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ON LEBESGUE PROPERTY FOR FUZZY METRIC SPACES

SUGATA ADHYA1, A. DEB RAY2, §

Abstract. We provide several characterizations of the Lebesgue property for fuzzy
metric spaces. It is known that a fuzzy metric space is Lebesgue if and only if every
real-valued continuous function is uniformly continuous. Here we show that it suffices to
examine uniform continuity of bounded real-valued continuous functions for characteriz-
ing Lebesgue property in fuzzy setting.
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1. Introduction

For a long period of time, several definitions of fuzzy metric spaces were proposed
towards establishing a consistent theory of metric fuzziness ([14], [1], [5]). In particular,
George and Veeramani made an appealing modification ([2], [3]) to a definition proposed in
[6]. Using this modified version, they proved that every fuzzy metric induces a Hausdorff,
first countable topology, which was later realized to be metrizable [8]. On the other hand,
it was shown that if this fuzzy metric is complete, then the induced topology is completely
metrizable [8]. In this context, the modified definition turned out to be an appropriate
notion for metric fuzziness.

Several topological and metric concepts were extended in this new structure (see e.g.
[2], [3], [8]). In particular, the notion of uniform continuity was introduced by George
and Veeramani in [4] where it was shown that every real-valued continuous function on a
compact fuzzy metric space is uniformly continuous. Since the converse is not necessarily
true, it became a point of interest to characterize those fuzzy metric spaces on which
real-valued continuous functions are uniformly continuous. In [9], Gregori, Romaguera
and Sapena proposed the notion of Lebesgue property for metric fuzziness. They not only
gave satisfactory extensions of many important properties of Lebesgue metric spaces in
this new structure, but also obtained the solution of the above problem by concluding that
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the class of fuzzy metric spaces having Lebesgue property agrees with the class of fuzzy
metric spaces on which real-valued continuous functions are uniformly continuous.

In this paper, we extend the above study by obtaining several important characteri-
zations of Lebesgue property for fuzzy metric spaces. In particular, we have shown that
it is sufficient to examine the uniform continuity of bounded real-valued continuous func-
tions to characterize Lebesgue property and have established that the class of fuzzy metric
spaces on which real-valued continuous functions are uniformly continuous coincides with
the class of fuzzy metric spaces on which bounded real-valued continuous functions are
uniformly continuous.

2. Preliminaries

This section is aimed at collecting necessary definitions and facts on fuzzy metric spaces,
to be required subsequently. For notions concerning general topology, we refer the reader
to [13].

Definition 2.1. [10] A binary operation ∗ on [0, 1] is called a continuous t-norm, if
a) ∗ is associative and commutative,
b) ∗ is continuous
c) ∀ a ∈ [0, 1], a ∗ 1 = a,
d) ∀ a, b, c, d ∈ [0, 1], a ≤ b, c ≤ d =⇒ a ∗ c ≤ b ∗ d.

Definition 2.2. [2, 3] A fuzzy metric space is an ordered triple (X,M, ∗) where X is a
nonempty set, ∗ is a continuous t-norm and M is a fuzzy set of X×X× (0,∞) such that,
for all x, y, z ∈ X and s, t > 0, the following conditions hold:

a) M(x, y, t) > 0,
b) M(x, y, t) = 1 ⇐⇒ x = y,
c) M(x, y, t) = M(y, x, t)
d) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s)
e) M(x, y, .) : (0,∞)→ [0, 1] is continuous.
In this case, (M, ∗) is said to be a fuzzy metric on X.

Lemma 2.1. [10] For all x, y ∈ X, M(x, y, .) : (0,∞)→ [0, 1] is nondecresing.

Let (X, d) be a metric space. Define Md : X ×X × (0,∞)→ [0, 1] by

Md(x, y, t) =
t

t+ d(x, y)
.

