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A NEW APPROACH TO FIND APPROXIMATE SOLUTIONS OF

BURGER’S AND COUPLED BURGER’S EQUATIONS OF

FRACTIONAL ORDER

H. K. JASSIM1, §

Abstract. The paper presents a new technique called homotopy perturbation Sumudu
transform Method (HPSTM), which is a combination of the Sumudu transform (ST) and
homotopy perturbation method (HPM) for solving the fractional Burger’s and coupled
fractional Burger’s equations with time fractional derivative operators. The fractional
derivative is described in the Caputo sense. The method in general is easy to implement
and yields good results. Illustrative examples are included to demonstrate the validity
and applicability of the new technique. The approximate solutions obtained are com-
pared with the results obtained by variational iteration method (VIM) and homotopy
perturbation method (HPM).
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1. Introduction

The homotopy perturbation method (HPM), which is introduced by He [1], has been
widely used to obtain approximate solutions of linear and non-linear problems arising
as ordinary or partial differential equations of integer or fractional order in science and
engineering. In the recent years, fractional homotopy perturbation method, which is
modified to improve the efficiency and accuracy of homotopy perturbation method, is
proposed and successful results have been achieved [2].

The name fractional calculus stems from the fact that the order of derivatives and
integrals are fractions rather than integers. Early work on fractional calculus dates back to
the early nineteenth century. Integration and differentiation with arbitrary order is called
fractional calculus, and it is the general expansion of integer order calculus to arbitrary
order. Recently, fractional calculus has become a powerful tool because of its favorable
properties such as analyticity, linearity, and nonlocality. With the fast growth of digital
computer knowledge, many authors have started to work on the theory and applications
of fractional calculus to present their viewpoints [3]. In general, the better performance
of the fractional calculus becomes evident based on lower error levels produced during
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of Mathematics, 2021; all rights reserved.

415



416 TWMS J. APP. ENG. MATH. V.11, N.2, 2021

an estimation process. Computational methods and numerical simulations successfully
applied to several works, such as those found in [4]–[16].

2. Preliminaries

Some fractional calculus definitions and notation needed [17, 18] in the course of this
work are discussed in this section

Definition 2.1. A real function ϕ(µ), µ > 0, is said to be in the space Cϑ, ϑ ∈ R if there
exists a real number q, (q > ϑ), such that ϕ(µ) = µqϕ1(µ), where ϕ1(µ) ∈ C[0,∞), and it

is said to be in the space Cmϑ if ϕ(m) ∈ Cϑ,m ∈ N.

Definition 2.2. The Riemann Liouville fractional integral operator of order δ ≥ 0, of a
function ϕ(µ) ∈ Cϑ, ϑ ≥ −1 is defined as

Iδϕ(µ) =


1

Γ(δ)

∫ µ
0 (µ− τ)δ−1ϕ(τ)dτ, δ > 0, µ > 0,

φ(µ), δ ≥ 0,
(1)

where Γ(·) is the well-known Gamma function.

Properties of the operator Iδ, which we will use here, are as follows:
For ϕ ∈ Cϑ, ϑ ≥ −1, δ, γ ≥ −1, then

(1) IδIγϕ(µ) = Iδ+γϕ(µ).

(2) IδIγϕ(µ) = IγIδϕ(µ).

(3) Iδµm =
Γ(m+ 1)

Γ(δ +m+ 1
µδ+m.

Definition 2.3. The fractional derivative of ϕ(µ) in the Caputo sense is defined as

Dδϕ(µ) = Im−δDmϕ(µ)

=
1

Γ(m− δ)

∫ µ

0
(µ− τ)m−δ−1ϕ(m)(τ)dτ, (2)

for m− 1 < δ ≤ m,m ∈ N,µ > 0, ϕ ∈ Cm−1.

The following are the basic properties of the operator Dδ:

(1) DδIδϕ(µ) = ϕ(µ).

(2) DδIδϕ(µ) = ϕ(µ)−
∑m−1

k=0 ϕ
(k)(0)

µk

k!
.

