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ALGORITHMIC COMPLEXITY OF ISOLATE SECURE DOMINATION

IN GRAPHS

JAKKEPALLI PAVAN KUMAR1, P. VENKATA SUBBA REDDY1, §

Abstract. A dominating set S is an Isolate Dominating Set (IDS) if the induced sub-
graph G[S] has at least one isolated vertex. In this paper, we initiate the study of
new domination parameter called, isolate secure domination. An isolate dominating set
S ⊆ V is an isolate secure dominating set (ISDS), if for each vertex u ∈ V \ S, there
exists a neighboring vertex v of u in S such that (S \ {v}) ∪ {u} is an IDS of G. The
minimum cardinality of an ISDS of G is called as an isolate secure domination number,
and is denoted by γ0s(G). We give isolate secure domination number of path and cycle
graphs. Given a graph G = (V,E) and a positive integer k, the ISDM problem is to
check whether G has an isolate secure dominating set of size at most k. We prove that
ISDM is NP-complete even when restricted to bipartite graphs and split graphs. We also
show that ISDM can be solved in linear time for graphs of bounded tree-width.
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1. Introduction

In this paper, every graph G = (V,E) considered is finite, simple (i.e., without self-loops
and multiple edges) and undirected with vertex set V and edge set E. For a vertex v ∈ V ,
the (open) neighborhood of v in G is N(v) = {u ∈ V : (u, v) ∈ E}, the closed neighborhood
of v is defined as N [v] = N(v) ∪ {v}. If S ⊆ V , then the (open) neighborhood of S is the
set N(S) = ∪v∈SN(v). The closed neighborhood of S is N [S] = S ∪ N(S). The degree
of a vertex v is the size of the set N(v) and is denoted by d(v). If d(v) = 0, then v is
called an isolated vertex of G. If d(v) = 1, then v is called a pendant vertex. For a graph
G = (V,E), and a set S ⊆ V, the subgraph of G induced by S is defined as G[S] = (S,ES),
where ES = {(x, y) : x, y ∈ S and (x, y) ∈ E}. A spanning subgraph is a subgraph that
contains all the vertices of the graph. If G[S] is a complete subgraph of G, then it is called
a clique of G. A set S ⊆ V is an independent set if G[S] has no edges. A split graph is a
graph in which the vertices can be partitioned into a clique and an independent set.

A set S ⊆ V is a dominating set (DS ) in G if for every u ∈ V \ S, there exists v ∈ S
such that (u, v) ∈ E, i.e., N [S] = V . The minimum size of a dominating set in G is called
the domination number of G and is denoted by γ(G). Given a graph G = (V,E) and
a positive integer k, the domination decision (DOM) problem is to check whether G has
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a dominating set of size at most k. The DOM problem is known to be NP-complete [5].
The literature on various domination parameters in graphs has been surveyed in [7,8]. An
important domination parameter called secure domination has been introduced by E.J.
Cockayne in [2]. A dominating set S ⊆ V is a secure dominating set (SDS ) of G, if for each
vertex u ∈ V \S, there exists a neighboring vertex v of u in S such that (X \ {v})∪{u} is
a dominating set of G (in which case v is said to defend u). The minimum size of a SDS
in G is called the secure domination number of G and is denoted by γs(G). Let S ⊆ V .
Then a vertex w ∈ V is called a private neighbor of v with respect to S if N [w]∩S = {v}.
If further w ∈ V \ S, then w is called an external private neighbor (epn) of v. The secure
domination decision problem (SDOM) is known to be NP-complete for general graphs [4]
and remains NP-complete even when restricted to bipartite graphs and split graphs [9].