Then (X,Md, ∗) forms a fuzzy metric space, ∗ being the usual multiplication of real num-
bers. ([2])

Definition 2.3. (Md, ∗) is said to be the fuzzy metric induced by d [2] and (X,Md, ∗), to
be the induced fuzzy metric space.

Let (X,M, ∗) be a fuzzy metric space. For x ∈ X, r ∈ (0, 1) and t > 0 denote B(x, r, t) =
{y ∈ X : M(x, y, t) > 1 − r}. Then {B(x, r, t) : x ∈ X, r ∈ (0, 1), t > 0} forms a base for
some topology τM on X [2].

Definition 2.4. τM is called the topology induced by (M, ∗).

Result 2.1. [2] Let (X, d) be a metric space. Then τMd
coincide with the topology induced

by the metric d on X.

In view of Result 2.1 it is clear, if (X, τ) is a metrizable topological space then there is
a fuzzy metric (M, ∗) on X such that τM = τ.
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Definition 2.5. [7] Let (X,M, ∗) be a fuzzy metric space and A ⊂ X. If MA denotes
the restriction of M on A × A × (0,∞) then (MA, ∗) defines a fuzzy metric on A. The
associated fuzzy metric space (A,MA, ∗) is called the fuzzy metric subspace of (X,M, ∗)
on A.

It is immediate that τMA
= (τM )A, (τM )A being the subspace topology on A induced

by τM .
It has been shown in [2] that given a fuzzy metric space (X,M, ∗), (X, τM ) is a Hausdorff,

first countable topological space.
In [8], it has been shown that {Un : n ∈ N} forms a base for some uniformity UM on X

such that UM is compatible with τM , where Un =
{

(x, y) : M
(
x, y, 1n

)
> 1− 1

n

}
, ∀ n ∈ N,

and thereby, much stronger result has been obtained as follows:

Theorem 2.1. [8] Let (X,M, ∗) be a fuzzy metric space. Then (X, τM ) is metrizable.

Definition 2.6. Let (X,M, ∗), (Y,N, ?) be fuzzy metric spaces.
(a) A mapping f : X → Y is called uniformly continuous [4] if for ε ∈ (0, 1), δ > 0 there

exist r ∈ (0, 1), s > 0 such that ∀ x, y ∈ X, M(x, y, s) > 1−r =⇒ N(f(x), f(y), δ) > 1−ε.
(b) A mapping f : X → R is called R-uniformly continuous [9] if for ε > 0 there exist

r ∈ (0, 1), s > 0 such that ∀ x, y ∈ X, M(x, y, s) > 1− r =⇒ |f(x)− f(y)| < ε.

Clearly f : (X,M, ∗)→ (Y,N, ?) is uniformly continuous =⇒ f : (X, τM )→ (Y, τN ) is
continuous.

Definition 2.7. [11] Let (X,M, ∗) be a fuzzy metric space. A subset A of X is called
fuzzy uniformly discrete in X if there exist r ∈ (0, 1), s > 0 such that M(x, y, s) < 1 −
r, ∀ x, y (x 6= y) ∈ A.

One may observe the following:

Observation 1. Given a fuzzy metric space (X,M, ∗), a subset A of X is fuzzy uniformly
discrete if and only if there exists r ∈ (0, 1), s > 0 such that B(a, r, s) ∩A = {a} ∀ a ∈ A.

A sequence (xn) in a fuzzy metric space (X,M, ∗) converges to x ∈ X [briefly, (xn) is
convergent in X] if it does so in (X, τM ). In notation, xn → x. We say a sequence (xn)
in A ⊂ X is convergent in A, if the same holds for (xn) in the fuzzy metric subspace
(A,MA, ∗).

Theorem 2.2. [2] Let (X,M, ∗) be a fuzzy metric space. A sequence (xn) in X converges
to x ∈ X if and only if M(xn, x, t)→ 1, ∀ t > 0..

