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COMMON FIXED POINT THEOREMS UNDER RATIONAL

CONTRACTIONS USING TWO MAPPINGS AND SIX MAPPINGS

AND COUPLED FIXED POINT THEOREM IN BICOMPLEX VALUED

b-METRIC SPACE

I. H. JEBRIL1, S. K. DATTA2, R. SARKAR3, N. BISWAS4, §

Abstract. During the past decades, enormous works by different researchers have been
carried out in fixed point theory on metric spaces. In this paper, we prove some com-
mon fixed point theorems in bicomplex valued metric space for two mappings and for
six mappings. Also, we have introduced the concept of bicomplex valued b-metric space
and coupled fixed point theorem in bicomplex valued b-metric space.

Keywords: Coupled fixed point, Contractive type mapping, Complete bicomplex valued
metric space, Complex valued b-metric space, Compatible mappings.

AMS Subject Classification: 30D30, 30D35, 37C25, 47H10.

1. Introduction

Fixed point theory is one of the famous and traditional theories in Mathematics in
which contraction is one of the main tools to prove the existence and uniqueness of a fixed
point.

The Banach Contraction principle [10] is a very popular and effective tool in solving
existence problems and it is an active area of research since 1922. Due to simplicity and
usefulness of this classic and celebrated theorem, it has become a very popular source of
existence and uniqueness theorem in different branches of mathematical analysis. This
theorem provides an impressive illustration of the unifying power of functional analytic
methods and their usefulness in various disciplines. The famous Banach theorem [10] was
stated as “Let (X, d) be a complete metric space and T be a mapping of X into itself
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satisfying d(Tx, Ty) ≤ kd(x, y), ∀ x, y ∈ X, where k is a constant in (0, 1). Then, T has
a unique fixed point x∗ ∈ X.”

Already there have been a number of generalizations of metric spaces such as, rectan-
gular metric spaces, pseudo metric spaces, fuzzy metric spaces, quasi metric spaces, quasi
semi metric spaces, probabilistic metric spaces, D-metric spaces and cone metric spaces.

During the last fifty years, fixed point theories with the treatment of complex valued
metric spaces are emerging areas of works in the field of complex analysis as well as
functional analysis. As an extension of complex valued metric spaces, one may think
about bicomplex valued metric space. Naturally, the study of fixed point theory under the
umbrella of bi complex analysis may be regarded as a virgin area of research and is still
at an infancy stage. In 2011, Azam et. al [3] introduced the concept of complex valued
metric space. Since then several authors studied the existence and uniqueness of fixed
points in complex valued spaces (see [1, 2, 4, 9]). Some authors have proved the common
fixed point of mappings satisfying rational inequality in complex valued metric space in
[6] and a common fixed point result in complex valued metric spaces under contractive
condition. The concept of the coupled fixed point was first introduced by Bhaskar and
Laxikantham [5] in 2006. Some coupled fixed point theorems in complex valued metric
space have been proved (see [8]).

The partial order relation � on the set of complex number C is defined as follows:

z1 - z2 if and only if Re(z1) ≤ Re (z2) and Im (z1) ≤ Im (z2) .

Thus z1 - z2 if one of the following conditions is satisfied:
(i) Re(z1) = Re(z2) and Im(z1) = Im(z2), (ii) Re(z1) < Re(z2) and Im(z1) = Im(z2),

(iii) Re(z1) = Re(z2) and Im(z1) < Im(z2), (iv) Re(z1) < Re(z2) and Im(z1) < Im(z2).
We write z1 � z2 if z1 - z2 and z1 6= z2 i.e., one of (ii), (iii) and (iv) is satisfied and we

write z1 ≺ z2 if only (iv) is satisfied.
Taking this into account some fundamental properties of the partial order - on C as

follows:
(1) If 0 - z1 - z2 then |z1| < |z2|;
(2) If z1 - z2, z2 - z3 then z1 - z3 and
(3) If z1 - z2 and λ > 0 is a real number then λz1 - z2.
The set of bicomplex numbers is defined as

C2 = {w : w = p0 + i1p1 + i2p2 + i1i2p3, pk ∈ R, 0 ≤ k ≤ 3},

or,

C2 = {w = z1 + i2z2 | z1, z2 ∈ C},
where z1 = p0 + i1p1, z2 = p2 + i1p3 and i1, i2 are independent imaginary units such that
i21 = −1 = i22. The inverse of u = u1 + i2 u2 exists if u21 + u22 6= 0 i.e., if

∣∣u21 + u22
∣∣ 6= 0 and

it is defined as

u−1 =
1

u
=
u1 − i2 u2
u21 + u22

,

and then u is called invertible.
Recently, J. Choi et. al. [7] have calculated and defined the conjugate of complex

number, the bicomplex valued metric space and also defined the partial order relation -i2
and a norm ‖‖ on C2.