Definition 2.4. The Mittag-Leffler function Eδ with δ > 0 is defined as

Eδ(z) =
∞∑
m=0

zδ

Γ(mδ + 1)
. (3)

Definition 2.5. The Sumudu transform is defined over the set of function

A =

{
ϕ(τ)/∃M,ω1, ω2 > 0, |ϕ(τ)| < Me

|τ |
ωj , ifτ ∈ (−1)j × [0,∞)

}
,

by the following formula

S[ϕ(τ)] =

∫ ∞
0

e−τϕ(ωτ)dτ, ω ∈ (−ω1, ω2). (4)
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Definition 2.6. The Sumudu transform of the Caputo fractional derivative is defined as

S[Dmδ
τ ϕ(µ, τ)] = ω−mδS[ϕ(µ, τ)]−

m−1∑
k=0

ω−mδ+kϕ(k)(µ, 0),m− 1 < mδ < m. (5)

3. Homotopy Perturbation Sumudu Transform Method (HPSTM)

Let us consider a general fractional non-linear partial differential equation of the form:

Dδ
τϕ(µ, τ) +R [ϕ(µ, τ)] +N [ϕ(µ, τ)] = g(µ, τ) (6)

with the initial condition

ϕ(µ, 0) = f(µ), (7)

where Dδ
τϕ(µ, τ) is the Caputo fractional derivative of the function ϕ(µ, τ) defined as:

Dδ
τϕ(µ, τ) =

∂δϕ(µ, τ)

∂τ δ

=


1

Γ(m− δ)
∫ τ
0 (τ − ω)m−δ−1

∂mϕ(µ, ω)

∂τm
dω, m− 1 < δ < m,

f1(−∞) ∼ C(−ξ)α, f(+∞) = 0
(8)

and R is the linear differential operator, N represents the general non-linear differential
operator, and g(µ, τ) is the source term.

Taking the ST on both sides of (6), we have

S
[
Dδ
τϕ(µ, τ)

]
+ S [R [ϕ(µ, τ)]] + S [N [ϕ(µ, τ)]] = S [g(µ, τ)] . (9)

Using the property of the ST, we obtain

S [ϕ(µ, τ)] = ϕ(µ, 0) + ωδS [g(µ, τ)]− ωδS [R [ϕ(µ, τ) +N [ϕ(µ, τ)]]] . (10)

Operating with the ST on both sides of (10) gives

ϕ(µ, τ) = f(µ) + S−1
(
ωδS [g(µ, τ)]

)
− S−1

(
ωδS [R [ϕ(µ, τ) +N [ϕ(µ, τ)]]]

)
. (11)

Now, we apply the HPM:

ϕ(µ, τ) =
∞∑
n=0

pnϕn(µ, τ), (12)

and the nonlinear term can be decomposed as

N [ϕ(µ, τ)] =

∞∑
n=0

pnHn(ϕ1, ϕ2, . . . , ϕn), (13)

where

Hn(ϕ1, ϕ2, . . . , ϕn) =
1

n!

∂n

∂pn

[
N

( ∞∑
i=0

piϕi

)]
p=0

.

Substituting (12) and (13) in (11), we get
∞∑
n=0

pnϕn(µ, τ) = f(µ) + S−1
(
ωδS [g(µ, τ)]

)
−pS−1

(
ωδS

[
R

[ ∞∑
n=0

pnϕn(µ, τ)

]
+

∞∑
n=0

pnHn

])
. (14)
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Equating the terms with identical powers of p, we can obtain a series of equations as the
follows:

p0 : ϕ0(µ, τ) = f(µ) + S−1
(
ωδS [g(µ, τ)]

)
,

p1 : ϕ1(µ, τ) = −S−1
(
ωδS [R [ϕ0(µ, τ)] +H0]

)
,

p1 : ϕ2(µ, τ) = −S−1
(
ωδS [R [ϕ1(µ, τ)] +H1]

)
, (15)

...

pn : ϕn(µ, τ) = −S−1
(
ωδS [R [ϕn−1(µ, τ)] +Hn−1]

)
, n ≥ 1.

Finally, we approximate the analytical solution ϕ(µ, τ) by truncated series:

ϕ(µ, τ) = lim
p−→1

∞∑
n=0

pnϕn(µ, τ). (16)

4. Applications

In this section, we will implement the proposed method for solving Burger’s and coupled
Burger’s equations.

