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IMPACT OF INITIAL TIME DIFFERENCE ON STABILITY CRITERIA

OF IMPULSIVE DIFFERENTIAL EQUATIONS

PALLVI MAHAJAN 1,2, SANJAY KUMAR SRIVASTAVA2, RAKESH DOGRA2, §

Abstract. In this paper, an impulsive differential system is investigated for the first
time for several stability criteria relative to initial time difference. The investigations
are carried out by perturbing Lyapunov functions and by using comparison results. A
generalized Lyapunov function has been used for the investigation.The results that are
obtained to investigate the stability significantly depend on the moment of impulses. An
example is given to illustrate the derived result.
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1. Introduction

Stability is one of the most important feature in the qualitative theory of differential
equations [14, 13]. However, while considering the real world problems, it is sometimes not
possible to investigate the stability of the solutions by keeping the initial time same. Sta-
bility with initial time difference (ITD) is a generalization of the basic concept of stability
of solutions. The concept of stability with respect to ITD was firstly investigated by Lak-
shmikantham and Vatsala [9] and Lakshmikantham et al. [10]. In the past, different types
of stability were studied for variety of differential equations with reference to ITD like or-
dinary differential equations [11, 19], fractional differential equations [4], delay differential
equations [1, 6], caputo fractional differential equations [2, 3] etc. without impulse effects.
In dealing with real world problems, impulsive differential equations are more suitable and
have been investigated to study various types of stabilities [7, 16], but the investigation
of impulsive differential equations with respect to ITD is at its initial stage and has not
been investigated much in the past. However, S.G. Hristova [5] investigated the stability
behavior of impulsive differential equations with respect to ITD by employing Lyapunov
function and some comparison results under few rigid conditions.
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In the present paper, for the first time, we study the various stability criteria for a
system of impulsive differential equation with ITD by perturbing the Lyapunov function.
Lyapunov function is widely recognized as a tool for investigating the stability properties
of nonlinear differential equations. When a Lyapunov function does not seem to satisfy all
the necessary criteria to deduce the required properties, then it becomes worth perturbing
the Lyapunov function rather than discarding it. The concept of perturbing Lyapunov
function to study the nonuniform properties of solutions of differential equations was firstly
given by Lakshikantham [8] and further extended to investigate various stability criteria for
impulsive differential equations [12, 20, 17]. The notion of perturbing Lyapunov function
was used by McRae and Song et al. [15, 18] to study the stability properties of differential
equations without impulse effect relative to ITD, but in this paper, we are using the method
of perturbing Lyapunov function for impulsive differential equations by introducing initial
time difference. Here, a generalized Lyapunov function is utilised to investigate the desired
stabilities. We carry out our results with the help of some comparison results [9, 7].

In the present manuscript, the main motive is to investigate the impact of initial time
difference on stability criteria of impulsive differential equations. The paper is arranged
into five sections; namely preliminaries, comparison results, main results, examples and
conclusion. In preliminaries, we have introduced some basic definitions and notations
followed by a section, where we have carried out two comparison results for our investi-
gations. In main results, we have given some criteria to bring the equi-stability and equi-
asymptotic stability of impulsive differential equation with respect to initial time differ-
ence. An example is also given to support the deduced result. Finally, on the basis of
these results, conclusion is drawn.

2. Preliminaries

Let Rn denotes the n dimensional Euclidean space and let R+ = [0,∞),
Consider the impulsive differential system :{

x′ = f(t, x), t 6= ti

∆x = Ii(x), t = ti
(1)

