suppose the graph G has two full degree vertices u1 and u2, then G contains
a triangle. Hence, χ(G) = 3. Let S = {u1, u2, u3} be a majority dominating chromatic set
of G. Then |V − S| = p− 3.

Now,
∑
ui∈S

deg(ui) = (p− 1) + (p− 1) + 2 = 2p.⇒ |V − S| <
∑
ui∈S

deg(ui).

In all cases, the vertices of S majority dominates the graph G and also addition with its
coloring number. Thus |V − S| <

∑
ui∈S

deg(ui). �

Corollary 2.4. If the graph G is a vertex color critical and S is a MDC set of G then
|V − S| = 0.

Proof. Let G be a vertex color critical graph with p vertices. Then S = {v1, v2, · · · , vp}
is a MDC set for G. It implies that γMχ(G) = |S| = p. Hence |V − S| = 0. �

Proposition 2.5. If a connected graph G contains all vertices are majority dominating
vertices then |V − S| ≤

∑
ui∈S

deg(ui), where S is the MDC set of G.

Proof: Let G be a connected graph which contains only majority dominating vertices.
Then γM (G) = 1 and χ(G) ≥ 2. Consider the set S = {u1, u2, · · · , ut} be a MDC
set of G. Then |V − S| ≤ p − 2. Since G contains only majority dominating vertices,
d(ui) ≥ dp2e − 1,for each ui ∈ S.

Case 1. The graph G has no triangles. Let S = {u1, u2} be a majority dominating
chromatic set of G.

Then
∑
ui∈S

deg(ui) = d(u1) + d(u2) ≥
⌈p

2

⌉
− 1 +

⌈p
2

⌉
− 1

∑
ui∈S

deg(ui) ≥ p or p− 2 and |V − S| = p− 2. Hence |V − S| ≤
∑
ui∈S

deg(ui).
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Case 2. The graph G has triangles.

Then γM (G) = 1 and χ(G) ≥ 3. It implies that S = {u1, u2, u3} is a MDC set of G.
Hence |V − S| = p− 3.

Then
∑
ui∈S

deg(ui) = 3
(⌈p

2

⌉
− 1
)
≥ 3p

2
or

(
3p

2
− 3

)
.Hence |V − S| ≤

∑
ui∈S

deg(ui).

�

Proposition 2.6. If a connected graph G has no majority dominating vertices then
|V − S| ≥

∑
ui∈S

deg(ui), where S is the MDC set of G.

Proof: Let S be the MDC set of a connected graph G of p vertices and q edges. Since the
graph G has no majority dominating vertices, it has no full degree vertex and it contains
all vertices with degree of d(ui) <

⌈p
2

⌉
− 1. Assume that S = {u1, u2, · · · } be the MDC

set of G. Then |V − S| ≤ p− 2, p > 6.

Also,
∑
ui∈S

deg(ui) = d(u1) + d(u2) + · · · ≤
⌈p

2

⌉
− 2 +

⌈p
2

⌉
− 2 + · · · ≤ 2

⌈p
2

⌉
− 4

∑
ui∈S

deg(ui) ≤ (p− 2) or (p− 4), if p is odd or even.

Hence we obtain, |V − S| ≥
∑
ui∈S

deg(ui).

�

Proposition 2.7. If a MDC set S contains a majority dominating vertex v and other
vertices ui such that d(ui) ≤ dp2e − 3 then

|V − S| >
∑
ui∈S

deg(ui).

Proof: Let u be the majority dominating vertex such that d(u) =
⌈p
2

⌉
− 1 and other

vertices ui with degree d(ui) ≤
⌈p
2

⌉
− 3 in G. Then γM (G) = |{u}| = 1 and χ(G) = 2.

Therefore S = {u, u1} is a MDC set of G and |V − S| ≤ p− 2.

Then
∑
ui∈S

deg(ui) = d(u) + d(u1) ≤
⌈p

2

⌉
− 1 +

⌈p
2

⌉
− 3

≤


p
2 − 1 + p

2 − 3 = p− 4, if p is even

p
2 + p

2 + 1− 4 = p− 3, if p is odd

Therefore
∑
ui∈S

deg(ui) ≤ (p− 4) or (p− 3). Hence |V − S| >
∑
ui∈S

deg(ui).