Example 1.1. Consider X = C and a mapping d : X × X → C2 by d(z1, z2) =
i2 |z1 − z2| , z1, z2 ∈ X where | . | is the complex modulus. One can easily check that
(X, d) is a bicomplex valued metric space.
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Definition 1.1. Two self mappings S, T on a bicomplex valued metric space X are said
to be weakly compatible if STx = TSx whenever Sx = Tx for all x ∈ X.

Definition 1.2. Let {zn} be a sequence in a bicomplex space X and z ∈ X. If for every
c ∈ C2 with 0 < c, there is n0 ∈ N such that for all n > n0, d(zn, z) < c, then z is called
the limit of {zn} and we write lim

n→∞
zn = z or, zn → z as n→∞.

Definition 1.3. If every Cauchy sequence is convergent in a bicomplex valued metric space
(X, d), then (X, d) is called a complete bicomplex valued metric space.

Definition 1.4. Let X be a non-empty set and let s ≥ 1 be a given real number. A
function d : X × X → X is called a bicomplex valued b-metric if for all x, y, z ∈ X, the
following conditions are satisfied:

(i) 0 -i2 d(x, y), for all x, y ∈ X; (ii) d(x, y) = 0 if and only if x = y;
(iii) d(x, y) = d(y, x) for all x, y ∈ X and (iv) d(x, y) -i2 s[d(x, z) + d(z, y)] for all

x, y, z ∈ X.
The pair (X, d) is called a bicomplex valued b-metric space. The number s ≥ 1 is called

the coefficient of (X, d).

Definition 1.5. An element (z, z′) ∈ X×X is called a coupled fixed point of the mapping
S : X ×X → X if

S(z, z′) = z and S(z′, z) = z′.

2. Lemmas

In this section, we present some lemmas, which will be needed in the sequel.

Lemma 2.1. [3] Let (X, d) be a complex valued metric space and let {xn} be a sequence
in X. Then {xn} converges to x if and only if |d(xn, x)| → 0 as n→∞.

Lemma 2.2. Let (X, d) be a bicomplex valued metric space and let {zn} be a sequence in
X, then {zn} converges to z in C2 if and only if ‖d(zn, z)‖ → 0 as n→∞.

Proof. Take X = C. Here zn, z ∈ C2; n ∈ Z+. Therefore zn = zn1 +i2zn2 and z = z1+i2z2,
where zn1 , zn2 , z1, z2 ∈ C. It follows that the sequence

‖d(zn, z)‖ = ‖zn − z‖ = ‖(zn1 − z1) + i2(zn2 − z2)‖

=
(
|zn1 − z1|

2 + |zn2 − z2|
2
) 1

2
. (2.1)

Now the sequence {zn} converges to the point z in C2 if and only if the sequences {zn1}
and {zn2} converges to the points z1 and z2 respectively in C. Also by Lemma 2.1, the
sequences {zn1} and {zn2} converges to the points z1 and z2 respectively if and only if

|d(zn1 , z1)| → 0 and |d(zn2 , z2)| → 0 as n→∞,

i.e., |zn1 − z1| → 0 and |zn2 − z2| → 0 as n→∞. (2.2)

Therefore by Equations (2.1) and (2.2), we can conclude that the sequence {zn} converges
to the point z in C2 if and only if ‖d(zn, z)‖ → 0 as n→∞. This completes the proof of
the lemma. �
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3. Main Results

Theorem 3.1. Let (X, d) be a bicomplex valued b-metric space with coefficient s ≥ 1. Let
S, T, f and g be self mappings of X such that

(i) The pairs {S, f} and {T, g} are weakly compatible,
(ii) TX ⊆ fX and SX ⊆ gX,
(iii) fX or gX is a complete subspace of X and

(iv) d(Sz, Tz′) -i2 λd(fz, gz′)+µd(z,Sz)d(gz′,T z′)
1+d(fz,gz′) ,∀ z, z′ ∈ X, where λ, µ are non-negative

real numbers with sλ+ µ < 1.
Then S, T, f and g have a unique common fixed point.

