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A GALERKIN-LIKE SCHEME TO DETERMINE CURVES OF

CONSTANT BREADTH IN EUCLIDEAN 3-SPACE

Ş. YÜZBAŞI1, M. KARAÇAYIR1, §

Abstract. The main focus of this study is to obtain the approximate solutions of a
first order linear differential equation system characterizing curves of constant breadth
in Euclidean 3-space. For this purpose, we outline a polynomial-based method remi-
niscent of the Galerkin method. Considering the approximate solutions in the form of
polynomials, we obtain some relations, which then give rise to a linear system of algebraic
equations. The solution of this system gives the approximate solutions of the problem.
Additionally, the technique of residual correction, which aims to reduce the error of the
approximate solution by estimating this error, is discussed in some detail. The method
and the residual correction technique are illustrated with three examples.
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1. Introduction

Differential equations play a prominent role in many disciplines including physics, en-
gineering, economics and biology. Many problems that have arisen from such studies can
be considered as mathematical objects which are of interest on their own. Kolmogorov-
Petrovskii-Piskunov equation[1], Korteweg–de Vries equation[2, 3], Toda lattice equation[5],
Kaup-Kupershmidt equation[6], Boussinesq equation[7], Fitzhugh-Nagumo equation[8] and
poplar biomass production[9] are only a few of such problems. It is generally the case that
such problems do not have a known exact solution; therefore approximate solutions are
sought for. To name a few of such approximate methods, meshless methods[4], soliton
structures[6, 7], He’s variational iteration method[10], Exp-function method[11, 12] and
Frobenius integrable decompositions[13] have been used extensively by many researchers.

Given a curve in Euclidean 3-space, if another curve is at a constant distance to the first
curve at all its points, these two curves are said to be of constant breadth(width). In this
paper, starting from a curve in R3, our aim is to determine a second curve with the property
that the two curves are of constant breadth. Investigation of such curve pairs began with
the study of Euler[14] in the 18th century. Following this, many researchers studied
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different aspects of space curves of constant breadth[15, 16, 17, 18, 19]. Furthermore,
Köse demonstrated in [20] that given a curve C in the 3-space, a corresponding curve C∗

could be determined such that the two curves constitute a curve pair of constant breadth
having parallel tangents in opposite directions at all their corresponding points.

In [21], Bishop suggested a new way to describe a curve in 3-space, instead of the one
provided by the Frenet frame. Given a curve C parametrized by the real variable s in
3-space, its corresponding curve C∗ of constant breadth with respect to the Bishop frame
has been shown to satisfy the following first order linear differential equation system[23]:

dλ1

ds
= k1(s)λ2 + k2(s)λ3

dλ2

ds
= −k1(s)λ1

dλ3

ds
= −k2(s)λ1,

λ1(0) = α1, λ2(0) = α2, λ3(0) = α3.

(1)

Here, k1 and k2 are the Bishop curvatures, which were first defined in [21]. Namely, let
κ(s) and τ(s) be the curvature and torsion, respectively, of a space curve given by α(s).
Then its Bishop curvatures are defined by k1(s) = κ(s) cos(θ) and k2(s) = κ(s) sin(θ),
where θ =

∫
τ(s)ds. Some other related details on Bishop frame as well as the derivation

of the above system can be found in [23]. So far, this system has been approximately
solved by collocation methods using Taylor and Lucas polynomials[24].

In this paper, our main interest will be in solving the system (1) using a Galerkin-like
scheme. The remaining of the paper is designed as follows: In Section 2, the numerical
method to be used is presented. The subject of Section 3 is a technique, called residual
correction, whose aim is to obtain better solutions using an already obtained solution. In
Section 4, application of the method to three different example problems is considered.
Finally, Section 5 contains comments regarding the results of this paper.

2. Method of Solution

The aim of this section is to describe the numerical scheme that we will use to ob-
tain approximate solutions of the system (1). A similar scheme has also been used by
Türkyılmazoğlu[22] in order to solve high-order Fredholm integro-differential equations.