Definition 2.8. [2] A sequence (xn) in a fuzzy metric space (X,M, ∗) is said to be Cauchy
if for ε ∈ (0, 1), t > 0 there exists k ∈ N such that M(xm, xn, t) > 1− ε, ∀ m,n ≥ k.

A fuzzy metric space is called complete if every Cauchy sequence in it converges.

Definition 2.9. A fuzzy metric space (X,M, ∗) is said to be
(a) compact [8] if (X, τM ) is compact,
(b) sequentially compact [12] if a sequence in X clusters to some x ∈ X (i.e. it has a

subsequence that converges to x).

Lemma 2.2. [8] Let (X,M, ∗) be a fuzzy metric space. If a Cauchy sequence clusters to
a point x ∈ X, then the sequence converges to x.

We conclude this section with the notion of precompactness which provides an important
tool to characterize complete fuzzy metric spaces.
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Definition 2.10. [8] A fuzzy metric space (X,M, ∗) is said to be precompact if for r ∈
(0, 1), t > 0 there is a finite subset A of X such that X =

⋃
a∈AB(a, r, t).

Lemma 2.3. [8] A fuzzy metric space (X,M, ∗) is precompact if and only if every sequence
in X has a Cauchy subsequence.

Theorem 2.3. [8] A fuzzy metric space (X,M, ∗) is compact if and only if it is precompact
and complete.

3. Lebesgue property for fuzzy metric spaces

We begin by recalling a few known facts on Lebesgue property for fuzzy metric spaces.

Definition 3.1. [9] A fuzzy metric space (X,M, ∗) is said to have the Lebesgue property
if given an open cover G of X there exist r ∈ (0, 1), t > 0 such that {B(x, r, t) : x ∈ X}
refines G. We call such fuzzy metric spaces Lebesgue.

In [9], several characterizations of Lebesgue property has been established. In what
follows, we give five new characterizations of Lebesgue property for fuzzy metric spaces.
In particular we show that it is sufficient to examine the uniform continuity of bounded
real-valued continuous functions to characterize Lebesgue property. Among many other
equivalent conditions, the following is proved in [9]: A fuzzy metric space (X,M, ∗) if
Lebesgue if and only if every real-valued continuous function on (X, τM ) is R-uniformly
continuous as a mapping from (X,M, ∗) to R.

To establish the main result we require two lemmas, which are important on their own
merits.

Lemma 3.1. Let (X,M, ∗) be a fuzzy metric space. A function f : (X,M, ∗) → R is R-
uniformly continuous if and only if given two sequences (xn), (yn) in X with M(xn, yn, s)→
1, ∀ s > 0, we have |f(xn)− f(yn)| → 0.

Proof. Necessity: Let f be R-uniformly continuous and (xn), (yn) be two sequences in
X such that M(xn, yn, s)→ 1, ∀ s > 0.

Choose ε > 0. Then there exists r ∈ (0, 1), s > 0 such that

∀ x, y ∈ X, |f(x)− f(y)| < ε whenever M(x, y, s) > 1− r.
Since M(xn, yn, s)→ 1, there exists k ∈ N such that 1−r < M(xn, yn, s) < 1+r, ∀ n ≥

k.
Thus |f(xn)− f(yn)| < ε, ∀ n ≥ k. Hence |f(xn)− f(yn)| → 0.
Sufficiency: Let the condition holds.
Suppose f be not R-uniformly continuous. Then there exists ε > 0 such that for each

n ∈ N we can find xn, yn ∈ X so that M(xn, yn,
1
n) > 1− 1

n and |f(xn)− f(yn)| ≥ ε.
Choose s > 0. Then for any k ∈ N with 1

k < s we have

1 +
1

n
> M(xn, yn, s) ≥M(xn, yn,

1

n
) > 1− 1

n
, ∀ n ≥ k.

Consequently M(xn, yn, s)→ 1, ∀ s > 0, a contradiction since lim
n→∞

|f(xn)−f(yn)| 6= 0.