where f ∈ PC[R+ × Rn, Rn] is piece-wise continuous function and Ii ∈ C(Rn, Rn) is
continuous function for every i where i = 1, 2, 3...
Let ∆x = Ii(x(t)) = x(t+i )− x(ti), where 0 < t1 < t2 < ...ti < ti+1..., ti →∞ as i→∞
Let x(t) = x(t; t0, x0) and y(t) = y(t; τ0, y0) be two solutions of the system (1) through
(t0, x0) and (τ0, y0) respectively, where t0, τ0 ∈ R+. Here both x(t) and y(t) are piecewise
continuous having discontinuity of first kind.
Here, we will study the stability criteria with respect to the solution x(t) = x(t; t0, x0) .
Let γ = τ0 − t0 > 0.
Denote S(x, ρ) = {x ∈ Rn : ‖x− y‖ < ρ} for every y ∈ S(ρ) = {y ∈ Rn : ‖y‖ < ρ}.
Consider the complimentary sets of S(x, ρ) and S(ρ), respectively, as Sc(x, ρ) and Sc(ρ).
Also, consider the following function:

K = {φ ∈ C(R+, R+) : φ is strictly increasing and φ(0) = 0}

In order to study the stability of impulsive differential systems with respect to ITD,
firstly we will discuss some of the definitions as given below:

Definition 2.1 [15]. Let z(t) = x(t; t0, x0) − y(t + γ; τ0, y0) such that z0 = x0 − y0.
Then, the solution x(t) = x(t; t0, x0) of impulsive differential system (1) is:
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(A1) equistable with respect to solution y(t) = y(t; τ0, y0) of the system (1) through
(τ0, y0), if for a given ε > 0 there exist δ = δ(t0, ε) > 0 and σ = σ(t0, ε) > 0 such
that ‖z0‖ < δ and |γ| < σ implies ‖z(t)‖ < ε, t ≥ t0;

(A2) uniformly stable if the condition (A1) holds true, where both δ and σ are not
dependent on t0;

(A3) equi-asymptotically stable with respect to solution y(t) = y(t; τ0, y0) of the system
(1) through (τ0, y0), if the condition (A1) holds true and for a given ε > 0 there
exist δ0 = δ0(t0) > 0, σ0 = σ0(t0) > 0 and T = T (t0, ε) > 0 such that ‖z0‖ < δ0
and |γ| < σ0 implies ‖z(t)‖ < ε, t ≥ t0 + T ;

(A4) uniformly asymptotically stable if both (A2) and (A3) holds, with δ0, σ0 and T in
(A3) are independent of t0.

Definition 2.2 [7]. Let Lyapunov function V : R+ × Rn → R+ belongs to class V0 such
that

(i) V is continuous function on each of the sets (ti−1, ti]×Rn;∀x ∈ Rn and i = 1, 2, 3...
, and there exists a limit lim(t,y)→(t+i ,x)

V (t, y) = V (t+i , x);

(ii) V is Lipschitz in the local neighborhood of x
i.e. ‖V (t, x)− V (t, y)‖ ≤ L‖x− y‖ holds ∀ ‖x− y‖ < ρ where ρ > 0 and L > 0.
Now, define

D−V (t, x) = lim
s→0−

inf
1

s
{V (t+ s, x+ sf(t, x))− V (t, x)}

where (t, x) ∈ (ti−1, ti]×Rn,

Consider the nonlinear impulsive differential system (1), for V ∈ V0, we define the gen-
eralized derivative [18] depending upon the difference of solutions x(t) = x(t; t0, x0) and
y(t) = y(t; τ0, y0), with respect to the system (1) as follows:

D−V (t, x− y) = lim
s→0−

inf
1

s
[V (t+ s, x− y + s(f(t, x)− f(t, y))− V (t, x− y))] (2)

In the following, we will consider the two comparison principles which will eventually sup-
port our further investigations.

Lemma 2.1 [7] Let m ∈ PC[R+, R] piece-wise continuous and m(t) is left continuous
at ti, i = 1, 2, 3..., with ti →∞ as i→∞ where D−m(t) = lims→0 inf

1
s [m(t+ s)−m(t)].