We will seek solutions to the system (1) in the form of polynomials. More explicitly, we
start by assuming

λ1,N (x) =
N∑
k=0

vkx
k, λ2,N (x) =

N∑
k=0

ykx
k, λ3,N (x) =

N∑
k=0

zkx
k

are the first, second and third coordinates of the approximate solution of the system (1),
where we use x as the independent variable and the letters v, y, z in order to denote the
coefficients of the approximate solution polynomials. Our aim is to obtain the unknown
coefficients vk, yk and zk and hence the approximate solutions λ1,N , λ2,N and λ3,N . Let
us note that the above equations can be expressed in terms of matrices by collecting the
unknown coefficients and variables inside separate vectors as follows:

λ1,N (x) = XN (x)V, λ2,N (x) = XN (x)Y, λ3,N (x) = XN (x)Z.
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Here,

V = [ v0 v1 v2 . . . vN ]T ,

Y = [ y0 y1 y2 . . . yN ]T ,

Z = [ z0 z1 z2 . . . zN ]T

are the vectors consisting of the unknowns and XN (x) is an auxiliary vector given by

XN (x) = [ 1 x x2 . . . xN ].

The derivatives can also be expressed in terms of matrices with the help of the (N + 1)×
(N +1) square matrix B with entries Bi,i+1 = i for i = 1, 2, . . . , N and Bi,j = 0 otherwise.
More explicitly, if B is the matrix given by

B =


0 1 0 . . . 0
0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . N
0 0 0 . . . 0


then the derivatives in (1) satisfy the following:

dλ1,N

dx
= XN (x)BV,

dλ2,N

dx
= XN (x)BY,

dλ3,N

dx
= XN (x)BZ.

After these arrangements, substituting the above matrix equalities into the system (1)
gives rise to the following expressions:

XN (x)BV − k1(x)XN (x)Y − k2(x)XN (x)Z = 0,

XN (x)BY + k1(x)XN (x)V = 0,

XN (x)BZ + k2(x)XN (x)V = 0.

(2)

Now, we apply inner product to the above equations with the elements of the set Φ =
{1, x, x2, . . . , xN}, where the inner product is defined by

< f, g >=

∫ a

0
f(t)g(t)dt.

Here, f and g are functions from the Hilbert space L2[0, a]. In order to express the results
of these inner products in a simple matrix form, we give left-hand sides of Equations (2)
new names as follows:

G1(x) = XN (x)BV − k1(x)XN (x)Y − k2(x)XN (x)Z,

G2(x) = XN (x)BY + k1(x)XN (x)V,

G3(x) = XN (x)BZ + k2(x)XN (x)V.

Now, for k = 0, 1, . . . , N , we take inner product of Equations (2) with xk. Since none of
the equations contain a nonhomogeneous term, for i = 1, 2, 3 we arrive at the equations

< Gi(x), xk >= 0.

All of these 3N +3 equations are linear having the unknown coefficients vk, yk and zk, k =
0, 1, . . . , N , as their unknowns. Let us number these equations such that the inner product
of Gi(x) and xk corresponds to equation numbered iN + k+ 1, just for convention. Since
we have a linear system of equations, we can express it in terms of matrices, writing

WA = 0. (3)
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Here, W is a (3N+3)×(3N+3) matrix consisting of the coefficients of the linear equations,
A is just the concatenation of the vectors V,Y,Z of the unknown coefficients given by

A = [ VT | YT | ZT ]T

and 0 is the all-zero column matrix of length 3N + 3. Since it is essential that the initial
conditions of system (1) are satisfied, we should include them in the above system. We do
this by replacing the equations in the system (3) having resulted from the inner products
taken with xN , which are the equations numbered N + 1, 2N + 2 and 3N + 3, by the
equations corresponding to the initial conditions λ1(0) = α1, λ2(0) = α2 and λ3(0) = α3.
These equations are v0 = α1, y0 = α2 and z0 = α3, respectively. Denoting an entire row by
a single subscript, incorporation of these equations corresponds to the following alterations
in the matrix W and the right-hand side of the linear system (denote it by G):

WN+1 = [ 1 03N+2 ], W2N+2 = [ 0N+1 1 02N+1 ],

W3N+3 = [ 02N+2 1 0N ], G = [ 0N α1 0N α2 0N α3 ]T .