�

Theorem 2.8. Let G be a connected graph with exactly one vertex v
such that dp2e − 1 ≤ d(v) ≤ dp2e+ 2 and d(ui) ≤ 3, for all ui ∈ V (G). Then

|V − S| >
∑
vi∈S

deg(vi), where S is MDC set such that v ∈ S.

Proof: Let v ∈ V (G) with the condition
⌈p
2

⌉
−1 ≤ d(v) ≤

⌈p
2

⌉
+2. (1)
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Case 1. The graph G is a tree. Let S = {v, u1} be a MDC set in which u1 is a pendant
or d(u1) = 3. Then by (1), d(v) =

⌈p
2

⌉
− 1 and |V − S| = p− 2.

Then
∑
vi∈S

deg(vi) = d(v) + d(u1) =
⌈p

2

⌉
− 1 + 1 =

⌈p
2

⌉
or
⌈p

2

⌉
+ 1

It implies that |V − S| = p− 2 >
∑
vi∈S

deg(vi).

Suppose d(v) =
⌈p
2

⌉
+ 2.

Then,
∑
vi∈S

deg(vi) = d(v) + d(u1) =
⌈p

2

⌉
+ 2 + 1 =

⌈p
2

⌉
+ 3 or

⌈p
2

⌉
+ 4.

Therefore by (1),
∑
vi∈S

deg(vi) takes the value from
⌈p

2

⌉
to
⌈p

2

⌉
+ 4.

Hence |V − S| >
∑
vi∈S

deg(vi).

Case 2. The graph G is not a tree.

Let S be a MDC set of G and S = {v, v1} where v is a majority dominating vertex and
v1 is not a pendant of G. Then |V − S| ≤ p− 2.

Then
∑
vi∈S

deg(vi) = d(v) + d(v1) ≥
⌈p

2

⌉
− 1 + 3

Therefore
∑
vi∈S

deg(vi) =
⌈p

2

⌉
+ 2, if d(v) ≥

⌈p
2

⌉
− 1 and

∑
vi∈S

deg(vi) =
⌈p

2

⌉
+ 5, if d(v) ≤

⌈p
2

⌉
+ 2

Hence, |V − S| = p− 2 >
∑
vi∈S

deg(vi).

�

3. Results on γMχ(G)

Proposition 3.1. Let G be any bipartite graph with a majority dominating vertex. Then
γMχ(G) = 2 and γM (G) < γMχ(G).

Proof: Let G = Km,n,m ≤ n, be a complete bipartite graph.

Case 1. Since G has a majority dominating vertex, γM (G) = 1 and χ(G) = 2. Then
S = {u1, v1} is a MDC set of G, where u1 ∈ V1(G) and v1 ∈ V2(G).

⇒ γMχ(G) = 2 and γM (G) < γMχ(G).

Case 2. If G is not a complete bipartite graph then G may contains pendants. Since
G has a majority dominating vertex u1 ∈ V (G), S = {u1, u2} is a MDC set of G where
u1 ∈ V1(G) and v1 ∈ V2(G).

⇒ γMχ(G) = 2 and γM (G) = 1. Hence γM (G) < γMχ(G). �

The following theorem gives the characterization of γMχ(G) = p − q, where G is any
graph with p vertices and q edges.
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Theorem 3.2. Let G be any graph with p vertices and q edges. Then γMχ(G) = p− q if
and only if G = Kp, p = 1.

Proof: Let γMχ(G) = p−q. Since γMχ(G) ≥ 1, (p−q) ≥ 1. (1)

Case 1. The graph G is connected.

Then q ≥ p− 1⇒ (p− q) ≤ 1. Hence by (1) we obtain p− q = 1 = γMχ(G). (2)
It implies that G is a tree. If G is a tree then χ(G) = 2 and for any connected graph,

1 ≤ γM (G) ≤
⌈p
6

⌉
.