Another domination parameter called isolate domination has been introduced by Hamid
and Balamurugan in [6]. A dominating set S is an isolate dominating set (IDS ) if the
induced subgraph G[S] has at least one isolated vertex. The isolate domination number
γ0(G) is the minimum size of an IDS of G. In [12], N.J. Rad has proved that the isolate
domination decision problem is NP-complete, even when restricted to bipartite graphs. A
dominating set S is said to be a connected dominating set (CDS), if the induced subgraph
G[S] is connected. A CDS S is said to be a secure connected dominating set (SCDS) in G
if for each u ∈ V \ S, there exists v ∈ S such that uv ∈ E and (S \ {v}) ∪ {u} is a CDS
in G. Algorithmic complexity of secure connected domination problem has been studied
in [10, 11]. In this paper, we initiate the study of a variant of domination called isolate
secure domination. An isolate dominating set S ⊆ V is an isolate secure dominating set
(ISDS ), if for each vertex u ∈ V \ S, there exists a neighboring vertex v of u in S such
that (S \ {v}) ∪ {u} is an IDS of G. The minimum size of an ISDS of G is called as an
isolate secure domination number, and is denoted by γ0s(G). Given a graph G = (V,E)
and a positive integer k, the ISDM problem is to check whether G has an isolate secure
dominating set of size at most k.
Motivation. A communication network is modeled as a graph G = (V,E) where each
node represents a communicating device and each edge represents a communication link
between two devices. All the nodes in the network need to communicate and exchange
information to perform a task. However, in the networks where the reliability of the
nodes is not guaranteed, every node v can be a potential malicious node. A virtual
protection device at node v can (i) detect the malicious activity at any node u in its closed
neighborhood (ii) migrate to the malicious node u and repair it. One is interested to deploy
minimum number of virtual protection devices such that every node should have at least
one virtual protection device within one hop distance even after virtual protection device
is migrated to malicious node. This problem can be solved by finding a minimum secure
dominating set of the graph G. Further, if two virtual protection devices are deployed
adjacently then there is a chance of one virtual protection device getting damaged or
corrupted if other one is corrupted. In some scenarios it is desirable to have at least one
virtual protection device isolated from all other devices before and after each potential
migration to act as a backup device. This problem can be solved by finding a minimum
isolate secure dominating set of the graph G.

2. Basic Results

In this section, some precise values and bounds for new domination parameter called
isolate secure domination in frequently encountered graph classes are presented. The
graphs for which isolate secure dominating set exist the following observation holds.
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Observation 2.1. For a graph G, γ0s(G) ≥ γs(G).

Proposition 2.1. For the complete graph Kn with n vertices, γ0s(Kn) = 1.

Theorem 2.1. Let G be a graph with n vertices. Then γ0s(G) = 1 if and only if G = Kn.

Proof: Suppose γos(G) = 1 and let S = {v} be a minimum size ISDS of G. Suppose
G 6= Kn, then there exists x, y ∈ V (G) such that d(x, y) ≥ 2, where d(x, y) is the distance
between vertices x and y in G. Then (S \ {v})∪{x} = {x}, which is not a dominating set
of G, since (x, y) /∈ E. Therefore, G = Kn. The converse is true by Proposition 2.1.

Remark 2.1. There is no isolate secure dominating set possible for the complete bipartite
graph.

Proposition 2.2. Let Pn be a path graph with n (≥ 4) vertices. Then γ0s(Pn) = d3n7 e.

Proof: From [2], we know that γs(Pn) = d3n7 e. By this and Proposition 2.1, we have

γ0s(Pn) is at least d3n7 e. Hence in order to complete the proof, we need to exhibit an ISDS

of Pn of size d3n7 e.
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Figure 1. Path graph P7

Suppose Pn = (v1, v2, . . . , vn) and n = 7m+ r, where m ≥ 1 and 0 ≤ r ≤ 6. Define two
sets

X =
m−1⋃
i=0

{v7i+2, v7i+4, v7i+6}

and

Y =


∅, if r = 0

{v7m+1}, if r = 1 or 2

{v7m+1, v7m+3}, if r = 3 or 4

{v7m+1, v7m+3, v7m+5}, if r = 5 or 6

Clearly |X ∪ Y | = d3n7 e. It can be noted that the set X ∪ Y forms an independent set. It
can also be verified that X ∪ Y forms an ISDS of Pn. Hence the result.

Observation 2.2. If G′ is a spanning subgraph of graph G, then γ0s(G
′) ≥ γ0s(G).

Proposition 2.3. Let Cn be a cycle graph with n vertices. Then γ0s(Cn) = d3n7 e.

Proof: From Observation 2.2, γ0s(Pn) ≥ γ0s(Cn). From Proposition 2.2, it can be noted
that γ0s(Cn) ≤ d3n7 e. From Observation 2.1, we know that γs(G) ≤ γ0s(G). It is known

that γs(Cn) = d3n7 e [2]. Hence the result.

3. Main Results

In this section, the complexity of a new domination parameter called isolate secure domi-
nation is investigated for bipartite graphs, split graphs and bounded tree-width graphs.

The decision version of isolate secure domination problem is defined as follows.

ISOLATE SECURE DOMINATION DECISION problem (ISDM )
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Figure 2. Example construction of a graph G′

Instance: A simple, undirected graph G = (V,E) and a positive integer p.
Question: Does there exist an ISDS of size at most p in G ?

The following proposition has been proved by Cockayne et al [2].