Thus, a new linear system W̃A = G is formed, the solution of which yields the unknown
coefficients vi, yi and zi and hence the approximate solutions λ1,N , λ2,N and λ3,N .

3. Error Estimation and Residual Correction

In this section, we outline a method commonly known as residual correction, aiming to
obtain better solutions using the existing ones. This method is based on the observation
that substitution of an approximate solution in the original system results in a new system,
similar to the original one in structure, in the error of that particular approximate solution.

We start by assuming λ1,N (x), λ2,N (x) and λ3,N (x) are the approximate solutions of
the system (1) for some choice of N . We define the error functions for these solutions by

ei,N (x) = λi(x)− λi,N (x), i = 1, 2, 3.

Since for i = 1, 2, 3, λi(x) denote the exact solutions, they satisfy the system (1) and so
the equalities are preserved upon substituting them in the system. Therefore, we have

dλ1

ds
=

d(λ1,N + e1,N )

ds
= k1(s)(λ2,N + e2,N ) + k2(s)(λ3,N + e3,N )

dλ2

ds
=

d(λ2,N + e2,N )

ds
= −k1(s)(λ1,N + e1,N )

dλ3

ds
=

d(λ3,N + e3,N )

ds
= −k2(s)(λ1,N + e1,N ).

Rearrangement of this system yields

de1,N

ds
= k1(s)e2,N + k2(s)e3,N −R1,N (s),

de2,N

ds
= −k1(s)e1,N −R2,N (s),

de3,N

ds
= −k2(s)e1,N −R3,N (s),

(4)

where the additional terms Ri,N are the residuals of the approximate solutions, given by

R1,N (s) =
dλ1,N

ds
− k1(s)λ2,N − k2(s)λ3,N ,

R2,N (s) =
dλ2,N

ds
+ k1(s)λ1,N ,

R3,N (s) =
dλ3,N

ds
+ k2(s)λ1,N .
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Thus, the system (4), which is a linear first order system in the unknowns ei,N , is the same
as the original system (1) with the exception that this time the residuals Ri,N , i = 1, 2, 3
are present as nonhomogeneous terms. In addition, since both the exact and approximate
solutions satisfy the initial conditions of the system (1), the initial conditions for the
system (4) is given by ei,N (0) = 0, i = 1, 2, 3. Therefore, we can use the method explained
in Section 2 with a choice of the parameter (denote it by M this time) in order to obtain
the approximate solutions ei,N,M , i = 1, 2, 3, of the new system (4). Since these are
the approximate solutions for the error functions, they are called the error estimates
corresponding to λi,N , i = 1, 2, 3. One can use these estimates to obtain the corrected
solutions of system (1) given by

λi,N,M (s) = λi,N (s) + ei,N,M (s), i = 1, 2, 3.

The accuracy of these corrected solutions is directly related to the accuracy of the error
estimates ei,N,M , i = 1, 2, 3. In order to measure this accuracy, the straightforward way is
to consider the residuals of the corrected solutions λi,N,M , i = 1, 2, 3. Another way will be
explained in the examples studied in the next section.

4. Numerical Applications

In this section, we consider three example systems and solve them by the methods
explained in Sections 2 and 3. All the calculations have been carried out in MATLAB.

Example 1: Let us consider the curve α : [0, 2π]→ R3 given by

α(s) =
(

cos
(s

2

)
, sin

(s
2

)
,

√
3s

2

)
.

This curve has been examined in [25]. In order to compute its Bishop curvatures, let us
first determine its Frenet apparatus. The unit tangent vector is found to be

T(s) =
α′(s)

‖α′(s)‖
=
(
− 1

2
sin
(s

2

)
,
1

2
cos
(s

2

)
,

√
3

2

)
and the curvature is calculated by κ = ‖T′(s)‖ = 1

4 . In order to calculate the torsion τ(s),
we obtain the principle normal vector and the unit binormal vector by

N(s) =
1

κ
T′(s) =

(
− cos

(s
2

)
,− sin

(s
2

)
, 0
)
, B = T×N =

(√3

2
sin
(s

2

)
,−
√

3

2
cos
(s

2

)
,
1

2

)
.