Suppose that

(a) g ∈ C[R+ × Rn → R], ψi : R → R,ψi(u) is non-decreasing in u and for each
i = 1, 2, 3..., 

D−m(t) ≤ g(t,m(t)), t 6= ti,

m(t+i ) ≤ ψi(m(ti)), t = ti,

m(t0) ≤ u0;
(b) r(t) is the maximal solution of

u′ = g(t, u), t 6= ti,

u(t+i ) = ψi(u(ti)), ti > t0 ≥ 0

u(t0) = u0

Then, for t ≥ t0 we have m(t) ≤ r(t)

Lemma 2.2 [9] Let us consider that
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(a) m ∈ C[R+, R+], h : R2
+ → R is continuous and non- decreasing in t for each w and

τ0 ≥ t0. Also, D−m(t) ≤ h(t,m(t)), m(t0) ≤ w0 and t0 ≥ 0,
(b) the maximal solution r(t) = r(t; τ0, w0) of w′ = h(t, w), w(τ0) = w0 ≥ 0, τ0 ≥ 0,

exists for t ≥ τ0;
Then, for t ≥ t0, we have m(t) ≤ r(t+ γ) and for t ≥ τ0 we have m(t− γ) ≤ r(t).

3. Comparison Results

For our further investigation, we will use the following comparison system:
u′ = g1(t, u), t 6= ti,

u(t+i ) = Ji(u(ti)), t = ti, i = 1, 2, 3...

u(τ0) = u0, τ0 > t0

(3)

existing for t ≥ τ0, where u(t; τ0, u0) is any solution of (3) and
v′ = g2(t, v), t 6= ti,

v(t+i ) = Fi(v(ti)), t = ti, i = 1, 2, 3...

v(τ0) = v0, τ0 > t0

(4)

existing for t ≥ τ0, where v(t; τ0, v0) is any solution of (4).
In order to prove the desired results, we will first prove two comparison principles for the
system (1) under consideration.

Theorem 3.1. [9] Let us suppose that:

(a) m ∈ PC[R+, R+] is piece-wise continuous, g1 ∈ C[R2
+, R] is continuous and non

decreasing and Ji : R+ → R+ is non-decreasing such that{
D−m(t) ≤ g1(t,m(t)), t 6= ti,

m(t+i ) ≤ Ji(m(ti)), t = ti, i = 1, 2, 3...
(5)

(b) Let r(t) = r(t; τ0, u0) is the maximal solution of (3).

Then m(t0) ≤ u0 implies m(t) ≤ r(t+ γ) for t ≥ t0 and m(t− γ) ≤ r(t) for t ≥ τ0.

Proof. For t ∈ [t0, t1], we have by Lemma 2.2, m(t) ≤ r(t+ γ).
Hence, by knowing the facts that J1 is non-decreasing and m(t1) ≤ r(t1 + γ), we obtain

m(t+1 ) ≤ J1(m(t1)) ≤ J1(r(t1 + γ)) = u+1 .

Now, for t1 < t ≤ t2, again by Lemma 2.2, it follows that m(t) ≤ r(t + γ) where r(t) =
r(t; τ1, u

+
1 ) is the maximal solution of (3) for t ∈ [t1, t2].

Continuing as above, we get

m(t+2 ) ≤ J1(m(t2)) ≤ J1(r(t2 + γ)) = u+2 .

Repeating in the same way, we finally get the desired results and hence, the proof. �

Theorem 3.2. [18] Let V ∈ PC[R+ ×Rn → R+] and V ∈ V0.
Let us consider that {

D−V (t, z) ≤ g1(t, V (t, z))

V (t+i , z(t
+
i )) ≤ Ji(V (ti, z(ti)))

(6)

where g1 ∈ C[R2
+, R+] is continuous and non - decreasing, Ji : R+ → R+ is non-decreasing.

Let r(t) = r(t; τ0, u0) be the maximal solution of the comparison system (3).
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Then, V (t, z(t)) ≤ r(t+ γ, τ0, u0), t ≥ t0 holds provided V (t0, z0) ≤ u0.

