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ON THE METRIC CHARACTRIZATION FOR WELL-POSEDNESS OF

K-SPLIT HEMIVARIATIONAL-LIKE INEQUALITIES

B. OLFATIAN GILLAN1, §

Abstract. In this paper, we extend the concept of well-posedness for a class of k-split
hemivariational like inequalities and characterize some conditions for the well-posedness
of it. Then we show that Tykhonov well-posedness for this family of k-split hemivaria-
tional like inequalities is equivalent to the existence and uniqueness of solution.
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The study of vector optimization problems has become an important research direction
of vector variational inequalities . In particular, minimization problem is closely related
to a variational inequality [10, 15]. So, the concept of the well-posedness which this plays
a crucial role in the theory of optimization problems can be generalized to variational
inequalities. For example, Tykhonov well-posedness, which was introduced by Tykhonov
[20] in 1966 for a global minimization problem, requires the existence and uniqueness
of solution to the global minimization problem and the convergence of every minimizing
sequence toward the unique solution. Hence nowadays, the concept of well-posedness
variational inequalities have attracted much attention of mathematical researchers.

Throughout this investigations, in recent years, the concept of well-posedness for varia-
tional inequalities has been generalized to the other types of variational inequalities such
as variational-like inequalities [3], quasi variational inequalities [12], mixed variational in-
equalities [13], etc. One of the useful generalizations for variational inequalities is the
concept of hemivariational inequalities, which first was introduced by Panagiotopoulos
[19]. Recently, hemivariational inequalities have drawn much attention of mathematical
researchers. See for example [21] and the references therein. Another generalization of the
concept of variational inequalities is the concept of split variational inequalities [2]. The
split variational inequalities have been proved very efficient to describe a wide range of
practical problems such as image processing and signal recovery. See for example [8]. Re-
cently, Hu and Fang in [9] studied two kinds of well-posedness for various split variational
inequalities. For other more work on the well-posedness of variational inequalities, we can
refer to [3, 7, 11, 15] and the references therein.
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In this paper , first, we introduce a new class of k-split hemivariational like inequalities as
a special case of the classical hemivariational inequalities below.

We suppose that [0, T ] is a real interval and for i = 1, . . . , k, Xi ⊆ C0[0, T ] is a reflexive
Banach space with topological dual X∗i and with norm ‖x‖ = ‖x‖∞ for all x ∈ Xi. Also,
Ai : [0, T ] × Xi → X∗i is a single-valued function and each function t → Ai(t, xi) is
integrable for all xi ∈ Xi, fi is some given element in X∗i and 〈·, ·〉X∗

i ×Xi denotes the dual
pair between Xi, X

∗
i . Let ηi : Xi×Xi → Xi is a vector valued function, Ji : [0, T ]×Xi → R

is a locally Lipschitz functional and J◦i
(
t, xi, ηi(y, xi)

)
denotes the Clarke’s generalized

directional derivative of function Ji(t, ., .) at xi in direction ηi(y, xi) and S : X1 × · · · ×
Xk−1 → Xk is a continuous mapping. By this assumption, we introduce a new class
of k-split hemivariational-like inequality (SHVI)(Ai, fi, Ji)i=1,...,k as find (x1, . . . , xk) ∈
X1 × · · · ×Xk which

xk = S(x1, . . . , xk−1)∫ T

0
[〈Ai(t, xi)− fi, ηi(y, xi)〉Xi×X∗

i
+ J◦i

(
t, xi, ηi(y, xi)

)
]dt ≥ 0, ∀y ∈ Xi,

for i = 1, . . . , k.
Then we aim to extend the concept of the well-posedness for this special case of the

classical hemivariational inequality and develop the abstract results and investigate the
metric characterization of well-posedness of this case.

1. Preliminaries

Let X be a Banach space with dual space X∗. Then the functional θ : X → R is
called a Lipschitz continuous function on X if there exists a constant M > 0 such that

|θ(x1)− θ(x2)| ≤M‖x1 − x2‖X ∀x1, x2 ∈ X,
and if, for each x ∈ X there exists a neighborhood Vx of x and a constant Mx > 0 such
that

|θ(x1)− θ(x2)| ≤Mx‖x1 − x2‖X ∀x1, x2 ∈ Vx,
then θ is called a locally Lipschitz continuous functional on X. When θ is nondifferentiable
and locally Lipschitz, θ◦(x0, h); the Clarke’s generalized directional derivative of θ at point
of x0 ∈ X in direction h ∈ X, is defined by

θ◦(x0, h) = lim sup
x→x0,λ↓0

θ(x+ λh)− θ(x)

λ
.