Hence f is R-uniformly continuous. �

Lemma 3.2. A fuzzy metric space (X,M, ∗) is sequentially compact if and only if it is
compact.

Proof. Necessity: Let (X,M, ∗) be sequentially compact. Then, due to Lemma 2.2, every
Cauchy sequence in X converges. Thus X is complete.

In view of Theorem 2.3, it remains to show that X is precompact.
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If not, then there exists r ∈ (0, 1), t > 0 such that for no finite subset A of X we can
have X =

⋃
a∈A

B(a, r, t).

Choose x1 ∈ X. Then there exists x2 ∈ X\ B(x1, r, t). Similarly there exists x3 ∈

X\
2⋃
i=1

B(xi, r, t). Proceeding in this way we obtain a sequence (xn) of distinct elements

in X such that xn ∈ X\
n−1⋃
i=1

B(xi, r, t), ∀ n ≥ 1.

Clearly M(xm, xn, t) ≤ 1 − r ∀ m 6= n which contradicts to the fact that (xn) clusters
in X.

Hence X is compact.
Sufficiency: Immediate from Lemma 2.3 and Theorem 2.3. �

Notation 1. For a fuzzy metric space (X,M, ∗) and A ⊂ X, we will let B(A, r, t) denote⋃
a∈A

B(a, r, t) and M(c, A, t) denote sup
a∈A

M(c, a, t) where c ∈ X, r ∈ (0, 1) and t > 0.

Theorem 3.1. For a fuzzy metric space (X,M, ∗), the following conditions are equivalent:
a) (X,M, ∗) is Lebesgue,
b) Every real-valued continuous function on (X, τM ) is R-uniformly continuous as a

mapping from (X,M, ∗) to R,
c) Every bounded real-valued continuous function on (X, τM ) is R-uniformly continuous

as a mapping from (X,M, ∗) to R,
d) Every closed and discrete subset of (X, τM ) is fuzzy uniformly discrete in (X,M, ∗),
e) The set X ′ of all accumulation points of (X, τM ) is compact and for chosen r ∈

(0, 1), s > 0, the set X\B(X ′, r, s) is fuzzy uniformly discrete in (X,M, ∗),
f) The set X ′ of all accumulation points of (X, τM ) is compact and for chosen δ1 ∈

(0, 1), t1 > 0 there exist δ2 ∈ (0, 1), t2 > 0 such that for each x ∈ X with M(x,X ′, t1) ≤
1− δ1 we have sup

y 6=x
M(x, y, t2) ≤ 1− δ2.

Proof. a =⇒ b: Follows from [9].

b =⇒ c: Immediate.

c =⇒ d: Let T be a closed and discrete subset of (X, τM ). If possible let T be not fuzzy
uniformly discrete in (X,M, ∗).

We first show that T is infinite. If possible let it be finite.
Choose s > 0 and set p = max{M(x, y, s) : x, y ∈ T, x 6= y}. Then for chosen q ∈

(p, 1), M(x, y, s) ≤ p < q ∀ x, y (x 6= y) ∈ T.
Setting t = 1 − q ∈ (0, 1), we obtain M(x, y, s) < 1 − t ∀ x, y (x 6= y) ∈ T. But it

contradicts to our assumption that T is not fuzzy uniformly discrete. Hence T is infinite.
Since T is not fuzzy uniformly discrete, for n > 1 ∃ xn, yn (xn 6= yn) ∈ T such that

M
(
xn, yn,

1
n

)
≥ 1− 1

n .
We now show that, for each n > 1 we may assume xn, yn /∈ {x1, · · · , xn−1, y1, · · · , yn−1}.
If not, then there exists v ∈ N such that for each m ≥ v and x, y (x 6= y) ∈

T with M
(
x, y, 1

m

)
≥ 1 − 1

m , we have either x ∈ {x1, · · · , xv−1, y1, · · · , yv−1} or y ∈
{x1, · · · , xv−1, y1, · · · , yv−1} (since M