Proof. Let x(t) = x(t; t0, x0) and y(t) = y(t; τ0, y0) be the solutions of the system (1) such
that V (t0, z0) ≤ u0.
Define m(t) = V (t, z(t)) such that for adequately small but positive s, we have

m(t+ s)−m(t) = V (t+ s, z(t+ s))− V (t, z(t))

= V (t+ s, x(t+ s)− y(t+ γ + s))− V (t, x(t)− y(t+ γ))

(7)

After adding and subtracting a common term (i.e. V (t+ s, x(t)− y(t+ γ) + s(f(t, x(t))−
f(t, y(t+γ)) ) on right hand side of above equation (7) and then multiplying by s−1 (where
s→ 0−) on both sides of the same, we get

D−m(t) ≤ lim
s→0−

infL‖ [x(t+ s)− x(t)]

s
− f(t, x(t)‖

+ lim
s→0−

infL‖ [y(t+ γ + s)− y(t+ γ)]

s
− f(t, y(t+ γ)‖+D−V (t, x(t)− y(t+ γ))

= D−V (t, x(t)− y(t+ γ))

= D−V (t, z(t))

≤ g1(t,m(t))

Now consider

m(t+i ) = V (t+i , z(t
+
i ))

≤ Ji(m(ti))

Therefore, all the conditions of Theorem 3.1 are fulfilled and we get the desired result.
�

4. Main Results

Here, we will deduce the sufficient conditions for the stability of impulsive differential
equations with ITD. For the same, we will apply the method of perturbed Lyapunov func-
tion along with comparison results.

Theorem 4.1. Suppose that the following conditions are fulfilled:

(i) Let V1 ∈ PC[R+ × S(x, ρ), R+] and V1(t, x) ∈ V0 such that{
D−V1(t, z) ≤ g1(t, V1(t, z)), t 6= ti

V1(t
+
i , z(t

+
i )) ≤ Ji(V1(ti, z(ti))), i = 1, 2, 3..

(8)

where g1 and Ji are same as defined in Theorem 3.2.
(ii) For 0 < η < ρ , there exist a V2 ∈ PC[R+ × S(ρ)

⋂
Sc(η), R+], and V2(t, x) ∈ V0

such that
b(‖x‖) ≤ V2(t, x) ≤ a(‖x‖), a, b ∈ K

and{
D−[V1(t, z) + V2(t, z)] ≤ g2(t, V1(t, z) + V2(t, z)), t 6= ti

[V1(t
+
i , z(t

+
i )) + V2(t

+
i , z(t

+
i ))] ≤ Fi(V1(ti, z(ti)) + V2(ti, z(ti))), t = ti, i = 1, 2, 3..

where g2 : R2
+ → R+ is continuous and Fk : R+ → R+ is non-decreasing.
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(iii) The zero solution of comparison system (3) is equi-stable and the zero solution of
comparison system (4) is uniformly stable.
Then, the solution x(t) = x(t; t0, x0) of impulsive differential system (1) is equi-
stable.

Proof. Let 0 < ε < ρ and considering condition (iii), as the zero solution of (4) is uniformly
stable, we have for a given b(ε) > 0 and τ0 ∈ R+ , there exist a δ0 = δ0(ε) > 0, such that
v0 < δ0 implies

v(t; τ0, v0) < b(ε), t ≥ τ0 (9)

where v(t; τ0, v0) is any solution of (4).
Choose δ1 = δ1(ε) > 0, such that

a(δ1) <
δ0
2

(10)

Also, from the stability of zero solution of (3), for given δ0
2 > 0 and τ0 ∈ R+, there exist

a δ2 = δ2(τ0, ε) > 0 such that

u(t; τ0, u0) <
δ0
2
, t ≥ τ0 (11)

provided u0 < δ2 where u(t; τ0, u0) is any solution of (3).
Choose u0 = V1(t0, z0) , such that for some δ3 > 0 ,