It is easy to show that the function h → θ◦(x0, h) is finite, subadditive and positively
homogeneous, namely, for all h1, h2 ∈ X and λ ≥ 0

θ◦(x0, h1 + h2) ≤ θ◦(x0, h1) + θ◦(x0, h2) and θ◦(x0, λh) = λθ◦(x0, h),

see([5]). Also, θ◦(., .) is upper semicontinuous, i.e., for each x1, x2 ∈ X and {xn1}, {xn2} ⊂ X
that xn1 → x1 and xn2 → x2, we have

lim sup
x→∞

θ◦(xn1 , x
n
2 ) ≤ θ◦(x1, x2).

∂Cθ(x0); the generalized gradient in the sense of Clarke of θ at x0 ∈ X, is defined by

∂Cθ(x0) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ θ◦(x0;h), ∀h ∈ X}.
One can show that for the locally Lipschitz functional θ on X and each x0 ∈ X, ∂Cθ(x0)
is a nonempty, bounded and convex set in X∗ and with respect to weak∗ topology is
compact. Also, for each h ∈ X we have

θ◦(x0;h) = max{〈x∗, h〉 : x∗ ∈ ∂Cθ(x0)}.
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The vector valued function η : X ×X → X is said to be skew if

η(x, y) + η(y, x) = 0 ∀x, y ∈ X

and it satisfies condition C if for each x, y ∈ X and λ ∈ [0, 1],

η(y, y + λη(x, y)) = −λη(x, y), η(x, y + λη(x, y)) = (1− λ)η(x, y).

One can easily show that if η : X ×X → X satisfies condition C, then for each x, y ∈ X

η(y + λη(x, y), y) = λη(x, y).

Definition 1.1. Let X be a Banach space and X∗ be it’s dual space. Then a mapping
A : [0, T ]×X → X∗ is said to be
(1) inavariant monoton with respect to η, if for each t ∈ [0, T ] and x, y ∈ X,∫ T

0

(
〈A(t, x), η(y, x)〉+ 〈A(t, y), η(x, y)

)
dt ≤ 0,

(2) hemicontinuous, if for each t ∈ [0, T ] and x, y ∈ X, the function λ→ 〈A(t, x+ λy), y〉
is continuous on [0, 1].

Definition 1.2. A sequence {(xn1 , . . . , xnk)} ⊆ X1 × · · · × Xk is called an approximating
sequence for the SHVI(Ai, fi, Ji)i=1,...,k if there exists 0 < εn → 0 such that

‖xnk − S(xn1 , . . . , x
n
k−1)‖Xk

≤ εn,∫ T

0
[〈Ai(t, xi)− fi, ηi(y, xi)〉Xi×X∗

i
+ J◦i

(
t, xi, ηi(y, xi)

)
]dt ≥ −εn‖ηi(y, xni )‖, ∀y ∈ Xi,

for i = 1, . . . , k.

Definition 1.3. The SHVI(Ai, fi, Ji)i=1,...,k, is said to be strongly (resp., weakly) well-
posed if it has a unique solution on X1 × · · · ×Xk and every approximating sequence for
SHVI(Ai, fi, Ji)i=1,...,k, converges strongly (resp., weakly) to the unique solution.

By similar argument as [18], [22], we can deduce following results:

Proposition 1.1. Let X be a Banach space with X∗ being it’s dual space and A :
[0, T ] × X → X∗ be an operator. If A is continuous with respect to the second compo-
nent, then it is weakly∗ continuous with respect to the second component, which, in turn,
implies that it is hemicontinuous with respect to the second component. Moreover, if A is
invariant monotone with respect to η, then the notions of weak∗ continuity and hemicon-
tinuity coincid.

Proposition 1.2. Let X be a Banach space with X∗ being its dual space and suppose
that A : [0, T ] ×X → X∗ be an operator. Then the following statement holds: If {xn} ⊂
X, xn → x ∈ X, A(t, xn) → A(t, x) ∈ X∗ in w∗-topology, then 〈A((t, xn), η(y, xn)〉 →
〈A((t, x), η(y, x)〉, ∀y ∈ X.