Proposition 3.1. ( [2]) X is a SDS of G if and only if for each u ∈ V \X, there exists
v ∈ X such that G[epn(v,X) ∪ {u, v}] is complete.

The following corollary follows from Proposition 3.1.

Corollary 3.1. For any bipartite graph G with SDS S, |epn(v, S)| ≤ 1, ∀v ∈ V .

The DOM problem in bipartite graphs (DSDPB) has been proved as NP-complete by A.A.
Bertossi [1].

Theorem 3.1. ISDM is NP-complete for bipartite graphs.

Proof: It can be shown that ISDM is in NP, since if a set S ⊆ V , such that |S| ≤ k is given
as a witness to a yes instance then it can be verified in polynomial time that S is an ISDS
of G. We reduce the DSDPB problem instance to ISDM problem instance for bipartite
graphs as follows. Given a bipartite graph G = (X,Y,E), we construct a graph G′ =
(X ′, Y ′, E′) where X ′ = X ∪ {b1, d1, f1, g1, a2, c2, e2}, Y ′ = Y ∪ {a1, c1, e1, b2, d2, f2, g2}
and E′ = E ∪ {(a1, v) : v ∈ X} ∪ {(a2, v) : v ∈ Y } ∪ {(ai, bi), (ai, fi), (ai, gi), (bi, ci),
(ci, di), (di, ei), (ei, fi) : 1 ≤ i ≤ 2}. Clearly, G′ is a bipartite graph and can be constructed
from G in polynomial time. An example construction of a graph G′ from a graph G is
depicted in figure 2.

Next, we prove that G has a dominating set of size at most k if and only if G′ has an
ISDS of size at most p = k + 6. Let D be a dominating set of size at most k in G and
D∗ = D ∪ {a1, c1, e1, a2, c2, e2}. Clearly D∗ is an ISDS of size at most k + 6 in G′.

Conversely, suppose that G′ has an ISDS D∗ of size at most p = k+6. It can be observed
that |D∗∩{a1, b1, c1, d1, e1, f1}| ≥ 3, |D∗∩{a2, b2, c2, d2, e2, f2}| ≥ 3 and |D∗∩(X∪Y )| ≤ k.
Since g1 and g2 are pendant vertices, |D∗ ∩ {a1, g1}| ≥ 1 and |D∗ ∩ {a2, g2}| ≥ 1. Let
D1 = D∗ ∩ {a1, g1} and D2 = D∗ ∩ {a2, g2}. Now we consider the following four possible
cases.
case (i). |D1| = 1 and |D2| = 1, then all vertices in X \D∗ can be dominated by Y ∩D∗
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and all vertices in Y \D∗ can be dominated by X∩D∗ hence D∗∩ (X∪Y ) is a dominating
set of size at most k in G.
case (ii). |D1| = 1 and |D2| = 2, then all vertices in X \D∗ can be dominated by Y ∩D∗
and from Corollary 3.1, |epn(a2, D

∗)| ≤ 1, therefore D′ ∪ epn(a2, D
∗) is a dominating set

of size at most k in G.
case (iii). |D1| = 2 and |D2| = 1, this case is analogous to case (ii).
case (iv). |D1| = 2 and |D2| = 2, then if D∗ ∩ (X ∪ Y ) is a dominating set of G, we
are done. Otherwise, let D′ = D∗ ∩ (X ∪ Y ). From Corollary 3.1, |epn(ai, D

∗)| ≤ 1, for
1 ≤ i ≤ 2 and hence |D′| ≤ k − 2. In such a case D = D′ ∪ {epn(ai, D

∗) : 1 ≤ i ≤ 2} is a
dominating set of size at most k in G. Hence the proof.

The decision version of secure domination problem is defined as follows.

SECURE DOMINATION DECISION problem (SDOM )

Instance: A simple, undirected graph G = (V,E) and a positive integer k.
Question: Does there exist a SDS of size at most k in G ?

It has been proved that the SDOM is NP-complete for split graphs by H.B. Merouane et
al. [9]

Theorem 3.2. ISDM is NP-complete for split graphs.

Proof: It is known that ISDM is in NP. We reduce SDOM problem instance for split
graphs to ISDM problem instance for split graphs as follows. Given a split graph G =
(C, I, E), construct a graph G′ = (C ′, I ′, E′), where C ′ = C ∪ {x1, y1}, I ′ = I ∪ {x2, y2}
and E(G′) = E ∪ {(x1, v), (y1, v) : v ∈ C} ∪ {(x1, y1), (x1, x2), (y1, y2)}. Note that G′ is
a split graph and can be constructed from G in polynomial time. Figure 3 illustrates an
example construction.