Next, the torsion is calculated from N and B by τ(s) = −N(s)·B′(s) =
√

3
4 . Lastly, the

θ in the definition of Bishop curvatures is equal to θ =
∫
τ(s)ds =

√
3s
4 . Thus, the Bishop

curvatures of α are found by k1(s) = 1
4 cos

(√
3s
4

)
and k2(s) = 1

4 sin
(√

3s
4

)
. Therefore, in

order to constitute a curve pair of constant breadth with α, any curve λ = (λ1, λ2, λ3)
should satisfy the following system:

dλ1

ds
=

1

4
cos

(√
3s

4

)
λ2 +

1

4
sin

(√
3s

4

)
λ3,

dλ2

ds
= −1

4
cos

(√
3s

4

)
λ1,

dλ3

ds
= −1

4
sin

(√
3s

4

)
λ1.

(5)
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Figure 1. Comparison of the absolute distance functions of the approximate solutions
of Equation (5) corresponding to N = 3, 4, 5, 6, 7, 8.

Let us specify the initial conditions by λ1(0) = 1, λ2(0) = 4, λ3(0) = 2. Under these
conditions, we now obtain several approximate solutions of this system using the method
of Section 2. To this end, we choose N = 3, 4, 5, 6, 7, 8 as the parameter of the method.
For instance, the approximate solution obtained with the choice of N = 3 is as follows:

λ1,3(s) = 1 + 1.1845839076s− 0.0911579966s2 − 0.0104641343s3,

λ2,3(s) = 4− 0.4587131111s− 0.0074404116s2 + 0.0116612178s3,

λ3,3(s) = 2 + 0.2161369609s− 0.2910842027s2 + 0.0268503546s3.

We have also obtained the approximate solutions corresponding to the other N values. In
order to assess their accuracy, one way is to consider their residuals as expressed at the
end of Section 3. On the other hand, in view of the particular geometric meaning of the
problem, one may evaluate the results based on their closeness to constituting a curve pair
of constant breadth with the given curve α. More explicitly, we will consider the distance
functions dN corresponding to the approximate solutions (λN )app = (λ1,N , λ2,N , λ3,N ) as
a criterion for their accuracy. Since these solutions are exact for s = 0, the distance of the
two curves should be equal to d(0) = (λ1(0)2 + λ2(0)2 + λ3(0)2)1/2 =

√
21 ≈ 4.582575695

for all s ∈ [0, 2π]. Therefore, the closer the distance function

dN (s) = (λ1,N (s)2 + λ2,N (s)2 + λ3,N (s)2)1/2

is to the constant function d(s) =
√

21, as the more accurate we will accept the approxi-
mate solution (λN )app corresponding to the parameter N .

Figure 1 depicts the distance functions corresponding to the approximate solutions
obtained with several N values. The distance functions are seen to approach the constant
distance function d as we increase the parameter N . This indicates that our solution
method yields more accurate results as we choose bigger values for N . An advantage of this
approach is that it enables us to estimate the accuracy of an approximate solution (λN )app
without considering the behaviours of the coordinates λ1,N , λ2,N and λ3,N separately.

Now, we test the usefullness of the technique of residual correction on the approximate
solution (λ3)app we have obtained with the choice of N = 3. For this purpose we choose
M = 4, 5, 8 and proceed as explained in Section 3. This gives us the error estimations
e3,M (s) = (e1,3,M (s), e2,3,M (s), e3,3,M (s)) for these three M values. For instance, the coor-
dinate functions of the error estimation e3,4 corresponding to the pair (N,M) = (3, 4) are
calculated as

e1,3,4(s) = −0.1989460638s+ 0.2030087698s2 − 0.0544947788s3 + 0.0043230642s4,

e2,3,4(s) = 0.3023308928s− 0.2819676161s2 + 0.0741690112s3 − 0.0058878547s4,

e3,3,4(s) = −0.1271272242s+ 0.1246976273s2 − 0.0346708008s3 + 0.0028490270s4.
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Figure 2. Comparison of the distance functions corresponding to the approximate
solution (λ3)app and its three corrected versions in Example 1.