By (2), since p− q = 1 = γMχ(G), the two numbers γ(G) and γM (G) must be one. In a
tree, suppose χ(G) = 2 and γM (G) = 1, then the graph becomes G = K2. By the result (ii)
of (1.2), γMχ(G) ≥ max{χ(G), γM (G)}. We have γMχ(G) = 2. But it is contradiction to
the result (2). Hence G 6= K2 and G = K2.

Case 2. Suppose G is disconnected. If G is disconnected with isolates and without isolates.
Then by the result (i) of (1.2), dp4e + 1 ≤ γMχ(G) ≤ dp2e. The lower bound is attained
for G = mK2. If m = 1, γMχ(K2) = 2 6= p − q = 1. Also the upper bound is attained for

G = kp, when p = 2 then γMχ(K2) = 1 6= p− q = 2. Hence G 6= K2 or K2. It follows that
the graph must be G = K1. The converse is obvious.

�
Next result is the characterization of |V − S| = 0, where S is a MDC set of vertex color
critical graph G.

Proposition 3.3. A MDC set S belongs to a vertex color critical graph if and only if
|V − S| = 0.

Proof: Suppose |V − S| = 0.⇒ |V (G)| = |S| = p. Then the set S = {u1, u2 · · · , up} is a
MDC set for G. Suppose we remove one vertex from S then S may not be a MDC set of
G. Hence G is vertex color critical graph.

Conversely by the definition (iv) in (1.1), if G is vertex color critical graph with p
vertices then γMχ(G) = p. Hence |V − S| = 0. �

Proposition 3.4. Let G be any graph with p vertices. Then γMχ(G) ≤ γχ(G), where
γχ(G) is the dom-chromatic number of G.

Proof: Let γMχ(G) be the majority dom-chromatic number of graph G. Since every dom-
chromatic set of a graph G is a majority dom-chromatic set of a graph G, γMχ(G) ≤ γχ(G).

Case 1. When G is vertex color critical graph.
By the known results (3.2.6) of [3] and (ii) of (1.2), γχ(G) = p = γMχ(G).

Case 2. The graph G is a tree.
If diam (G) ≤ 3, then γχ(G) = γMχ(G) = 2.
Suppose diam(G) ≥ 4, then the graph structures like Pp, p ≥ 5, Caterpillar, etc. By the

known results, γχ(G) ≤ p+3
3 and γMχ(G) ≤ dp6e+ 1.

Hence γMχ(G) < γχ(G).

Case 3. When the graph G is not a tree and not a vertex color critical graph.
Then the graph structures like Cp (cycle, p is even), Fp (Fan), Wp (wheel), etc. By the

known results, γMχ(G) ≤ dp6e+ 1 and γχ(G) ≤ p+4
3 .

Hence γMχ(G) ≤ γχ(G). �
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Corollary 3.5.
(i) If the graph G is a sub division of a star, then γMχ < dγχ2 e.
(ii) If G is a path or cycle then,

a) γMχ ≤ dγχ(G)
2 e; p ≡ 0, 1, 2, 5( mod 6),

b) γMχ ≤ dγχ(G)
2 e+ 1; p ≡ 3, 4( mod 6).

Example 3.6.
(i) Let Pp be a path with p ≡ 0(mod6). Consider G = P18 then γMχ(G) = 4 and

γχ(G) = 7. Now,
⌈
γχ(G)

2

⌉
=
⌈
7
2

⌉
= 4. Hence γMχ(G) =

⌈
γχ(G)

2

⌉
.

(ii) Let G = S(K1,t). Then S1 = {u, u1, u2, · · · , ut} is a dom-chromatic set which
contains a central vertex u of G. ⇒ γχ(G) = |S1| = t + 1 and S2 = {u, u1} is a

MDC set of G.⇒ γMχ(G) = 2. Hence γMχ(G) <
⌈
γχ(G)

2

⌉
.

Construction 3.7. For every integer k ≥ 0, there exist a graph G such that⌈
γχ(G)

2

⌉
− γMχ(G) = k.