Proof. Let z0 ∈ X be arbitrary. Using the condition (ii), we define a sequence {z′n} in X
as z′2k+1 = gz2k+1 = Sz2k and z′2k+2 = fz2k+2 = Tz2k+1, k = 0, 1, 2, ..., then we have

d(z′2k+1, z
′
2k+2) = d(Sz2k, T z2k+1)

-i2 λd(fz2k, gz2k+1) + µ
d(fz2k, Sz2k)d(gz2k+1, T z2k+1)

1 + d(fz2k, gz2k+1)

= λd(z′2k, z
′
2k+1) + µ

d(z′2k, z
′
2k+1)d(z′2k+1, z

′
2k+2)

1 + d(z′2k, z
′
2k+1)

-i2 λd(z′2k, z
′
2k+1) + µd(z′2k+1, z

′
2k+2)

i.e., d(z′2k+1, z
′
2k+2) -i2

λ

1− µ
d(z′2k, z

′
2k+1). (3.1)

Similarly, we can get

d(z′2k+2, z
′
2k+3) -i2

λ

1− µ
d(z′2k+2, z

′
2k+1). (3.2)

Now put h = λ
1−µ . From 0 ≤ sλ + µ < 1, s ≥ 1, and λ + µ < 1 we get 0 ≤ h < 1. Thus

using (3.1) and (3.2) for n ∈ N, we get that

d(z′n, z
′
n+1) -i2 hd(z′n−1, z

′
n) -i2 h

2d((z′n−2, z
′
n−1) -i2 ... -i2 h

n−1d(z′1, z
′
2).

So for m,n ∈ N, we have

d(z′n, z
′
n+m) -i2 s[d(z′n, z

′
n+1) + d(z′n+1, z

′
n+m)]

-i2 sd(z′n, z
′
n+1) + s2[d(z′n+1, z

′
n+2) + d(z′n+2, z

′
n+m)]

-i2 sd(z′n, z
′
n+1) + s2d(z′n+1, z

′
n+2) + s3[d(z′n+2, z

′
n+3) + d(z′n+3, z

′
n+m)]

-i2 sd(z′n, z
′
n+1) + s2d(z′n+1, z

′
n+2) + ...+ sm−1d(z′n+m−2, z

′
n+m−1) + sm−1d(z′n+m−1, z

′
n+m)

-i2 sd(z′n, z
′
n+1) + s2d(z′n+1, z

′
n+2) + ...+ sm−1d(z′n+m−2, z

′
n+m−1) + smd(z′n+m−1, z

′
n+m).

Since s ≥ 1, therefore we get

d(z′n, z
′
n+m) -i2 sh

n−1d(z′1, z
′
2)+s

2hnd(z′1, z
′
2)+...+s

m−1hn+m−3d(z′1, z
′
2)+s

mhn+m−2d(z′1, z
′
2)

-i2 sh
n−1[1 + sh+ s2h2 + ...+ sm−1hm−1]d(z′1,z

′
2) -i2

shn−1

1− sh
d(z′1,z

′
2),

i.e.,
∥∥d(z′n, z

′
n+m)

∥∥ ≤ shn−1

1− sh
∥∥d(z′1,z

′
2)
∥∥→ 0 as n→ 0, where m ∈ N.

Hence {z′n} is a Cauchy sequence in X. Since X is complete there exists a z ∈ X such that
z′n → z as n→∞. Thus

lim
n→∞

Sz2n = lim
n→∞

gz2n+1 = lim
n→∞

Tz2n+1 = lim
n→∞

fz2n+2 = z. (3.3)
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Now if fX is a complete subspace of X. Therefore ∃ a u ∈ X such that fu = z.
From the condition (iv), we have

d(Su, z) -i2 sd(Su, Tz2n+1) + sd(Tz2n+1, z)

-i2 s

[
λd(fu, gz2n+1) + µ

d(fu, Su)d(gz2n+1, T z2n+1)

1 + d(fu, gz2n+1)

]
+ sd(Tz2n+1, z)

= s

[
λd(fu, z′2n+1) + µ

d(fu, Su)d(z′2n+1, z
′
2n+2)

1 + d(fu, z′2n+1)

]
+ sd(z′2n+2, z).