2. Metric characterizations for well-posedness

In this section, we first present an equivalent formulation of the SHVI(Ai, fi, Ji)i=1,...,k,
under the assumption of the invaiant monotonicity for two single-valued operators Ai, i =
1, . . . , k. Also, we are ready to under the assumption of the invariant monotonicity of
two single-valued map Ai investigate the metric characterization of the well-posedness of
k-split hemivariational like-inequality SHVI(Ai, fi, Ji)i=1,...,k, which it is introduced in the
section 1 and we extend the well-posedness of it.
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Theorem 2.1. Let Ai : [0, T ]×Xi → X∗i be an operator such that Ai(t, .) is hemicontin-
uous and ηi : Xi ×Xi → Xi satisfies condition C. Assume that either one of the following
conditions is satisfied:

(1) (x1, . . . xk) ∈ X1 × · · · ×Xk is a solution to the following associated k-split hemi-
variational inequality:
ASHVI(Ai, fi, Ji)i=1,...,k : Find (x1, . . . xk) ∈ X1 × · · · ×Xk, such that

xk = S(x1, . . . , xk1),∫ T

0
[〈Ai(t, y)− fi, ηi(y, xi)〉+ J◦i (t, y; ηi(y, xi)]dt ≥ 0, ∀y ∈ Xi, (1)

for i = 1, . . . , k.
(2) (x1, . . . xk) ∈ X1 × · · · × Xk is a solution to the following k-split multi-valued

variational inequality:
SMV I(Ai, fi, Ji)i=1,...,k : Find (x1, . . . xk) ∈ X1×· · ·×Xk such that, for all y ∈ Xi,
there exists γi ∈ ∂CJi(t, y) satisfying∫ T

0 〈Ai(t, y) + γi − fi, ηi(y, xi)〉dt ≥ 0,

for i = 1, . . . , k.

Then (x1, . . . xk) ∈ X1 × · · · ×Xk is solution to the k-split hemivariational like inequality
SHVI(Ai, fi, Ji)i=1,...,k.

Proof. Let (x1, . . . xk) ∈ X1 × · · · × Xk be a solution of (ASHVI)(Ai, fi, Ji)i=1,...,k. In 1,
for i = 1, . . . , k, set y = xi + ληi(zi, xi) ∈ Xi in which zi ∈ Xi and λ ∈ [0, 1] are arbitrary.
Then we have∫ T

0
[〈Ai(t, xi + ληi(zi, xi)− fi, ληi(zi, xi))〉+ J◦i (t, xi + ληi(zi, xi);ληi(zi, xi))]dt

≥ 0, ∀zi ∈ Xi.

By using the condition C we have ηi(xi + ληi(zi, xi), xi) = ληi(zi, xi). Also, note that
J◦i (t, x; .) is positively homogeneous. So, by this fact, upper semicontinuity of J◦i (t, .; .)
and hemicontinuity of Ai, passing to the upper limit when λ→ 0, we get∫ T

0 [〈Ai(t, xi)− fi, ηi(zi, xi))〉+ J◦i (t, xi; ηi(zi, xi))]dt ≥ 0, ∀zi ∈ X,

for i = 1, . . . , k.
The similar argument can be applied to prove the second assertion. �

Note that if for i = 1, . . . , k, ηi : Xi ×Xi → Xi satisfies condition C and Ai is invariant
monotone with respect to ηi, then we can easily deduce that (x1, . . . , xk) ∈ X1 × · · · ×Xk

is solution to the ASHVI(Ai, fi, Ji)i=1,...,k, when it solves SHVI(Ai, fi, Ji)i=1,...,k.

Example 2.1. Assume that S be the identitiy function and for i = 1, 2, fi ≡ 0, ηi(x, y) =
y − x and Ji : [0, 1]×Xi → R be defined as

J1(t, x1) =

{
tx1 if x1 ≥ 0,
−x1 if x1 < 0

and

J2(t, x2) =

{
x22 + 2tx2 if x2 > 0,
x22 − 2x2 if x2 ≤ 0.

We can see that

∂CJ1(t, x1) =

 t if x1 > 0,
[−1, t] if x1 = 0,
−1 if x1 < 0
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and

∂CJ2(t, x2) =

 2x2 + 2t if x2 > 0,
[−2, 2t] if x2 = 0,

2x2 − 2 if x2 < 0

and J◦i
(
t, yi; yi− xi

)
≥ 0, for all xi, yi ∈ Xi. Now, consider the function Ai : [0, 1]×Xi →

X∗i be an operator, defined by A1(t, x1) = etx1 and A2(t, x2) = t2x2. We can easily show
that ∫ 1

0 [〈A1(t, y1), y1〉+ J◦
(
t, y1; y1

)
]dt ≥ 0, ∀y1 ∈ X1.