‖z0‖ < δ3 and V1(t0, z0) < δ2 (12)

hold concurrently.
Therefore, lim(t0,x0)→(τ0,y0) ‖z(t)‖ = 0, which follows that for a given ε > 0, there exist
δ4 = δ4(ε) > 0 and σ1 = σ1(ε), such that ‖z0‖ < δ4 and γ < σ1 implies

‖z(t)‖ < δ1, t0 ≤ t ≤ τ0 (13)

Choose δ = min(δ1, δ3, δ4) and σ = σ1
Now, we claim that ‖z0‖ < δ and ‖z(t)‖ < ε, for t ≥ t0. If it does not hold true, then
there exist a solution y(t) = y(t; τ0, y0) of impulsive differential system (1) with ‖z0‖ < δ,
γ < δ and t2 > t1 > τ0 satisfying

‖z(t1)‖ = δ1; ‖z(t2)‖ = ε and δ1 < ‖z(t)‖ < ε where t1 < t < t2. (14)

By using Theorem (3.2) and condition (i) of Theorem (4.1), we get

V1 (t1, z(t1)) ≤ r1(t1 + γ; τ0, u0), t ≥ t0 (15)

where r1(t1; τ0, u0) is the maximal solution of (3).
Thus, by using (11), we have

V1 (t1, z(t1)) ≤
δ0
2

(16)

In addition, from condition (ii) of Theorem 4.1, (10) and (14), we have

V2 (t1, z(t1)) ≤ a (‖z(t1)‖) ≤ a(δ1) <
δ0
2

(17)

Thus, we get

V1 (t1, z(t1)) + V2 (t1, z(t1)) ≤
δ0
2

(18)

Now, let m(t) = V1 (t, z(t)) + V2 (t, z(t)) , t ∈ [t1, t2].
From condition (ii), we get

D−m(t) ≤ g2(t,m(t)), t ∈ [t1, t2]
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and 
m(t+i ) = V1

(
t+i , z(t

+
i )
)

+ V2
(
t+i , z(t

+
i )
)

≤ Fi (V1(ti, z(ti)) + V2(ti, z(ti)))

= Fi(m(ti))

Thus, by using equation (18) and Lemma 2.1, we get

m(t) ≤ r2(t; t1,m(t1)), t ∈ [t1, t2] (19)

where r2(t; t1,m(t1)) is the maximal solution of (4).
Thus, by using (9) and (19 ), we have

V1 (t2, z(t2)) + V2 (t2, z(t2)) < b(ε) (20)

Also, by using equation (14), condition (ii) and as V1(t, x) ≥ 0, we obtain

b(ε) = b(‖z(t2)‖) ≤ V2(t2, z(t2)) ≤ V1(t2, z(t2)) + V2(t2, z(t2)) < b(ε)

which leads to a contradiction, proving the equistability of (1). �

Remark: If the condition (iii) of Theorem 4.1 is strengthen by assuming the zero
solution of both comparison systems (3) and (4) as uniformly stable, then the solution
x(t) = x(t; t0, x0) of the system (1) is uniformly stable.

Theorem 4.2. Assume that all the conditions of Theorem (4.1) are fulfilled except con-
dition (i) which is replaced as follows:
Let V1 ∈ PC[R+ × S(x, ρ), R+] and V1(t, x) ∈ V0 such that

D−V1(t, z) + p(t, z) ≤ g1(t, V1(t, z)), t 6= ti

V1(t
+
i , z(t

+
i )) +

∫ ti

t0

p(s, z(s))ds ≤ Ji(V1(ti, z(ti))), t = ti, i = 1, 2, 3..
(21)

where g1 ∈ C(R2
+, R+) is non - decreasing, p(t, x) : R+ × S(ρ)→ R+ is piecewise contin-

uous and integrable such that p(t, x) ≥ b0(‖x‖) where b0 ∈ K, D−p(t, x) is bounded above
or below and Ji : R+ → R+ is non- decreasing.
Then, the solution x(t) = x(t; t0, x0) of impulsive differential system (1) will be equi-
asymptotically stable.