Table 1. Values of the distance functions obtained by Lucas collocation method (first
3 columns) and the present method (last 3 columns) for some values of s in Example 1.

s d3,4(s) (LCM) d3,6(s) (LCM) d3,8(s) (LCM) d3,4(s) (PM) d3,6(s) (PM) d3,8(s) (PM)

0 4.582575 4.582575 4.582575 4.582575 4.582575 4.582575
π/4 4.562648 4.585027 4.582442 4.595669 4.583544 4.582547
π/2 4.550048 4.584816 4.582469 4.564586 4.582842 4.582613
3π/4 4.557248 4.584571 4.582459 4.563658 4.581488 4.582547
π 4.563080 4.584897 4.582465 4.579692 4.582566 4.582576
5π/4 4.558316 4.584602 4.582459 4.584196 4.582904 4.582585
3π/2 4.553611 4.584795 4.582468 4.578165 4.582430 4.582570
7π/4 4.561324 4.584935 4.582444 4.581842 4.582717 4.582578
2π 4.608106 4.579553 4.582891 4.582254 4.582575 4.582576

The corrected solution (λ3,4)app is obtained by λi,3,4(s) = (λi,3)app(s) + ei,3,4(s) for i =
1, 2, 3. The cases M = 5 and M = 8 are similar. As for the accuracy of these corrected
solutions, we again consider their distance functions dN,M . These distance functions are
demonstrated in Figure 2. Note that the graph of the distance function d3,8 corresponding
to the corrected solution (λ3,8)app is almost indistinguishable from the constant function d.
Thus, the figure reveals that not only the corrected solutions (λ3,M )app are more accurate
than the original approximate solution (λ3)app, but also that increasing M value for a fixed
N results in more and more accurate results. We are thus led to comment that residual
correction provides a significant improvement over the original approximate solutions.

We also compare the accuracy of the present method with that of Lucas collocation
method[25]. In Table 1, distance functions corresponding to three different solutions ob-
tained by Lucas collocation method (LCM) are given together with those corresponding
to the solutions obtained by the present method (PM) using the same parameter values.
Looking at the values in the table, we can conclude that the present method is more
accurate than Lucas collocation method for this example problem.
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Example 2: As a second example, let us consider the curve α : [0, π/2]→ R3 given by

α(t) = (cos3 t, sin3 t, cos(2t)).

The curve is not of unit speed, so we first parametrize it with respect to arc length. Since

α′(t) =
(
−3 sin t cos2 t, 3 sin2 t cos t,−4 sin t cos t

)
,

we have

‖α′(t)‖ =

√
(−3 sin t cos2 t)2 + (3 sin2 t cos t)2 + (−4 sin t cos t)2

=
√

9 sin2 t cos4 t+ 9 sin4 t cos2 t+ 16 sin2 t cos2 t

=

√
9 sin2 t cos2 t(sin2 t+ cos2 t) + 16 sin2 t cos2 t =

√
25 sin2 t cos2 t = 5 cos t sin t.

Consequently, the arch length s starting from t = 0 is calculated by s =
∫ t

0 5 sinu cosu du =

5
2 sin2 t. From this we can see that sin t =

√
2s
5 and cos t =

√
1− 2s

5 , giving the arc-length

parametrization of the curve by

α(s) =

((
1− 2s

5

)3/2

,

(
2s

5

)3/2

, 1− 4s

5

)
,

where s ∈ [0, 5/2]. Next, we obtain the unit tangent vector as

T(s) =
α′(s)

‖α′(s)‖
=

(
−3

5

√
1− 2s

5
,
3

5

√
2s

5
,−4

5

)
.