With the same argument, we have∫ 1
0 [〈A2(t, y2), y2〉+ J◦

(
t, y2; y2

)
]dt ≥ 0, ∀y2 ∈ X2.

So, x = (0, 0) solves ASHVI(Ai, fi, Ji)i=1,2 and from Theorem 2.1, we can deduce that
x = (0, 0) is a solution of SHVI(Ai, fi, Ji)i=1,2. In fact, we have∫ 1

0 [〈Ai(t, 0), yi〉+ J◦i
(
t, xi; yi

)
]dt =

∫ 1
0 J
◦
i

(
t, xi; yi

)
]dt ≥ 0, ∀yi ∈ Xi.

Also, It can be easily shown that Ai is monotone with respect to ηi. Therefore the solution
sets of SHVI(Ai, fi, Ji)i=1,2 and ASHVI(Ai, fi, Ji)i=1,2 are equivalent.

Now, we define two sets as

F (ε) =
{

(x1, . . . , xk) ∈ X1 × . . . ,×Xk; ‖xk − S(x1, . . . , xk−1)‖Xk
≤ ε,∫ T

0
[〈Ai(t, xi)− fi, ηi(y, xi)〉Xi×X∗

i
+ J◦i

(
t, xi, ηi(y, xi)

)
]dt ≥ −ε‖ηi(y, xi)‖,

∀y ∈ Xi, i = 1, . . . , k
}

and

G(ε) =
{

(x1, . . . , xk) ∈ X1 × . . . ,×Xk; ‖xk − S(x1, . . . , xk−1)‖Xk
≤ ε,∫ T

0
[〈Ai(t, y)− fi, ηi(y, xi)〉Xi×X∗

i
+ J◦i

(
t, xi, ηi(y, xi)

)
]dt ≥ −ε‖ηi(y, xi)‖,

∀y ∈ Xi, i = 1, . . . , k
}

Lemma 2.1. For i = 1, . . . , k, let Xi be a Banach spaces with X∗i being their dual spaces,
Ai : [0, T ]×Xi → X∗i is hemicontinuous and invariant monotone with respect to ηi, where
ηi satisfies the condition C and Ji : Xi → R is a locally Lipschitz functional. Then for
each ε > 0 we have F (ε) = G(ε).

Proof. Let ε > 0 be given and (x1, . . . , xk) ∈ F (ε). Then for i = 1, . . . , k, we have∫ T

0
[〈Ai(t, xi)− fi, ηi(y, xi)〉+ J◦i

(
t, xi, ηi(y, xi)

)
]dt ≥ −ε‖ηi(y, xi)‖Xi , ∀y ∈ Xi. (2)

Since Ai is monotone with respect to ηi, so for xi ∈ Xi we have∫ T

0
[〈Ai(t, xi)−Ai(t, y), ηi(y, xi)〉]dt ≤ 0, y ∈ Xi. (3)

Hence by (2), (3), we can write∫ T

0
[〈Ai(t, y)− fi, ηi(y, xi)〉+ J◦i

(
t, xi, ηi(y, xi)

)
]dt ≥ −ε‖ηi(y, xi)‖Xi , ∀y ∈ Xi. (4)

Now, the inequalities ‖xk−S(x1, . . . , xk−1)‖Xk
≤ ε and (4) showes that (x1, . . . , xk) ∈ G(ε)

and thus F (ε) ⊆ G(ε).
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For the revers, let (x1, . . . , xk) ∈ G(ε) and (z1, . . . , zk) is any point in X1 × · · · ×Xk and
λ ∈ [0, 1]. So, for i = 1, . . . , k, we have∫ T

0
[〈Ai(t, y)− fi, ηi(y, xi)〉+ J◦i

(
t, xi, ηi(y, xi)

)
]dt ≥ −ε‖ηi(y, xi)‖Xi , ∀y ∈ Xi. (5)

Now, we substitut yi = xi+ληi(zi, xi) in (5). Since J◦i (t, xi, ·) is positively homogeneous,
so for i = 1, . . . , k, one may write∫ T