Therefore we have

‖d(Su, z)‖ ≤ s

[
λ
∥∥d(fu, z′2n+1)

∥∥+ µ

√
2 ‖d(fu, Su)‖

∥∥d(z′2n+1, z
′
2n+2)

∥∥∥∥1 + d(fu, z′2n+1)
∥∥

]
+s
∥∥d(z′2n+2, z)

∥∥ .
Letting n → ∞ and using (3.3) and Lemma 2.2, we get that ‖d(Su, z‖ ≤ 0. Thus
‖d(Su, z‖ = 0. i.e., d(Su, z) = 0 and hence Su = z. Since SX ⊆ gX, there exists v ∈ X
such that gv = z.

Again from condition (iv), we have

d(z, Tv) = d(Su, Tv) -i2 λd(fu, gv) + µ
d(u, Su)d(gv, Tv)

1 + d(fu, gv)
= 0.

Thus d(z, Tv) = 0 and hence Tv = z. Thus fu = Su = z = gv = Tv. Since f and S are
weakly compatible so fz = fSu = Sfu = Sz. Now we will show that Sz = z.

From condition (iv), we get that

d(Sz, z) = d(Sz, Tv) -i2 λd(fz, gv) + µ
d(fz, Sz)d(gv, Tv)

1 + d(fz, gv)
= λd(Sz, z).

Thus (1− λ) ‖d(Sz, z)‖ ≤ 0. Which shows that d(Sz, z) = 0 and hence Sz = z.
Similarly, since g and T are weakly compatible, therefore gz = gTv = Tgv = Tz. Also

d(z, Tz) = d(Sz, Tz) -i2 λd(fz, gz) + µ
d(fz, Sz)d(gz, Tz)

1 + d(fz, gz)
= λd(z, Tz).

Thus d(z, Tz) = 0 and hence Tz = z. Therefore Sz = fz = gz = Tz = z i.e., z is a
common fixed point of four mappings S, T, f and g. Now we show that z is the unique
common fixed point.

Let z∗ ∈ X be another common fixed point of four mappings S, T, f and g. Then we
have fz∗ = Sz∗ = gz∗ = Tz∗ = z∗. Again by (iv), we have

d(z, z∗) = d(Sz, Tz∗) -i2 λd(fz, gz∗) + µ
d(fz, Sz)d(gz∗, T z∗)

1 + d(fz, gz∗)
= λd(z, z∗).

Thus d(z, z∗) = 0 and so z = z∗. Therefore z is the unique common fixed point of S, T, f
and g.

If gX is complete, we can similarly prove the theorem. This completes the proof of the
theorem. �

Theorem 3.2. Let (X, d) be a bicomplex valued metric space and P,Q,R, S, Tand U be
six self mappings of X satisfying the conditions (i) TU(X) ⊆ P (X) and RS(X) ⊆ Q(X)
and (ii) d(RSz, TUz′) -i2 ad(Pz,Qz′) + b(d(Pz,RSz) + d(Qz′, TUz′)) + c(d(Pz, TUz′) +
d(Qz′, RSz)), for all z, z′ ∈ X where a, b, c ≥ 0 and a + 2b + 2c < 1. Assume that pairs
(TU,Q) and (RS,P ) are weakly compatible. Pairs (T,U), (T,Q), (U,Q), (R,S), (R,P )
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and (S, P ) are commuting pairs of maps. Then T,U,R, S,Q and P have a unique common
fixed point in X.