Using this, we can compute the Gaussian curvature by

κ = ‖T′(s)‖ =
3

5
√

10s− 4s2
.

Therefore, the principal normal vector and the unit binormal vector can be calculated as

N(s) =
1

κ
T′(s) =

5
√

2

3

√
5s− 2s2

 3

25
√

1− 2s
5

,
3

25
√

2s
5

, 0

 =

√
10

5

(
√
s,

√
5

2
− s, 0

)
,

B(s) = T×N =

(
−4
√

10

25

√
s,

4
√

10

25

√
5

2
− s,−3

5

)
.

Then, the torsion is calculated as τ(s) = −N(s)·B′(s) = 8
25 . From this we can calculate θ

by θ =
∫
τ(s)ds = 8s

25 . Thus, the Bishop curvatures of α are obtained as

k1(s) = κ cos(θ) =
3

5
√

10s− 4s2
cos

(
8s

25

)
, k2(s) = κ sin(θ) =

3

5
√

10s− 4s2
sin

(
8s

25

)
.

Finally, any curve λ = (λ1, λ2, λ3) having constant breadth with respect to α should satisfy
the following system:

dλ1

ds
=

3

5
√

10s− 4s2
cos

(
8s

25

)
λ2 +

3

5
√

10s− 4s2
sin

(
8s

25

)
λ3,

dλ2

ds
= − 3

5
√

10s− 4s2
cos

(
8s

25

)
λ1,

dλ3

ds
= − 3

5
√

10s− 4s2
sin

(
8s

25

)
λ1.

(6)
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Figure 3. Comparison of the distance functions corresponding to the approximate
solutions (λN )app for N = 3, 6, 9 and 12 in Example 2.

Table 2. Values of the distance functions dN obtained using N = 3, 5, 6, 8 and 12 for
some values of s in Example 2.

s d3(s) d5(s) d6(s) d8(s) d12(s)

0 3 3 3 3 3
0.5 2.977530 3.025712 2.987742 2.999982 2.998146
1 3.047911 2.993232 3.013119 2.998862 3.002700
1.5 3.060202 2.985008 3.004817 3.004493 3.005936
2 2.992693 3.027769 2.992463 2.995213 3.001497
2.5 2.993540 2.997723 2.998412 2.999114 2.999614

As the initial condition, let us take λ1(0) = 1, λ2(0) = 2, λ3(0) = 2. As in the first
example, we have applied the present method to the system (6) using several N values.
For instance, the approximate solution corresponding to N = 3 is given by

λ1,3(s) = 1 + 1.5415112236s− 0.9084444387s2 + 0.2255402992s3,

λ2,3(s) = 2− 1.0532217001s+ 0.6886836807s2 − 0.2049326302s3,

λ3,3(s) = 2− 0.2546240471s+ 0.3521886824s2 − 0.1510475994s3.

In order to judge the accuracy of the approximate solutions, let us again consider their
distance functions dN . Since every approximate solution satisfies the initial condition,
dN (0) should be equal to

√
12 + 22 + 22 = 3, which means that dN should be judged

based on its closeness to the constant function y = 3. Looking at Figure 3, we can see
that the graph of the distance function becomes considerably flatter as the parameter N
increases. This fact can also be observed from Table 2, where we listed the values of the
distance function corresponding to five different N values. Thus we can conclude that
increasing N makes the approximate solutions more accurate in this example as well.

Example 3: Lastly, let us consider an example from [24]. Let the curve α : [0, 2π]→ R3

be given by

α(s) =

(
3 cos

(s
5

)
, 3 sin

(s
5

)
,
4s

5

)
.
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Figure 4. Absolute errors of the distance functions corresponding to the approximate
solutions (λN )app for N = 3, 4, 5, 6, 7, 8 in Example 3.

The Bishop curvatures are calculated to be k1(s) = 3
25 cos

(
4s
25

)
and k2(s) = 3

25 sin
(

4s
25

)
[24].