0

[〈Ai(t, xi + ληi(zi, xi))− fi, ηi(zi, xi))〉+ J◦
i

(
t, xi, ηi(zi, xi)

)
]dt ≥ −ε‖ηi(zi, xi)‖Xi (6)

and if λ→ 0+ in (6), then from the hemicontiuity of the mapping Ai, it follows

‖xk − S(x1, . . . , xk−1)‖Xk
≤ ε,∫ T

0
[〈Ai(t, xi)− fi, ηi(zi − xi)〉+J◦1

(
t, xi, ηi(zi − xi)

)
]dt ≥ −ε‖ηi(zi − xi)‖Xi ,

Since (z1, . . . , zk) ∈ X1 × · · · ×Xk is arbitrary, we conclude that (x1, . . . , xk) ∈ F (ε) and
thus G(ε) ⊆ F (ε). This completes the proof. �

Lemma 2.2. Let Xi be a reflexive Banach spaces with X∗i as it’s dual space, Ji : Xi → R
be a locally Lipschitz functional for i = 1, . . . , k, and S : X1 × · · · × Xk−1 → Xk be a
continuous map. Then G(ε) in X1 × · · · ×Xk is closed for all ε > 0.

Proof. Let {(xn1 , . . . , xnk)} ⊂ G(ε) and (xn1 , . . . , x
n
k)→ (x1, . . . , xk) in X1 × · · · ×Xk. Then

we have

‖xnk − S(xn1 , . . . x
n
k−1)‖Xk

≤ ε,∫ T

0

[〈Ai(t, y)− fi, ηi(y, xni )〉+J◦
i

(
t, xni , ηi(y, x

n
i )
)
]dt ≥ −ε‖ηi(y, xni )‖Xi

, ∀y ∈ Xi (7)

and due to upper semicontinuity of J◦i (t, .; .), we can write

lim sup
n→∞

J◦i (t, xni , ηi(y, x
n
i ))) ≤ J◦i (t, xi; ηi(y, xi)), ∀y ∈ Xi, (8)

for i = 1, . . . , k.
Now by taking lim sup from the both sides of the last inequality in (7) and using (8), for
i = 1, . . . , k, we obtain∫ T

0

[〈Ai(t, y)− fi, ηi(y, xi)〉+ J◦
i

(
t, xi, ηi(y, xi))

)
]dt

≥ lim sup

∫ T

0

[〈Ai(t, y)− fi, ηi(y, xni )〉+ J◦
i

(
t, xni , ηi(y, x

n
i )
)
]dt

≥ −ε‖ηi(y, xi)‖Xi , ∀y ∈ Xi.

On the other hand, for each n ∈ N, we have (xn1 , . . . , x
n
k) ∈ G(ε), so

‖xnk − S(xn1 , . . . , x
n
k−1)‖Xk

≤ ε.

Hence by the continuity of mapping S and the norm function,

‖xk − S(x1, . . . , xk−1)‖Xk
≤ ε,

so (x1, . . . , xk) ∈ G(ε) and this implies that G(ε) is closed and the proof is completed. �
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Lemma 2.3. For i = 1, . . . , k, let Xi be a reflexive Banach spaces with X∗i as it’s dual
space, Ji : Xi → R be a locally Lipschitz functional, Ai : [0, T ] × Xi → X∗i is monotone
with respect to ηi and hemicontinuous and S : X1×· · ·×Xk−1 → Xk be a continuous map.
Then F (ε) in X1 × · · · ×Xk is closed for all ε > 0.

Proof. Let {(xn1 , . . . , xnk)} ⊂ F (ε) and (xn1 , . . . , x
n
k)→ (x1, . . . , xk) in X1 × · · · ×Xk. Then

for i = 1, . . . , k, we have

‖xnk − S(xn1 , . . . x
n
k−1)‖Xk

≤ ε,∫ T

0

[〈Ai(t, x
n
i )− fi, ηi(y, xni )〉+J◦

i

(
t, xni , ηi(y, x

n
i )
)
]dt ≥ −ε‖ηi(y, xni )‖Xi

, ∀y ∈ Xi, (9)

Since Ai : [0, T ] × Xi → X∗i is monoton with respect to ηi and hemicontinuous, so
from Propostion 1.1, it is weakly* continuous, i.e., Aix

n
i → Aixi in weak* topology when

n→∞. Hence, by Proposition 1.2, we can write

lim
n→∞

∫ T

0
[〈Ai(t, xni )− fi, ηi(y, xni )〉dt =

∫ T

0
[〈Ai(t, xi)− fi, ηi(y, xi)〉dt

for i = 1, . . . , k. (10)