(
x, y, 1

m

)
> 1− 1

m =⇒ M
(
x, y, 1v

)
≥M

(
x, y, 1

m

)
>

1− 1
m ≥ 1− 1

v ).
Set Q = {x1, · · · , xv−1, y1, · · · , yv−1}. Then ∃ z ∈ Q and a strictly increasing sequence

(nk) in N such that ∀ k there is zk ( 6= z) ∈ T satisfying M(z, zk,
1
nk

) ≥ 1− 1
nk
.
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Choose r ∈ (0, 1), s > 0. Set nk ∈ N such that 1
nk
< min{r, s}.

Then for each y ∈ B(z, 1
nk
, 1
nk

) we have M(y, z, s) ≥ M(y, z, 1
nk

) > 1 − 1
nk

> 1 − r

whence y ∈ B(z, r, s). Consequently B(z, 1
nk
, 1
nk

) ⊂ B(z, r, s).

Since zk (6= z) ∈ B(z, r, s), z is an accumulation point of T.
Since T is closed, z ∈ T. But it contradicts to the fact that a discrete set cannot contain

its limit point.
Thus we may assume that xn, yn /∈ {x1, · · · , xn−1, y1, · · · , yn−1} ∀ n ≥ 2.
We now show that for s > 0, M(xn, yn, s)→ 1.
Choose ε > 0. Find k ∈ N such that 1

k < min{s, ε}. Then ∀ n ≥ k, M(xn, yn, s) ≥
M(xn, yn,

1
n) > 1− 1

n ≥ 1− 1
k > 1− ε.

Thus 1− ε < M(xn, yn, s) < 1 + ε ∀ n ≥ k whence for s > 0, M(xn, yn, s)→ 1.
Set A = {xn : n ∈ N}, B = {yn : n ∈ N}. Clearly A ∩B = ∅.
Since T is a closed, discrete subset of (X, τM ) and A,B ⊂ T it follows that A,B are

closed in (X, τM ).
Also (X, τM ) is normal, being metrizable. So there exists a continuous map f : X →

[0, 1] such that f(A) = {0}, f(B) = {1}.
Clearly by hypothesis f is R-uniformly continuous. However for all s > 0, M(xn, yn, s)→

1 even though |f(xn)− f(yn)| → 1 6= 0, a contradiction to Lemma 3.1.
Hence T is fuzzy uniformly discrete in X.

d =⇒ e: If possible, let X ′ be not compact. Then by Lemma 3.2, there is a sequence
(xn) in X ′ which has no convergent subsequence.

Since xn ∈ X ′, ∀ n ≥ 1 there exists yn ( 6= xn) ∈ X such that yn ∈ B(xn,
1
n ,

1
n), ∀ n ≥ 1.

That is, M(xn, yn,
1
n) > 1− 1

n , ∀ n ≥ 1.
We first show that, (yn) has no cluster point in X.
Suppose not. Then (yn) has a convergent subsequence (yrn) such that yrn → l.
Choose ε ∈ (0, 1), t > 0. Since ∗ is continuous and 1 ∗ 1 = 1, there exists δ ∈ (0, 1) such

that (1− δ) ∗ (1− δ) > 1− ε.
Since yrn → l, there exists k ∈ N such that M(yrn , l,

t
2) > 1− δ, ∀ n ≥ k.

Set m ∈ N such that 1
m < min{δ, t2}. Then M(xn, yn,

t
2) ≥M(xn, yn,

1
n) > 1− δ, ∀ n ≥

m.
Consequently M(xrn , yrn ,

t
2) ∗ M(yrn , l,

t
2) ≥ (1 − δ) ∗ (1 − δ), ∀ n ≥ m that is,

M(xrn , l, t) > 1 − ε, ∀ n ≥ m. But this contradicts to the fact that (xn) has no clus-
ter point. Thus (yn) has no cluster point.