Proof. Let z0 ∈ X. Then by (i) we can define inductively a sequence {z′n} in X such
that z′2n = RSz2n = Qz2n+1 and z′2n+1 = TUz2n+1 = Pz2n+2 for all n = 1, 2, 3, ..., then
by (ii), we have

d(z′2n, z
′
2n+1) = d(RSz2n, TUz2n+1)

-i2 ad(Pz2n, Qz2n+1) + b (d(Pz2n, RSz2n) + d(Qz2n+1, TUz2n+1))

+c(d(Pz2n, TUz2n+1) + d(Qz2n+1, RSz2n))

= ad(z′2n−1, z
′
2n) + b(d(z′2n−1, z

′
2n) + d(z′2n, z

′
2n+1)) + c(d(z′2n−1, z

′
2n+1) + d(z′2n, z

′
2n))

-i2 (a+ b+ c)d(z′2n−1, z
′
2n) + (b+ c)d(z′2n, z

′
2n+1),

i.e., d(z′2n, z
′
2n+1) -i2

a+ b+ c

1− b− c
d(z′2n−1, z

′
2n) = kd(z′2n−1, z

′
2n), k =

a+ b+ c

1− b− c
.

Similarly, we obtain that

d(z′2n+1, z
′
2n+2) -i2 kd(z′2n, z

′
2n+1).

Therefore, we have

d(z′n, z
′
m) -i2 d(z′n, z

′
n+1) + d(z′n+1, z

′
n+2) + ...+ d(z′m−1, z

′
m)

-i2 (kn + kn+1 + ...+ km−1)d(z′1, z
′
0) -i2

kn

1− k
d(z′1, z

′
0),

i.e.,
∥∥d(z′n, z

′
m)
∥∥ ≤ kn

1− k
∥∥d(z′1, z

′
0)
∥∥ .

Which implies that ‖d(z′n, z
′
m)‖ → 0 as n,m→∞. Hence {z′n} is a Cauchy sequence.

Since X is complete, there exists a point p ∈ X such that

lim
n→∞

RSz2n = lim
n→∞

Qz2n+1 = lim
n→∞

TUz2n+1 = lim
n→∞

Pz2n+2 = p.

Since TU(X) ⊆ P (X), there exists a point u ∈ X such that p = Pu. Then by (ii), we
have

d(RSu, p) -i2 d(RSu, TUz2n−1) + d(TUz2n−1, p)

-i2 ad(Pu,Qz2n−1) + b(d(Pu,RSu) + d(Qz2n−1, TUz2n−1))

+c(d(Pu, TUz2n−1) + d(Qz2n−1, RSu)) + d(TUz2n−1, p).

Taking the limit as n→∞, we obtain that

d(RSu, p) -i2 ad(p, p)+b(d(p,RSu)+d(p, p))+c(d(p, p)+d(p,RSu))+d(p, p) = (b+c)d(p,RSu).

Therefore we have
‖d(RSu, p)‖ ≤ (b+ c) ‖d(p,RSu)‖ .

Which is a contradiction, since a, b, c ≥ 0 and a+ 2b+ 2c < 1. Therefore ‖d(RSu, p)‖ = 0,
which implies RSu = Pu = p. Since RS(X) ⊆ Q(X), there exists a point v in X such
that p = Qv. Then by (ii), we have

d(p, TUv) = d(RSu, TUv)

-i2 ad(Pu,Qv) + b(d(Pu,RSu) + d(Qv, TUv)) + c(d(Pu, TUv) + d(Qv,RSu))

= ad(p, p) + b(d(p, p) + d(p, TUv) + c(d(p, TUv) + d(p, p)) = (b+ c)d(p, TUv).

Therefore we have
‖d(p, TUv)‖ ≤ (b+ c) ‖d(p, TUv)‖ .

Which is a contradiction, since a, b, c ≥ 0 and a + 2b + 2c < 1. Therefore TUv = Qv = p
and so RSu = Pu = TUv = Qv = p.
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Similarly, Q and TU are weakly compatible maps, so we have TUp = Qp. Now we claim
that p is a fixed point of TU. If TUp 6= p, then by (ii), we have

d(p, TUp) = d(RSp, TUp)

-i2 ad(Pp,Qp) + b(d(Pp,RSp) + d(Qp, TUp)) + c(d(Pp, TUp) + d(Qp, TUp))

= ad(p, TUp) + b(d(p, p) + d(TUp, TUp)) + c(d(p, TUp) + d(TUp, p)) = (a+ 2c)d(p, TUp).

So we get

‖d(p, TUp)‖ ≤ (a+ 2c) ‖d(p, TUp)‖ .

Which is a contradiction. Therefore TUp = p. Hence TUp = Qp = p. We have therefore
proved that RSp = TUp = Pp = Qp = p. So p is a common fixed point of P,Q,RS and
TU.