On the other hand J◦i (t, ., .) is upper semicontinuous, so by (9) and (10) we have∫ T

0
[〈Ai(t, xi)− fi, ηi(y, xi)〉+ J◦i

(
t, xi, ηi(y, xi)

)
]dt

≥ lim sup

∫ T

0
[〈Ai(t, xi)− fi, ηi(y, xi)〉+ J◦i

(
t, xi, ηi(y, xi)

)
]dt

≥ lim sup
(
− ε‖ηi(y, xni )‖Xi

)
= −ε‖ηi(y, xi)‖Xi , ∀y ∈ Xi, (11)

for i = 1, . . . , k.
Also it is easy to see that ‖xnk − S(xn1 , . . . x

n
k−1)‖Xk

≤ ε, which this and (11) garantee
(x1, . . . , xk) ∈ F (ε). Hence F (ε) is closed in X1×· · ·×Xk and the proof is completed. �

Now, by the properties of G(ε), we study the metric characterization of k-split hemivari-
ational inequality (SHVI)(Ai, fi, Ji)i=1,...,k as below.

Theorem 2.2. Let for i = 1, . . . , k, Xi be a Banach space with X∗i as it’s dual space,
Ai : [0, T ] × Xi → X∗i is a map, Ji : Xi → R be a locally Lipschitz functional and
S : X1 × · · · × Xk−1 → Xk be a continuous map. Then the k-split hemivariational like
inequality (SHVI)(Ai, fi, Ji)i=1,...,k, is strongly well-posed if and only if it’s solution set K
is nonempty and diamF (ε)→ 0 as ε→ 0.

Proof. Let (SHVI)(Ai, fi, Ji)i=1,...,k, is well-posed. So by definition, it’s solution set is
nonempty, i.e., K 6= ∅. Now if diamF (ε) 9 0 when ε → 0 we can find δ > 0 and a
sequence εn convergence to 0 and the members (xn1 , . . . , x

n
k), (yn1 , . . . , y

n
k ) ∈ F (εn) such

that

‖(xn1 , . . . , xnk)− (yn1 , . . . , y
n
k )‖X1×···×Xk

≥ δ, ∀n ∈ N. (12)

Since (xn1 , . . . , x
n
k), (yn1 , . . . , y

n
k ) ∈ F (εn), then {(xn1 , . . . , xnk)} and {(yn1 , . . . , ynk )} are ap-

proximating sequences for (SHVI)(Ai, fi, Ji)i=1,...,k. Hence the well-posedness of (SHVI)
(Ai, fi, Ji)i=1,...,k, implies that {(xn1 , . . . , xnk)} and {(yn1 , . . . , ynk )} are converge to the uniqe
solution of (SHVI)(Ai, fi, Ji)i=1,...,k,, which this is contradiction with (12). So, diamF (ε)→
0 as ε→ 0.
For the revers, let the solution setK of (SHVI)(Ai, fi, Ji)i=1,...,k, is nonempty and diamF (ε)→
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0 as ε→ 0 and {(xn1 , . . . , xnk)} is an approximating sequences for (SHVI)(Ai, fi, Ji)i=1,...,k.
Then there is 0 < εn → 0 such that

‖xnk − S(xn1 , . . . , x
n
k−1)‖Xk

≤ εn, (13)∫ T

0

[〈Ai(t, x
n
i )− fi,ηi(y, xni )〉+ J◦

1

(
t, xni , ηi(y, x

n
i )
)
]dt ≥ −εn‖ηi(y, xni )‖Xi

, ∀y ∈ Xi,

for i = 1, . . . , k. Then (xn1 , . . . , x
n
k) ∈ F (εn) with 0 < εn → 0. Now , if we show that

the solution set K of (SHVI)(Ai, fi, Ji)i=1,...,k, is singleton, then the proof is completed.
For this end, suppose that (x1, . . . , xk) and (y1, . . . , yk) are two diference solution for
(SHVI)(Ai, fi, Ji)i=1,...,k. It is obvious that for each ε > 0, (x1, . . . , xk), (y1, . . . , yk) ∈ F (ε)
and

‖(x1, . . . , xk)− (y1, . . . , yk)‖X1×···×Xk
≤ diamG(ε)→ 0, ε→ 0.