Therefore B = {xn : n ∈ N} ∪ {yn : n ∈ N} has no accumulation point in (X, τM ) and
hence is closed and discrete in (X, τM ). So by hypothesis, B is fuzzy uniformly discrete in
(X,M, ∗), a contradiction to M(xn, yn,

1
n) > 1− 1

n , ∀ n ≥ 1.
Hence X ′ is compact.
Also for chosen r ∈ (0, 1), s > 0 the set X\B(X ′, r, s) is closed and discrete in (X, τM ),

and hence is fuzzy uniformly discrete in (X,M, ∗).

e =⇒ f: If possible, let there exist δ1 ∈ (0, 1), t1 > 0 for which no such δ2 ∈ (0, 1), t2 > 0
can be obtained. Then for each n ∈ N there exist xn, yn (xn 6= yn) ∈ X such that
M(xn, X

′, t1) ≤ 1− δ1 but M(xn, yn,
1
n) > 1− 1

n , ∀ n ≥ 1.
Since ∗ is continuous and 1∗1 = 1, there exists δ3 ∈ (0, 1) such that x, y ∈ (1−δ3, 1] =⇒

x ∗ y ∈ (1− δ1, 1] · · · (1)

Choose k ∈ N such that δ1
k < δ3 · · · (2)

We first show that ∃ p ∈ N such that M(yp, X
′, t12k ) ≤ 1− δ1

2k .
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If not then, M(yn, X
′, t12k ) > 1 − δ1

2k , ∀ n ≥ 1. So for n ≥ 1, there exists cn ∈ X ′ such

that M(yn, cn,
t1
2k ) > 1− δ1

2k ∀ n ≥ 1.

Again M(xn, yn,
1
n) > 1− 1

n ∀ n ≥ 1.

Choose q ∈ N such that 1
q < min{ δ12k ,

t1
2k}.

Then ∀ n ≥ q, M(xn, yn,
t1
2k ) ≥M(xn, yn,

1
q ) ≥M(xn, yn,

1
n) > 1− 1

n ≥ 1− 1
q > 1− δ1

2k .

Thus in view of (1) and (2), M(yn, cn,
t1
2k ) ∗ M(xn, yn,

t1
2k ) ≥ (1 − δ1

2k ) ∗ (1 − δ1
2k ) >

1− δ1, ∀ n ≥ q whence M(xn, cn, t1) > 1− δ1, ∀ n ≥ q.
Consequently M(xn, X

′, t1) > 1− δ1, ∀ n ≥ q, a contradiction.

Hence for some p ∈ N, we have M(yp, X
′, t12k ) ≤ 1− δ1

2k .

Similarly, there exists p′ (> p) ∈ N such that M(yp′ , X
′, t12k ) ≤ 1− δ1

2k .

Continuing in this way we may pass (yn) to a subsequence such that M(yn, X
′, t12k ) ≤

1− δ1
2k ∀ n ≥ 1.

Since ∀ n ≥ 1 and c ∈ X ′, M(yn, c,
t1
2k ) ≤ 1− δ1

2k so we have, yn /∈ B(X ′, δ12k ,
t1
2k ), ∀ n ≥ 1.

Again ∀ n ≥ 1 and c ∈ X ′, M(xn, c, t1) ≤ 1− δ1 =⇒ xn /∈ B(X ′, δ12k ,
t1
2k ), ∀ n ≥ 1.

Thus xn, yn ∈ X\B(X ′, δ12k ,
t1
2k ) ∀ n ≥ 1.