Proof. According to Theorem 4.1, we have already proved that the system (1) is equistable.
Therefore, for ε = α, let δ∗ = δ∗(t0, α) > 0 and σ∗ = σ∗(t0, α) > 0, such that ‖z0‖ < δ∗

and |γ| < σ∗ implies

‖z(t)‖ < α, t ≥ t0
Now, we will prove that,

‖z(t)‖ → 0 (22)

as t→∞ when ‖z0‖ < δ∗ and |γ| < σ∗.
As p(t, x) ≥ b0(‖x‖), in order to prove (22), it is sufficient to prove that

limt→∞p (t, z(t)) = 0

when ‖z0‖ < δ∗ and |γ| < σ∗.
If it is not true, then there will be two divergent sequences {tn} and {t∗n}, such that for
β > 0, we have

p(ti, z(ti)) =
β

2
; p(t∗i , z(t

∗
i )) = β and

β

2
≤ p(t, z(t)) ≤ β t ∈ (ti, t

∗
i ) (23)
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As D−p(t, x) is bounded above, there exist a constant M such that D−p(t, x) ≤M.
Therefore, we have ∫ t∗i

ti

D−p(s, z(s))ds ≤M(t∗i − ti)

By using (22), we get

t∗i − ti ≥
β

2M
for each i (24)

Let G(t, z) = V1(t, z) +

∫ t

t0

p(s, z(s))ds (25)

Then, by using inequality (21), we have

D−G(t, z) ≤ D−V1(t, z) + p(t, z)

≤ g1(t, V1(t, z))
≤ g1(t, G(t, z))

Also,

G(t+i , z(t
+
i )) = V1(t

+
i , z(t

+
i ) +

∫ ti

t0

p(s, z(s))ds

≤ Ji(V1(ti, z(ti)))
≤ Ji(G(ti, z(ti)))

Hence, by Theorem (3.2), we have

G (t, z(t)) ≤ r1(t+ γ, τ0, u0), t ≥ t0 (26)

where r1(t, τ0, u0) is the maximal solution of (3).
Thus, from (23)- (26), we have,

0 ≤ V1 (t, z(t))

≤ r1(t+ γ, τ0, u0)−
∫ t

t0

p(s, z(s))ds

≤ δ0
2
− β

2

∑
1≤i≤n

(t∗i − ti)

<
δ0
2
− β

2

nβ

2M
< 0

which gives a contradiction for a sufficiently large value of n.
Therefore, we get

limt→∞p (t, z(t)) = 0 for ‖z0‖ < δ∗ and |γ| < σ∗.

Also, p(t, x) ≥ b0(‖x‖), therefore, we have

limt→∞‖z(t)‖ = 0 for ‖z0‖ < δ∗and|γ| < σ∗.

Hence, the proof is completed. �

Remark: If the assumptions of Theorem 4.2 are strengthen by assuming the zero
solution of both comparison systems (3) and (4) as uniformly stable, then the solution
x(t) = x(t; t0, x0) of the system (1) is uniformly asymptotically stable.

In this section, we will present an example to support the proved results.
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5. Example

Consider the following impulsive differential system:
x′1 = (sin ln(t+ 1) + cos ln(t+ 1)− 2)x1 + lx2, t 6= ti;

x′2 = lx1 + (sin ln(t+ 1) + cos ln(t+ 1)− 2)x2, t 6= ti;

4x1 = λix1; 4x2 = 0, t = ti

(27)

where −1 ≤ λi ≤ 0.
Let x(t) = x(t; t0, x0) and y(t) = y(t; τ0, y0) be two solutions of (27), such that γ =
τ0 − t0 > 0
Define µ(t) = exp [−2(t+ 1)(2− sin ln(t+ 1))].
Set V1(x) = (x1 + x2)