So, (x1, . . . , xk) = (y1, . . . , yk). Note that for each n ∈ N and 0 < εn → 0 we have
(xn1 , . . . , x

n
k), (x1, . . . , xk) ∈ F (εn), which this confirm that (xn1 , . . . , x

n
k)→ (x1, . . . , xk) and

the proof is completed . �

Theorem 2.3. Let for i = 1, . . . , k, Xi be a Banach space with X∗i as it’s dual space,
Ai : [0, T ] × Xi → X∗i is a hemicontinuous mapping and monotone with respect to ηi,
Ji : Xi → R be a locally Lipschitz functional and also S : X1 × · · · × Xk−1 → Xk be a
continuous map. Then the k-split hemivariational like inequality (SHVI)(Ai, fi, Ji)i=1,...,k

is strongly well-posed if and only if for all ε > 0, F (ε) 6= ∅ and diamF (ε)→ 0 as ε→ 0.

Proof. When the (SHVI)(Ai, fi, Ji)i=1,...,k is strongly well-posed, we conclude that it has a
singleton solution set K and for each 0 < ε, K ⊆ F (ε), i.e., F (ε) 6= ∅. Then we can follow
the remain of the proof by a similar argument in Theorem 2.3 to obtain the necessity part.
For the sufficiency part, letting (xn1 , . . . , x

n
k) in X1×· · ·×Xk, be an approximating sequence

for (SHVI)(Ai, fi, Ji)i=1,...,k, we can deduce that there is a sequence 0 < εn → 0 such that

‖xnk − S(xn1 , . . . , x
n
k−1)‖Xk

≤ εn,∫ T

0

[〈Ai(t, x
n
i )− fi,ηi(y, xni )〉+ J◦

i

(
t, xni , ηi(y, x

n
i )
)
]dt ≥ −εn‖ηi(y, xni )‖Xi , ∀y ∈ Xi,

for i = 1, . . . , k.
So, (xn1 , . . . , x

n
k) ∈ F (εn) and according to the assumption diamF (εn) → 0 as εn → 0,

we can say (xn1 , . . . , x
n
k) is a cauchy sequence. So it converges strongly to a some point

(x1, . . . , xk) ∈ X1 × · · · ×Xk. Now, we must show that (x1, . . . , xk), is a unique solution
of the (SHVI)(Ai, fi, Ji)i=1,...,k. Since the mapping Ai is monotone with respect to ηi, the
Clarke’s generalized directional derivative J◦i (t, ., .) is upper semicontinuous, we can write∫ T

0
[〈Ai(t, y)− fi, ηi(y, xi)〉+ J◦i

(
t, xi, ηi(y, xi)

)
]dt

≥ lim sup
n→∞

∫ T

0
[〈Ai(t, y)− fi, ηi(y, xni )〉+ J◦i

(
t, xni , ηi(y, x

n
i )
)
]dt

≥ lim sup
n→∞

∫ T

0
[〈Ai(t, xni )− fi, ηi(y, xni )〉+ J◦i

(
t, xni , ηi(y, x

n
i )
)
]dt

≥ lim sup
n→∞

(
− εn‖ηi(y, xni )‖Xi

)
= 0, ∀y ∈ Xi. (14)

If in (14) for each λ ∈ [0, 1] and z ∈ Xi we take y = xi + ληi(z, xi), then∫ T

0
[〈Ai(t, xi + ληi(z, xi)− fi, ληi(z, xi)〉+ J◦i (t, xi;ληi(z, xi))]dt ≥ 0.
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On the other hand, the positive homogeneousness of J◦i (t, xi; .) showes that∫ T

0
[〈Ai(t, xi + λ(z − xi)− fi, z − xi〉+ J◦i (t, xi; z − xi)]dt ≥ 0. (15)

Now, if λ→ 0+, then by ussing hemicontinuity of mapping Ai we obtain∫ T
0 [〈Ai(t, xi)− fi, ηi(z, xi)〉+ J◦i (t, xi; ηi(z, xi))]dt ≥ 0, ∀z ∈ Xi,

and this confirm that (x1, . . . , xk) is a solution for the (SHVI)(Ai, fi, Ji)i=1,...,k. At the
end, the assumption diamF (ε) → 0 as ε → 0, implies that this solution is unique for
(SHVI)(Ai, fi, Ji)i=1,...,k, and the proof is completed. �
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