Since by hypothesis, X\B(X ′, δ12k ,
t1
2k ) is uniformly discrete, there exist r ∈ (0, 1), s > 0

such that M(xn, yn, s) < 1− r ∀ n ≥ 1.
Choose v ∈ N such that 1

v < min{r, s}. Then M(xv, yv,
1
v ) ≤M(xv, yv, s) < 1−r < 1− 1

v ,

a contradiction to the fact that M(xn, yn,
1
n) < 1− 1

n ∀ n ≥ 1.
Hence the result follows.

f =⇒ a: Let {Oλ : λ : Λ} be an open cover of X. We first show that there is δ ∈
(0, 1), t > 0 such that for x ∈ X ′ ∃ λx ∈ Λ such that B(x, δ, t) ⊂ Oλx .

If not then, for each δ = t = 1
n (n ∈ N\{1}) there is xn ∈ X ′ such that B(xn,

1
n ,

1
n) 6⊂

Oλ ∀ λ ∈ Λ.
Since X ′ is compact, by Lemma 3.2, (xn) has a subsequence (xrn) converging to some

point w ∈ X ′. Choose λ1 ∈ Λ such that w ∈ Oλ1 .
Since Oλ1 is open, there exist δ′ ∈ (0, 1), t > 0 such that B(x, δ′, t′) ⊂ Oλ1 .
Choose q > 1 such that 1

rq
< min{δ′, t′}. ThenB(w, 1

rq
, 1
rq

) ⊂ Oλ1 since y ∈ B(w, 1
rq
, 1
rq

) =⇒
M(y, w, t′) ≥M(y, w, 1

rq
) > 1− 1

rq
> 1− δ′ =⇒ y ∈ B(w, δ′, t′) ⊂ Oλ1 .

Since ∗ is continuous and 1 ∗ 1 = 1, ∃ δ1 ∈ (0, 1) such that x′, y′ ∈ (1 − δ1, 1] =⇒
x′ ∗ y′ ∈ (1− 1

2rq
, 1].

Choose p (> q) ∈ N such that 1− 1
2rp

> 1− δ1 · · · (1).

Since x2rn → w, there is s (≥ p) ∈ N such that x2rn ∈ B(w, 1
2rp
, 1
2rp

), ∀ n ≥ s. That is,

M(x2rn , w,
1

2rp
) > 1− 1

2rp
, ∀ n ≥ s · · · (2)

Choose v ≥ s.
Let y ∈ B(x2rv ,

1
2rv
, 1
2rv

). Then M(x2rv , y,
1

2rp
) ≥M(x2rv , y,

1
2rv

) > 1− 1
2rv
≥ 1− 1

2rp
=⇒

M(x2rv , y,
1

2rp
) > 1− 1

2rp
· · · (3)

Again using (2) we obtain, M(x2rv , w,
1

2rp
) > 1− 1

2rp
· · · (4)

Thus from (3) and (4) we have,
M(x2rv , y,

1
2rp

)∗M(x2rv , w,
1

2rp
) ≥ (1− 1

2rp
)∗(1− 1

2rp
) =⇒ M(w, y, 1

rp
) > 1− 1

2rq
> 1− 1

rq

[using (1)]. So, y ∈ B(w, 1
rq
, 1
rq

).

Thus B(x2rv ,
1

2rv
, 1
2rv

) ⊂ B(w, 1
rq
, 1
rq

) ⊂ Oλ1 , a contradiction.
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Hence there exist δ ∈ (0, 1), t > 0 such that given x ∈ X ′, we have B(x, δ, t) ⊂ Oλx for
some λx ∈ Λ.

Choose ρ ∈ (0, 1) such that x′, y′ ∈ (1− ρ, 1] =⇒ x′ ∗ y′ ∈ (1− δ, 1].
Let x ∈ B(X ′, ρ2 ,

t
2). Then x ∈ B(x′, ρ2 ,

t
2) for some x′ ∈ X ′.