Example 4.1. First, we consider the fractional Burger’s equation

Dδ
τϕ(µ, τ) + ϕ(µ, τ)ϕµ(µ, τ) = ϕµµ(µ, τ), (17)

subject to initial condition

ϕ(µ, 0) = µ. (18)

Taking the Sumudu transform (ST) on both sides of (17), we have

S
[
Dδ
τϕ(µ, τ)

]
= S [ϕµµ(µ, τ)− ϕ(µ, τ)ϕµ(µ, τ)] . (19)

Applying the properties of the ST in (19), we get

S [ϕ(µ, τ)] = µ+ ωδS [ϕµµ(µ, τ)− ϕ(µ, τ)ϕµ(µ, τ)] . (20)

Operating with the ST inverse on both sides of (20), we obtain

ϕ(µ, τ) = µ+ S−1
(
ωδS [ϕµµ(µ, τ)− ϕ(µ, τ)ϕµ(µ, τ)]

)
. (21)

By applying HPM, and substituting

ϕ(µ, τ) =
∞∑
n=0

pnϕn(µ, τ),

and

ϕ(µ, τ)ϕµ(µ, τ) =

∞∑
n=0

pnHn,

where

H0 = ϕ0ϕ0µ,

H1 = ϕ0ϕ1µ + ϕ1ϕ0µ,

H2 = ϕ0ϕ2µ + ϕ1ϕ1µ + ϕ2ϕ0µ,

...
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in (21), we have

∞∑
n=0

pnϕn(µ, τ) = µ+ S−1

(
ωδS

[
∂2

∂µ2

( ∞∑
n=0

pnϕn(µ, τ)

)
−
∞∑
n=0

pnHn

])
. (22)

Equating the terms with identical powers of p, we obtain

p0 : ϕ0(µ, τ) = µ,

p1 : ϕ1(µ, τ) = S−1
(
ωδS

[
∂2

∂µ2
ϕ0(µ, τ)−H0

])
,

p2 : ϕ2(µ, τ) = S−1
(
ωδS

[
∂2

∂µ2
ϕ1(µ, τ)−H1

])
,

p3 : ϕ3(µ, τ) = S−1
(
ωδS

[
∂2

∂µ2
ϕ2(µ, τ)−H2

])
,

...

Hence, we have:

p0 : ϕ0(µ, τ) = µ,

p1 : ϕ1(µ, τ) = −µ τ δ

Γ(δ + 1)
,

p2 : ϕ2(µ, τ) = 2µ
τ2δ

Γ(2δ + 1)
,

p3 : ϕ3(µ, τ) = −µΓ(2δ + 1)

Γ2(δ + 1)

τ3δ

Γ(3δ + 1)
− 4µ

τ3δ

Γ(3δ + 1)
,

...

Thererfore, the solution of (17) is given by

ϕ(µ, τ) = lim
p−→1

∞∑
n=0

pnϕn(µ, τ)

= µ

[
1− τ δ

Γ(δ + 1)
+ 2

τ2δ

Γ(2δ + 1)
− Γ(2δ + 1)

Γ2(δ + 1)

τ3δ

Γ(3δ + 1)
− 4

τ3δ

Γ(3δ + 1)
+ · · ·

]
(23)

The Eq. (23) is approximate to the form ϕ(µ, τ) =
µ

1− τ
for δ = 1, which is the exact

solution of Eq. (17) for δ = 1. The result is same as VIM [19].

Example 4.2. Consider the following coupled fractional Burger’s equations

Dδ
τϕ(µ, τ)− ϕµµ(µ, τ)− 2ϕ(µ, τ)ϕµ(µ, τ) + (ϕψ)µ = 0,

Dγ
τψ(µ, τ)− ψµµ(µ, τ)− 2ψ(µ, τ)ψµ(µ, τ) + (ϕψ)µ = 0, (24)

subject to initial conditions

ϕ(µ, 0) = sin(µ),

ψ(µ, 0) = sin(µ), (25)

Taking the Sumudu transform (ST) on both sides of (24), we have

S
[
Dδ
τϕ(µ, τ)

]
= S [ϕµµ(µ, τ) + 2ϕϕµ − (ϕψ)µ] ,

S [Dγ
τψ(µ, τ)] = S [ψµµ(µ, τ) + 2ψψµ − (ϕψ)µ] . (26)
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Using the property of the Sumudu transform and the initial condition in (25), we obtain

S [ϕ(µ, τ)] = sin(µ) + ωδS [ϕµµ(µ, τ) + 2ϕϕµ − (ϕψ)µ] ,

S [ψ(µ, τ)] = sin(µ) + ωγS [ψµµ(µ, τ) + 2ψψµ − (ϕψ)µ] . (27)

Operating with the Sumudu inverse on both sides of (27), we have

ϕ(µ, τ) = sin(µ) + S−1
(
ωδS [ϕµµ(µ, τ) + 2ϕϕµ − (ϕψ)µ]

)
,

ψ(µ, τ) = sin(µ) + S−1 (ωγS [ψµµ(µ, τ) + 2ψψµ − (ϕψ)µ]) . (28)