Proof. Let G be the subdivision of a star K1,2k+2 by dividing each edge exactly once.
Then |V (G)| = 2(2k + 2) + 1, γχ(G) = 2k + 2 + 1 and γMχ(G) = 2.

Then
⌈
γχ(G)

2

⌉
− γMχ(G) = k + 2− 2 = k. �

Observation 3.8. Let G be any connected graph with p vertices. Let χ(G), γM (G)
and γMχ(G) be the chromatic number, majority domination number and majority dom-
chromatic number respectively. Then χ(G) and γM (G) are not comparable.
i.e., γM (G) < χ(G) < γMχ(G) and χ(G) < γM (G) < γMχ(G).

For Example:-

(i) Let G = Cp, p ≤ 11 and p is odd. Since Cp is vertex χ-critical, by the result (iv)
of (1.2), γM (G) =

⌈p
6

⌉
, χ(G) = 3 and γMχ(G) = 5.

Hence, γM (G) < χ(G) < γMχ(G).
(ii) Let G = Cp, p is odd and p ≥ 19. By the result (iv) of (1.2),

γM (G) =
⌈p
6

⌉
, χ(G) = 3 and γMχ(G) = p. Hence, χ(G) < γM (G) < γMχ(G).

(iii) If p = 13, 15, 17 for G = Cp then χ(G) = γM (G) < γMχ(G).

4. Results of γMχ(G) for a Disconnected Graph

Theorem 4.1. Let G be a disconnected graph then γMχ(G) =
⌈p
2

⌉
if and only if G = Kp

or G = gt ∪Kp−t, p ≥ 2, where gt is a vertex color critical component with |t| ≤
⌈p
2

⌉
.

Proof: Let G be a disconnected graph with p vertices.

Assume that, γMχ(G) =
⌈p
2

⌉
. (1)

Case 1. Suppose G 6= Kp, p ≥ 2 then G has atleast one edge between a pair of vertices.

It implies that G is a disconnected graph without isolates or G = K2 ∪Kp−2. By known
result (i) of (1.2),γMχ(G) =

⌈p
4

⌉
+ 1 or γMχ(G) =

⌈p
4

⌉
− 1. But it is a contradiction to

(1). Therefore G = Kp, p ≥ 2.

Case 2. Suppose G = gt ∪ Kp−t, where gt is not a vertex color critical component with
|t| ≤ dp2e. Then the graph G contains a path, an even cycle or any other component gt
with |t| ≤ dp2e. Since χ(gt) ≥ 2 and γM (gt) ≥ dp6e,
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SubCase 1. Suppose |t| = dp2e. Then S =
{
u1, u2, . . . , ud p

6
e

}
, is a MDC set of G, where

ui ∈ V (gt). It implies that γMχ(G) = dp6e, it condradicts the condition (1).

SubCase 2. Suppose |t| < dp2e. Then S =
{
u1, u2,

(⌈p
2

⌉
− t
)
K1

}
is a MDC set of G

where ui ∈ V (gt).

Therefore γMχ(G) = |S| = dp2e − |t|+ 2 = dp2e − d
p
2e+ 1 + 3 (if |t| = dp2e − 1).

⇒ γMχ(G) = 4 < dp2e. It is a contradiction to (1). Hence gt is a vertex color critical
component in G with |t| ≤ dp2e.

Case 3. Suppose gt with |t| > dp2e. Since gt is a vertex color critical component of G,
gt is a complete graph or an odd cycle. If gt is an odd cycle with |t| = dp2e + 1 then
γMχ(G) = dp2e+ 1. It contradicts our assumption.

If gt is a complete graph with |t| = dp2e+ 1 then γMχ(G) = dp2e+ 1, it is a contradiction
to (1). Hence, gt is a vertex color critical component of G with |t| ≤ dp2e. Therefore G

must be Kp or (gt ∪ Kp−t) with |t| ≤ dp2e. In all the three cases if γMχ(G) = dp2e, then

G = Kp or (gt ∪Kp−t).