2, V2(x) = (x1)
2 + (x2)

2, a(x) = 2x2 and b(x) = 1
2x

2.
Then, V2(x) clearly satisfies b(‖x‖) ≤ V2(t, x) ≤ a(‖x‖). As, µ′(t) ≤ 0 , it is clear that
µ(t) is non-increasing. Also, µ′(t) is non-decreasing for t ≥ t0 as µ′′(t) ≥ 0.
Now,

D−V1(z) = D−V1(x− y)

= 2(x1 + x2 − y1 − y2)2 (sin ln(t+ 1) + cos ln(t+ 1)− 2 + l)

=

(
µ′(t)

µ(t)
+ 2l

)
V1(x− y)

≤
(
µ′(t)

2µ(t)
+ 2l

)
V1(x− y)

=

(
µ′(t)

2µ(t)
+ 2l

)
V1(z)

and

V1(z(t
+
i )) = V1(x(t+i )− y(t+i + γ))

= ((x1 − y1)(1 + λi) + (x2 − y2))2

≤ (x1 − y1)2 + (x2 − y2)2 + 2(x1 − y1)(x2 − y2)
= V1(x− y)

= V1(z(ti))

Set u′ = g1(t, u) =
(
µ′(t)
2µ(t) + 2l

)
u, u(t+i ) = Ji(u) = u, u(τ0) = u0 ≥ 0, τ0 > t0 where

g1(t, u) is non-decreasing in t for t ≥ τ0.
The general solution is

u(t, τ0, u0) =
u0

exp(2lτ0)µ(τ0)
1
2

exp(2lt)µ
1
2 (t)

=
u0

exp(2lτ0)µ(τ0)
1
2

exp ((2l + sin ln(t+ 1)− 2)t+ sin ln(t+ 1)− 2) .

Now, u(t, τ0, u0)→ 0, as t→∞ if l < 1
2 ; hence, u is stable if l < 1

2 .
Likewise, we have

D−V1(z) +D−V2(z) ≤
(
µ′(t)

µ(t)
+ 2l

)
V1(z) +

(
µ′(t)

µ(t)
+ 2l

)
V2(z)

≤
(
µ′(t)

µ(t)
+ 2l

)
(V1(z) + V2(z)).
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Also,

[V1(z(t
+
i )) + V2(z(t

+
i ))] = [V1(x(t+i )− y(t+i + γ)) + V2(x(t+i )− y(t+i + γ))]

= [(x1 − y1)(1 + λi) + (x2 − y2)]2

+
[
(x1 − y1)2(1 + λi)

2 + (x2 − y2)2
]

≤ V1(x− y) + V2(x− y)

= V1(z(ti)) + V2(z(ti))

Set v′ = g2(t, u) =
(
µ′(t)
µ(t) + 2l

)
v, v(t+i ) = Fi(v) = v, v(τ0) = v0 ≥ 0, τ0 > t0.

The general solution of above system is

v(t, τ0, u0) =
v0

exp(2lτ0)µ(τ0)
exp(2lt)µ(t)

Clearly, v ≡ 0 is uniformly stable if l < 1.
Thus, as per Theorem 4.1, the solution x(t, t0, x0) is equistable with reference to initial
time difference if l < 1/2.

6. Conclusions

In this paper, for the first time, we develop two comparison principles to investigate
the stability criteria for impulsive differential equations with initial time difference by em-
ploying perturbed Lyapunov function. McRae and Song et al. [15, 18] discussed same
stability criteria for differential equations without impulse effect. We extended the crite-
ria for impulsive differential equations with initial time difference. We have applied the
technique of perturbing Lyapunov function to obtain the sufficient conditions under much
weaker assumptions in comparison to the stability investigated by S.G. Hristova [5] by
using Lyapunov function and some comparison results under some rigid conditions. An
example is also given to support the proved results.
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