By commuting conditions of pairs we have Tp = T (TUp) = T (UTp) = TU(Tp), Tp =
T (Pp) = P (Tp), Up = U(TUp) = (UT )(Up) = (TU)(Up) and Up = U(Pp) = P (Up), which
implies that Tp and Up are common fixed points of (TU, P ). Therefore Tp = p = Up =
Pp = TUp.

Similarly, Rp = p = Sp = Qp = RSp. Therefore p is a common fixed point of
T,U,R, S, P and Q.

For uniqueness of p, let w be another common fixed point of T,U,R, S, P and Q. Then
by (ii), we have

d(p, w) = d(RSp, TUw)

-i2 ad(Pp,Qw) + b(d(Pp,RSp) + d(Qw, TUw)) + c(d(Pp, TUw) + d(Qw,RSp))

= ad(p, w) + b(d(p, p) + d(w,w)) + c(d(p, w) + d(w, p)) = (a+ 2c)d(p, w).

Hence we get

‖d(p, w)‖ ≤ (a+ 2c) ‖d(p, w)‖ ,
which is a contradiction. Therefore, we get ‖d(p, w)‖ = 0 i.e., p = w is a unique common
fixed point of T, U, R, S, P and Q. This proves the theorem. �

Theorem 3.3. Let (X, d) be a complete bicomplex valued metric space. Let S and T :X ×
X → X, such that

d(S(z, z′), T (u, v)) -i2 a
d(z, u) + d(z′, v)

2
+ b

d(z, S(z, z′)) + d(u, T (u, v))

2
,

∀ z, z′, u, v ∈ X, where a and b are non-negative integers with a + b < 1. Then S and T
have a unique common couple fixed point in X ×X.

Proof. Let z0, z
′
0 ∈ X be arbitrary. We define two sequences {zn}, {z′n} asz2k+1 =

S(z2k, z
′
2k), z2k+2 = T (z2k+1, z

′
2k+1) and z′2k+1 = S(z′2k, z2k), z

′
2k+2 = T (z′2k+1, z2k+1). Now

d(z2k+1, z2k+2) = d(S(z2k, z
′
2k), T (z2k+1, z

′
2k+1))

-i2 a
d(z2k,z2k+1) + d(z′2k, z

′
2k+1)

2
+ b

d(z2k, S(z2k, z
′
2k)) + d(z2k+1, T (z2k+1, z

′
2k+1))

2

= a
d(z2k,z2k+1) + d(z′2k, z

′
2k+1)

2
+ b

d(z2k, z2k+1) + d(z2k+1, z2k+2)

2
.

Therefore we get that

(2− b)d(z2k+1, z2k+2) -i2 (a+ b)d(z2k,z2k+1) + ad(z′2k, z
′
2k+1),

i.e., d(z2k+1, z2k+2) -i2
(a+ b)

(2− b)
d(z2k,z2k+1) +

a

(2− b)
d(z′2k, z

′
2k+1). (3.4)
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Similarly, it can be shown that

d(z′2k+1, z
′
2k+2) -i2

(a+ b)

(2− b)
d(z′2k,z

′
2k+1) +

a

(2− b)
d(z2k, z2k+1). (3.5)

By adding (3.4) and (3.5), we obtain

d(z2k+1, z2k+2) + d(z′2k+1, z
′
2k+2) -i2

(2a+ b)

(2− b)
{d(z2k, z2k+1) + d(z′2k,z

′
2k+1)}.

Now, we take h = 2a+b
2−b then 0 ≤ h < 1, since 0 ≤ a+ b < 1, therefore we have

d(z2k+1, z2k+2) + d(z′2k+1, z
′
2k+2) -i2 h{d(z2k, z2k+1) + d(z′2k,z

′
2k+1)}.

Similarly, it can also be shown that

d(z2k+2, z2k+3) + d(z′2k+2, z
′
2k+3) -i2 h{d(z2k+1, z2k+2) + d(z′2k+1,z

′
2k+2)}.

Thus for any n ∈ N, we have

d(zn+2, zn+1) + d(z′n+2, z
′
n+1) -i2 h{d(zn+1, zn) + d(z′n+1,z

′
n)}

-i2 h
2{d(zn, zn−1) + d(z′n, z

′
n−1)} -i2 ... -i2 hn+1[d(z1, z0) + d(z′1, z

′
0)].