•x2 •y2

•x1 •y1

•b •
c

•a •d

•e

• r

• q

•p

G

Figure 3. Example construction of a split graph G′

Next, we shall show that G has a SDS of size at most k if and only if G′ has an ISDS
of size at most p = k + 2. Let D be a SDS of size at most k in G and D∗ = D ∪ {x2, y2}.
It can be easily verified that D∗ is an ISDS of size at most k + 2 in G∗.

Conversely, suppose that G′ has an ISDS D∗ of size at most p = k + 2. Let X ′ =
D∗ ∩ {x1, x2}, Y ′ = D∗ ∩ {y1, y2} and D′ = D∗ \ (X ′ ∪ Y ′). We now have the following
cases. (i) |X ′| = 1 and |Y ′| = 1, then D′ is a SDS of size at most k in G. (ii) |X ′| = 1 and
|Y ′| = 2, then for any v ∈ C \D∗, D′ ∪ {v} is a SDS of size at most k in G. (iii) |X ′| = 2
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and |Y ′| = 1, this case is similar to the previous case. (iv) |X ′| = 2 and |Y ′| = 2, then for
any two vertices u, v ∈ C \D∗ and u 6= v, D′ ∪ {u, v} is a SDS of size at most k in G.

Since the domination problem is w[2]-complete for bipartite graphs and split graphs [13]
and the reductions in Theorems 3.1 and 3.2 are in the function of the parameter k, the
following two corollaries are immediate.

Corollary 3.2. ISDM is w[2]-hard for bipartite graphs.

Corollary 3.3. ISDM is w[2]-hard for split graphs.

3.1 ISDM for bounded tree-width graphs

Let G be a graph, T be a tree and v be a family of vertex sets Vt ⊆ V (G) indexed by
the vertices t of T . The pair (T, v ) is called a tree-decomposition of G if it satisfies the
following three conditions: (i) V (G) =

⋃
t∈V (T ) Vt, (ii) for every edge e ∈ E(G) there

exists a t ∈ V (T ) such that both ends of e lie in Vt, (iii) Vt1 ∩ Vt3 ⊆ Vt2 whenever t1, t2,
t3 ∈ V (T ) and t2 is on the path in T from t1 to t3. The width of (T, v ) is the number
max{|Vt| − 1 : t ∈ T}, and the tree-width tw(G) of G is the minimum width of any tree-
decomposition of G. By Courcelle’s Thoerem, it is well known that every graph problem
that can be described by counting monadic second-order logic (CMSOL) can be solved in
linear-time in graphs of bounded tree-width, given a tree decomposition as input [3]. We
show that ISDM problem can be expressed in CMSOL.

Theorem 3.3 (Courcelle’s Theorem). ( [3]) Let P be a graph property expressible in
CMSOL and let k be a constant. Then, for any graph G of tree-width at most k, it can be
checked in linear-time whether G has property P .

Theorem 3.4. Given a graph G and a positive integer k, ISDM can be expressed in
CMSOL.

Proof: First, we present the CMSOL formula which expresses that the graph G has a
dominating set of size at most k.

Dominating(S) = (|S| ≤ k) ∧ (∀p)((∃q)(q ∈ S ∧ adj(p, q))) ∨ (p ∈ S)

where adj(p, q) is the binary adjacency relation which holds if and only if, p, q are two
adjacent vertices of G. Dominating(S) ensures that for every vertex p ∈ V , either p ∈ S
or p is adjacent to a vertex in S and the cardinality of S is at most k.

Isolate−Dom(S) = Dominating(S) ∧ (∃p)(p ∈ S ∧ ((@q)(q ∈ (S \ {p}) ∧ adj(p, q)))

Now, by using the above two CMSOL formulas we can express ISDM in CMSOL formula
as follows.

ISDM(S) = Isolate−Dom(S)∧
(∀x)((x ∈ S)∨ ((∃y)(y ∈ S∧ Isolate−Dom((S \ {y}) ∪ {x}))))

Therefore, ISDM can be expressed in CMSOL. Now, the following result is immediate
from Theorems 3.3 and 3.4.

Theorem 3.5. ISDM can be solvable in linear time for bounded tree-width graphs.

4. Conclusion

In this paper, it is shown that ISDM problem is NP-complete even when restricted to
bipartite graphs, or split graphs. Since split graphs form a proper subclass of chordal
graphs, this problem is also NP-complete for chordal graphs. We have shown that ISDM
problem is linear time solvable for bounded tree-width graphs. It will be interesting to
investigate the algorithmic complexity of ISDM problem for subclasses of chordal and
bipartite graphs.
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