Conversely, let G = Kp or (gt∪Kp−t). Suppose G = Kp then γM (G) = dp2e and χ(G) =

1⇒ γMχ(G) = dp2e.Suppose G = (gt ∪Kp−t). Since gt is a vertex critical component with

|t| = dp2e, χ(gt) = dp2e and γM (gt) ≥ 1. It implies that γMχ(G) = dp2e.Suppose gt is a

vertex critical component with |t| < dp2e. Then S = {u1, u2, ..., ut, v1, v2, ..., vd p
2
e−t} is a

MDC set of G where ui ∈ V (gt) and vi ∈ V (Kp−t). Now, |S| = t+ dp2e − t = dp2e. Hence
γMχ(G) = |S| = dp2e.

�

Observation 4.2. (i) For a disconnected graph G,χ(G) < γM (G) < γMχ(G).

Example: Consider the disconnected graph with isolates with p = 16.

Let G = P11 ∪ K5. Let |V (G)| = |{v1, v2, · · · , v11, u1, · · · , u5}| = 16. Then
γM (G) = |{v2, v5, v7}| = 3 and γMχ(G) = |{v2, v5, v7, v8}| = 4. Since P11 is a tree,
χ(G) = 2. Therefore χ(G) < γM (G) < γMχ(G).

(ii) For a disconnected graph G with isolates, γM (G) < χ(G) < γMχ(G).

Example: Let G = C3∪K5 and V (G) = {v1, v2, v3, u1, · · · , u5}. Since C3 is an odd cycle,
χ(G) = 3 and γM (G) = |{v1, u1}| = 2. Then S = {v1, v2, v3, u1} be the MDC set of G

where vi ∈ V (C3) and ui ∈ V (K5). ⇒ γMχ(G) = |S| = 4. Therefore
γM (G) < χ(G) < γMχ(G).

(iii) Let G be a disconnected graph without isolates. Then χ(G) < γM (G) < γMχ(G).

Example: Consider the graph G = P7 ∪ C6 ∪K1,3. For a tree with p = 17 and an even
cycle, χ(G) = 2.

V (G) = {u1, · · · , u7, v1, · · · , v6, w, w1, w2, w3}. Then γM (G) = |{w, u2, u4}| = 3 and
γMχ(G) = |{w, u2, u4, u5}| = 4. Hence χ(G) < γM (G) < γMχ(G).
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(iv) For a disconnected graph G with vertex color critical component,
χ(G) < γM (G) < γMχ(G).

Example: Let G = C13 ∪K6 be a graph with p = 19.

And V (G) = {u1, · · · , u13, v1, · · · , v6}. Since C13 is an odd cycle, χ(G) = 3. The set
{u2, u5, u8} be the γM -set of G and γM (G) = 3. By the result (iii) of (1.2), C13 is a vertex
color critical component , γMχ(G) = 13. Therefore χ(G) ≤ γM (G) < γMχ(G).

Proposition 4.3. G be a disconnected graph with any vertex color critical

component then |V − S| <
∑
ui∈S

deg(ui).

Proof: Let G = Gt ∪Gr be a disconnected graph with p vertices . Since G has a vertex
color critical component , χ(G) ≥ 3. Consider S = {Gt, u1, · · · } be the MDC set of
G, where Gt is the vertex color critical component, such that |t| ≥ 3 and u1 ∈ Gr. If
|N [Gt]| = dp2e then |S| ≥ 3. If |N [Gt]| < dp2e then |S| ≥ 4. It implies that |S| = 3 or 4
and |V − S| ≤ p− 3 or p− 4. Let V (Gt) = {u1, u2, · · · , ut}, then∑

ui∈S
deg(ui) = d(u1) + d(u2) · · · ≥ 3(t− 2) + 1 ≥ 3t− 5, if |t| ≥ 3.

Then, certainly we get |V − S| <
∑
ui∈S

deg(ui)

�

Proposition 4.4. For a disconnected graph G without any vertex critical component,
|V − S| >

∑
ui∈S

deg(ui).

Proof: Let G be a disconnected graph with not vertex color critical component. Let S
be a MDC set of G.

Case 1. The graph G is totally disconnected.