Thus, the system characterizing curves of constant breadth with respect to α is given by

dλ1

ds
=

3

25
cos

(
4s

25

)
λ2 +

3

25
sin

(
4s

25

)
λ3,

dλ2

ds
= − 3

25
cos

(
4s

25

)
λ1,

dλ3

ds
= − 3

25
sin

(
4s

25

)
λ1,

(7)

where the initial conditions are λ1(0) = 2, λ2(0) = 1, λ3(0) = 3. Let us now solve (7) with
the same values N = 3, 4, 5, 6, 7, 8 as in Example 1. For N = 3 we have

λ1,3(s) = 2 + 0.1192403053s+ 0.0153936713s2 − 0.0011643630s3,

λ2,3(s) = 1− 0.2361209993s− 0.0109991919s2 + 0.0014691750s3,

λ3,3(s) = 3 + 0.0029397450s− 0.0215332085s2 − 0.0004009941s3.

The approximate solutions corresponding to the other N values can be obtained simi-
larly. The distance between α and the exact solution λ should be equal to d =

√
14 ≈

3.7416573867. In order to evaluate the accuracy of the approximate solutions, let us con-
sider the graph of the absolute errors of their corresponding distance functions instead of
the distance functions themselves. More explicitly, this time we consider the graphs of

|ed,N (s)| = |dN (s)−
√

14|.

Figure 4 makes it clear that the absolute errors of the distance functions become closer
to zero with increasing N values. The improvement provided by each increment of N is
understood clearly looking at the graph, even on a logaritmic scale. Thus, the approximate
solutions become more accurate as we increase the value of N for this example problem.
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Figure 5. Absolute errors of the distance functions d3 and d3,M corresponding to the
approximate solution (λ3)app and three of its corrected versions in Example 3.

Table 3. Comparison of the distance functions dN,M obtained by Lucas collocation
method and the present method for some values of s in Example 3.

s d3,4(s) (LCM) d3,5(s) (LCM) d3,8(s) (LCM) d3,4(s) (PM) d3,5(s) (PM) d3,8(s) (PM)

0 3.74165739 3.74165739 3.74165739 3.74165739 3.74165739 3.74165739
π/3 3.74182211 3.74166224 3.74165740 3.74165432 3.74166156 3.74165739
2π/3 3.74182946 3.74166111 3.74165740 3.74183216 3.74166091 3.74165739
π 3.74174213 3.74166135 3.74165740 3.74164950 3.74165170 3.74165739
4π/3 3.74187284 3.74166161 3.74165740 3.74147654 3.74165679 3.74165739
5π/3 3.74179308 3.74166064 3.74165740 3.74166836 3.74165964 3.74165739
2π 3.73954950 3.74165306 3.74165710 3.74165730 3.74165739 3.74165739

As for residual correction, let us improve the approximate solution (λ3)app using the
parameters M = 4, 5, 8. In order to compare the accuracy of these corrected solutions
(λ3,M )app with that of (λ3)app for M = 4, 5, 8, we consider the absolute errors of the

distance functions, which are given by |ed,N,M (s)| = |dN,M (s)−
√

14|. These absolute error
functions are illustrated in Figure 5. The figure shows that applying residual correction
with greater M values yields distance functions with smaller errors, hence more accurate
approximate solutions. We also compare the corrected solutions with those obtained by
Lucas collocation method[24] in terms of their distance functions in Table 3. The values
reveal that the two methods are almost equally accurate for this problem.

5. Conclusions

In this paper, we outlined a numerical method to solve a first order linear model charac-
terizing curves of constant breadth according to Bishop Frame in Euclidean 3-space. The
scheme relies on transforming the given problem to a system of linear equations, whose
solution yields three polynomials of degree N as the approximate solutions. We also ex-
plained a technique known as residual correction, aiming to obtain better solutions from
the already obtained solutions by means of estimating their error. We then applied the
method to three different example problems. The numerical results revealed that increas-
ing the parameter N improves the accuracy of the approximate solutions. In addition, it
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turned out that the accuracy of the approximate solution can be considerably improved by
applying residual correction. On the whole, the presented scheme is an easy-to-implement
method that can be used to solve models of similar type with a remarkably good accuracy.
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