Now for m > n, we get that

d(zm,zn) + d(z′m, z
′
n) -i2 [d(zn, zn+1) + d(z′n, z

′
n+1)] + [d(zn+1, zm) + d(z′n+1, z

′
m)]

d(zm,zn) + d(z′m, z
′
n) -i2 [d(zn, zn+1) + d(z′n, z

′
n+1)] + [d(zn+1, zm) + d(z′n+1, z

′
m)]

-i2 [d(zn, zn+1)+d(z′n, z
′
n+1)]+[d(zn+1, zn+2)+d(z′n+1, z

′
n+2)]+[d(zn+1, zm)+d(z′n+1, z

′
m)]

-i2 ... -i2 [d(zn, zn+1)+d(z′n, z
′
n+1)]+[d(zn+1, zn+2)+d(z′n+1, z

′
n+2)]+[d(zm−1, zm)+d(z′m−1, z

′
m)]

-i2 [hn + hn+1 + hn+2 + ...+ hm−1][d(z1, z0) + d(z′1, z
′
0)]

-i2
hn

1− h
[d(z1, z0) + d(z′1, z

′
0)]→ 0 as n→∞.

Thus d(zm,zn)→ 0 and d(z′m, z
′
n)→ 0 as m,n→∞. Therefore {zn} and {z′n} are Cauchy

sequences. Again since X is complete, there exist z, z′ ∈ X are such that zn → z and
z′n → z′, as n→∞. Therefore we have

d(S(z, z′), z) -i2 d(S(z, z′), z2k+2) + d(z2k+2, z)

= d(S(z, z′), T (z2k+1, z
′
2k+1)) + d(z2k+2, z)

-i2 a
d(z, z2k+2) + d(z′, z′2k+2)

2
+ b

d(z, S(z, z′)) + d(z2k+1, T (z2k+1, z
′
2k+1))

2
+ d(z2k+2, z)

= a
d(z, z2k+2) + d(z′, z′2k+2)

2
+ b

d(z, S(z, z′)) + d(z2k+1, z2k+2)

2
+ d(z2k+2, z).

Letting k →∞ and using Lemma 2.2, we get

d(S(z, z′), z) - b
d(z, S(z′, z))

2
.

Therefore 0 ≤ a + b < 1, and d(S(z, z′), z) = 0 shows that S(z, z′) = z. Similarly, it can
be shown that S(z′, z) = z′. Again we have

d(z, T (z, z′)) = d(S(z, z′), T (z, z′))

-i2 a
d(z, z) + d(z′, z′)

2
+ b

d(z, S(z, z′)) + d(z, T (z, z′))

2
=
b

2
d(z, T (z, z′)).

Thus (1 − b
2) ‖d(z, T (z, z′)‖ ≤ 0 and hence T (z, z′) = z. Similarly, we can show that

T (z′, z) = z′. Thus S(z, z′) = T (z, z′) = z and S(z′, z) = T (z′, z) = z′. Therefore (z, z′)
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is a common coupled fixed point of S and T. For uniqueness, let (p, q) ∈ X × X such
thatS(p, q) = T (p, q) = p and S(q, p) = T (q, p) = q. Now we have

d(z, p) = d(S(z, z′), T (p, q)) -i2 a
d(z, p) + d(z′, q)

2
+ b

d(z, S(z, z′)) + d(p, T (p, q))

2

= a
d(z, p) + d(z′, q)

2
+ b

d(z, z) + d(p, p)

2
= a

d(z, p) + d(z′, q)

2
. (3.6)

Similarly, it can be shown that

d(z′, q) -i2 a
d(z, p) + d(z′, q)

2
. (3.7)

By adding (3.6) and (3.7), we get

d(z, p) + d(z′q) -i2 a[d(z, p) + d(z′, q)].

Thus (1 − a)[d(z, p) + d(z′, q)] -i2 0. Therefore d(z, p) + d(z′, q) = 0. Which shows that
d(z, p) = 0 and d(z′, q) = 0 hence z = p and z′ = q i.e., (z, z′) = (p, q). Therefore (z, z′) is
the unique common fixed point of S and T. This completes the proof of the theorem. �
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