Suppose that

ϕ(µ, τ) =

∞∑
n=0

pnϕn(µ, τ), (29)

ψ(µ, τ) =
∞∑
n=0

pnψn(µ, τ), (30)

ϕϕµ =

∞∑
n=0

pnHn, (31)

ψψµ =
∞∑
n=0

pnKn, (32)

(ϕψ)µ =
∞∑
n=0

pnGn. (33)

By applying the HPM, and substituting (29)-(33) in (28), we get

∞∑
n=0

pnϕn = sin(µ) + S−1

(
ωδS

[
∂2

∂µ2

( ∞∑
n=0

pnϕn

)
+ 2

∞∑
n=0

pnHn −
∞∑
n=0

pnGn

])
,

∞∑
n=0

pnψn = sin(µ) + S−1

(
ωδS

[
∂2

∂µ2

( ∞∑
n=0

pnψn

)
+ 2

∞∑
n=0

pnKn −
∞∑
n=0

pnGn

])
. (34)

Equating the terms with identical powers of p, we obtain

p0 :

{
ϕ0(µ, τ) = sin(µ),
ψ0(µ, τ) = sin(µ).

(35)

p1 :


ϕ1(µ, τ) = S−1

(
ωδS

[
∂2ϕ0

∂µ2
+ 2H0 −G0

])
,

ψ1(µ, τ) = S−1
(
ωγS

[
∂2ψ0

∂µ2
+ 2K0 −G0

])
,

(36)

p2 :


ϕ2(µ, τ) = S−1

(
ωδS

[
∂2ϕ1

∂µ2
+ 2H1 −G1

])
,

ψ2(µ, τ) = S−1
(
ωγS

[
∂2ψ1

∂µ2
+ 2K1 −G1

])
,

(37)
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p3 :


ϕ3(µ, τ) = S−1

(
ωδS

[
∂2ϕ2

∂µ2
+ 2H2 −G2

])
,

ψ3(µ, τ) = S−1
(
ωγS

[
∂2ψ2

∂µ2
+ 2K2 −G2

])
,

(38)

...

Then, we have

p0 :

{
ϕ0(µ, τ) = sin(µ),
ψ0(µ, τ) = sin(µ).

(39)

p1 :


ϕ1(µ, τ) = − sin(µ)

τ δ

Γ(δ + 1)
,

ψ1(µ, τ) = − sin(µ)
τγ

Γ(γ + 1)
,

(40)

p2 :


ϕ2(µ, τ) =

τ2δ

Γ(2δ + 1)
sin(µ)− τ2δ

Γ(2δ + 1)
sin(2µ) +

τ δ+γ

Γ(δ + γ + 1)
sin(2µ),

ψ2(µ, τ) =
τ2γ

Γ(2γ + 1)
sin(µ)− τ2γ

Γ(2γ + 1)
sin(2µ) +

τ δ+γ

Γ(δ + γ + 1)
sin(2µ),

(41)

...

and so on.
Therefore, the solution of (24) is given by

ϕ(µ, τ) = sin(µ)

[
1− τ δ

Γ(δ + 1)
+

τ2δ

Γ(2δ + 1)
· · ·
]

+ sin(µ) cos(µ)

[
−2

τ2δ

Γ(2δ + 1)
+ 2

τ δ+γ

Γ(δ + γ + 1)
· · ·
]
,

ψ(µ, τ) = sin(µ)

[
1− τγ

Γ(γ + 1)
+

τ2γ

Γ(2γ + 1)
· · ·
]

+ sin(µ) cos(µ)

[
−2

τ2γ

Γ(2γ + 1)
+ 2

τ δ+γ

Γ(δ + γ + 1)
· · ·
]
. (42)

Setting δ = γ in (42), we obtain

ϕ(µ, τ) = sin(µ)

[
1− τ δ

Γ(δ + 1)
+

τ2δ

Γ(2δ + 1)
· · ·
]

ψ(µ, τ) = sin(µ)

[
1− τγ

Γ(γ + 1)
+

τ2γ

Γ(2γ + 1)
· · ·
]

= Eδ(τ
δ) sin(µ),

= Eγ(τγ) sin(µ). (43)

The Eq. (43) is approximate to the form ϕ(µ, τ) = ψ(µ, τ) = e−τ sin(µ) for δ = γ = 1,
which is the exact solution of Eq. (24) for δ = γ = 1. The result is same as q-HATM [20]
and HPM [21].
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