Then S = {u1, u2, · · · , ud p
2
e} be the MDC set of G and deg(ui) = 0, for each ui ∈ S. It

implies that
∑
ui∈S

deg(ui) = 0. Hence, |V − S| >
∑
ui∈S

deg(ui).

Case 2. The graph G is disconnected with isolates.

Then G contains some connected component ‘g’ along with isolates.

SubCase 1. If the component ‘g’ such that |N [g]| ≥ dp2e then S is a MDC set of G with
1 ≤ |S| = dp6e. Suppose |S| = 1⇒ S = {u} such that |N [S]| = dp2e − 1.

Then |V − S| = p− 1 >
∑
ui∈S

deg(ui) = dp2e − 1. Suppose |S| = dp6e.

Then d(ui) ≤ 2, for all ui ∈ V (g). Now,
∑
ui∈S

deg(ui) = 2dp6e = p
3 or p

3 + 2 and

|V − S| = p− dp6e = 5p
6 − 1.

Therefore, |V − S| >
∑
ui∈S

deg(ui).
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SubCase 2. If the component ‘g’ such that |N [S]| < dp2e then S is a MDC set with
isolates.

⇒
∑
ui∈S

deg(ui) ≤ p
3 . Since S contains more isolates, the value

∑
ui∈S

deg(ui) will be

reduced. Then |V − S| >
∑
ui∈S

deg(ui).

Case 3. G is a disconnected graph without isolates.

Then G contains only connected components . Suppose G = mK2. Then by the result
(i) of (1.2), γMχ(G) = |S| = dp4e+ 1. It implies that∑

ui∈S
deg(ui) =

⌈p
4

⌉
+ 1. But |V − S| =

∣∣∣p− (⌈p
4

⌉
+ 1
)∣∣∣ =

3p

4
− 1

If the size of the component g increases such as G = mC4,mK1,t, · · · then |S| will be
decreased. i.e.,

|S| <
⌈p

4

⌉
+ 1 and

∑
ui∈S

deg(ui) >
⌈p

4

⌉
+ 1. But in all structures,

We obtain, |V − S| >
∑
ui∈S

deg(ui).

�

Proposition 4.5. Let G be a disconnected graph without any vertex color critical compo-
nent then |V − S| = bp2c if and only if G = Kp.

Proof: Let G has no vertex color critical subgraph. Let G = Kp, p is odd. Then
S = {u1, u2, · · · , ud p

2
e} is a MDC set of G and γMχ(G) = |S| = dp2e. Hence |V −S| = bp2c,

if p is odd. When p is even, S = {u1, u2, · · · , u p
2
} is the MDC set and γMχ(G) = |S| = p

2

and |V − S| = p
2 . Hence |V − S| = bp2c.

Conversely , suppose G 6= Kp. Then either G is disconnected graph without isolates or
G contains atleast one component which is not a vertex color critical with some isolates.
Let |V − S| =

⌊p
2

⌋
. (1)

Case 1. If G has components which is not vertex color critical with no isolates then the
structure like G = mK2. By the result (i) of (1.2), we have γMχ(G) = |S| = dp4e + 1. If
|S| = dp4e+ 1⇒ |V − S| = |p− dp4e+ 1| > bp2e. It is a contradiction to (1).

Case 2. Suppose G = C6 ∪ KP−6, where C6 is not a vertex color critical. Then
S = {u2, u5, (dp2e − 6)K1}, where u2, u5 ∈ V (C6).

⇒ |S| = dp2e − 6 + 2 =
⌈p
2

⌉
− 4.

Therefore |V − S| = |p− dp2e+ 4| = bp2c+ 4 > bp2c. It is a contradiction to (1).

Hence G = Kp if and only if |V − S| = bp2c.

�
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5. Conclusion

In this article, we have discussed the inequality between the sum of the degrees of
the vertices of majority dominating chromatic set S and its complement (V − S) of a
graph. The comparison between the domination parameters γM (G), χ(G) and γMχ(G)
are discussed. Also some results of γMχ(G) of a disconnected graph with isolates and
without isolates are studied.
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