Choose y ∈ B(x, ρ2 ,
t
2). Then M(x, y, t2) > 1 − ρ

2 . Also M(x, x′, t2) > 1 − ρ
2 . Thus

M(y, x′, t) ≥ M(x, y, t2) ∗M(x, x′, t2) ≥ (1 − ρ
2) ∗ (1 − ρ

2) > 1 − δ =⇒ y ∈ B(x′, δ, t). So

B(x, ρ2 ,
t
2) ⊂ B(x′, δ, t) ⊂ Oλx′ .

Note that x ∈ X\B(X ′, ρ2 ,
t
2) =⇒ M(x, x′, t2) ≤ 1− ρ

2 , ∀ x
′ ∈ X ′ =⇒ M(x,X ′, t2) ≤

1 − ρ
2 . So by hypothesis ∃ α ∈ (0, 1), β > 0 such that sup

y 6=x
M(x, y, β) ≤ 1 − α, ∀ x ∈

X\B(X ′, ρ2 ,
t
2).

ClearlyB(x, α, β) = {x}, ∀ x ∈ X\B(X ′, ρ2 ,
t
2). Thus for x ∈ X\B(X ′, ρ2 ,

t
2), B(x, α, β) ⊂

Oλ for some λ ∈ Λ.
Set γ = min{ρ2 , α}, η = min{ t2 , β}. Then it is easy to see that, for x ∈ X, B(x, γ, η) ⊂ Oλ

for some λ ∈ Λ.
Hence the result follows.

The following example illustrates that a closed and discrete subset of a metric space
may not be fuzzy uniformly discrete in the induced fuzzy metric space.

Example 3.1. Suppose Y = (0, 1] be endowed with the usual metric ρ on it. Set A ={
1
n : n ∈ N

}
. Then A is a closed and discrete subset of (Y, ρ).

However A is not fuzzy uniformly discrete in (Y,Mρ, ∗). For otherwise, there exists
r ∈ (0, 1), t > 0 such that

t

t+ |x− y|
< 1− r

for all x, y (x 6= y) ∈ A. This is a contradiction since |x− y| can be made arbitrarily small
for x, y ∈ A. Thus A is not fuzzy uniformly discrete in (Y,Mρ, ∗).

Hence, in view of Theorem 3.1, (Y,Mρ, ∗) is not Lebesgue.
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[7] Kočinac L. D.R., (2012), Selection properties in fuzzy metric spaces, Filomat 26, 305-312.
[8] Gregori V., Romaguera S., Some properties of fuzzy metric spaces, (2000), Fuzzy Sets and Systems

115, 485-489.
[9] Gregori V., Romaguera S., Sapena A., (2001), Uniform continuity in fuzzy metric spaces, Rend. Ist.

Mat. Univ. Trieste 32 Suppl. 2, 81-88.
[10] Schweizer B., Sklar A., (1960) Statistical metric spaces, Pacific J. Math. 10, 314-334.
[11] Li C., Zhang Y., (2018), On precompactness of the Hausdorff fuzzy metric on closed sets, Journal of

Comp. Anal. and App. 24, 343-353.
[12] Rao K. P. R., Rao K. R. K., Rao T. R., (2007), Common fixed point theorems in sequentially compact

fuzzy metric spaces, Int. Math. Forum 2, 2543 - 2549.
[13] Willard S., (1970), General Topology, Addison-Wesley Publishing.
[14] Zi-ke D., Fuzzy pseudo-metric spaces, J. Math. Anal. Appl. 86 (1982) 74-95.



560 TWMS J. APP. AND ENG. MATH. V.11, N.2, 2021

Sugata Adhya is an assistant professor in the Department of Mathematics, The
Bhawanipur Education Society College, India. His research interests include point-
set topology, fuzzy metric spaces and Atsuji space.

A. Deb Ray is an associate professor in the Department of Pure Mathematics,
University of Calcutta, India. Prior to joining this university, she worked as faculty
members of West Bengal State University, University of North Bengal and National
Power Training Institute. Her research interests include topology, topological alge-
braic structures and fuzzy topology. She has contributed in many reputed interna-
tional journals.


