
TWMS J. App. and Eng. Math. V.11, N.4, 2021, pp. 1012-1022

ON I− CONVERGENT TRIPLE SEQUENCE SPACES DEFINED BY A

COMPACT OPERATOR AND AN ORLICZ FUNCTION
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Abstract. In this article, we introduce I− convergent triple sequence spaces 3S
I(M) ,

3S
I
0 (M), 3S

I
∞(M) with the help of a compact operator and an Orlicz function. We study

some of their algebraic and topological properties like solidity, monotonicity, convergence
free etc. Also, we prove some inclusion relations of these spaces.
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1. Introduction and Preliminaries

A triple sequence is a function x : N×N×N→ R or C, where N, R and C denote the set of
natural numbers, real numbers and complex numbers, respectively. Let 3ω denote the class
of all complex triple sequences (xnkl), where n, k, l ∈ N. Then the classes of triple sequences

3l∞, 3c and 3c0 denote the triple sequence spaces which are bounded in Pringsheim’s
sense, convergent in Pringsheim’s sense and convergent to zero in Pringsheim’s sense,
respectively, normed by

‖x‖∞ = sup
n,k,l
|xnkl|, where n, k, l ∈ N.

The different types of notions of triple sequence spaces was introduced and investigated
at the initial stage by Sahiner et. al [20, 21]. Esi [6] examined the triple sequence defined
by orlicz function and probabilistic normed spaces. Datta et. al [4] studied the statistical
convergence of triple sequences and Debnath et. al [5] analyzed the generalized triple
sequence of real numbers. Further, this concept has been studied by many authors (see,
[2, 7, 9, 12, 15, 18, 19, 25, 26]).

The idea of statistical convergence was first presented by Fast [8] and Schoenberg [23]
independently. Later on, Mursaleen et. al [16, 17] studied the statistical convergence of
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double sequences and A-statistical approximation theorems. The notion of I− conver-
gence is a generalization of statistical convergence which was introduced by Kostyrko et.
al [13]. Later on, it was studied by Salat et. al [22], Tripathy [27], Khan et. al [11, ?],
Kara and Ilkhan [30, 31], Dündar and Ulusu [28], Kişi and Erhan [29] and many others.

A family I ⊆ 2X of subsets of a non-empty set X is said to be an ideal in X if ∅ ∈ I,
A,B ∈ I implies A ∪ B ∈ I, A ∈ I,B ⊆ A implies B ∈ I. A non-empty family of sets
F ⊆ 2X is a filter on X if and only if ∅ /∈ F , A,B ∈ F implies A∩B ∈ A ∈ F and A ⊆ B
implies B ∈ F . An ideal I is called a non-trivial ideal if I 6= ∅ and X /∈ I. A non-trivial
ideal I ⊆ 2X is called admissible if and only if {{x} : x ∈ X} ⊆ I maximal if there is
not exist any non-trivial ideal J 6= I containing I as a subset. For each non-trivial ideal
I there exists a filter F (I) = {A : X \A ∈ I} in X.

Definition 1.1 [20] A triple sequence (xnkl) is said to be convergent to L in Pringsheim’s
sense if for every ε > 0, there exists N(ε) ∈ N such that

|xnkl − L| < ε whenever n ≥ N, k ≥ N, l ≥ N.

Example 1.1:[20] Let

xnkl =


kl, n = 3

nl, k = 5

nk, l = 7

8, otherwise.

Then (xnkl)→ 8 in Pringsheim’s sense.

Definition 1.2 [20] A triple sequence (xnkl) is said to be a Cauchy sequence if for every
ε > 0, there exists N(ε) ∈ N such that

|xnkl − xpqr| < ε whenever n ≥ p ≥ N, k ≥ q ≥ N, l ≥ r ≥ N.
Definition 1.3 [20] A triple sequence (xnkl) is said to be bounded if there exists M > 0
such that |xnkl| < M for all n,k,l.

Definition 1.4 [3] A triple sequence (xnkl) is said to be I-convergent to a number L if
for every ε > 0, such that{

(n, k, l) ∈ N× N× N : |xnkl − L| ≥ ε
}
∈ I.

in this case we write I − limxnkl = L.

Definition 1.5 [3] A triple sequence (xnkl) is said to be I-null if L = 0. In this case we
write I − limxnkl = 0.

Definition 1.6 [3] A triple sequence (xnkl) is said to be I-Cauchy if for every ε > 0, there
exists p = p(ε), q = q(ε) and r = r(ε) such that{

(n, k, l) ∈ N× N× N : |xnkl − xpqr| ≥ ε
}
∈ I.

Definition 1.7 [3] A triple sequence (xnkl) is said to be I-bounded if there exists K > 0
such that {

(n, k, l) ∈ N× N× N : |xnkl| > K
}
∈ I.
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Definition 1.8 [3] A triple sequence space E is said to be solid if (αnklxnkl) ∈ E whenever
(xnkl) ∈ E and for all sequences (αnkl) of scalars with |αnkl| ≤ 1, for all n, k, l ∈ N.

Definition 1.9 [3] A triple sequence space E is said to be monotone if it contains the
canonical pre-images of all its step spaces.

Definition 1.10 [3] A triple sequence space E is said to be sequence algebra if (xnkl ?
ynkl) ∈ E, whenever (xnkl) ∈ E and ynkl ∈ E.

The following lemmas will be used for establishing some results of this article:

Lemma 1.1 [13] Let E be a sequence space. If E is solid then E is monotone.

Lemma 1.2 [13] If I ⊂ 2N and M ⊆ N, M /∈ I, then M ∩ N /∈ I.

An Orliczfunction is a function M : [0,∞) −→ [0,∞) which is continuous, non-
decreasing and convex with M(0) = 0,M(x) > 0 and M(x)→∞ as x→∞.

If the convexity of an Orlicz function M is replaced by M(x+ y) ≤M(x) +M(y), then
this function is called Modulus function. IfM is an Orlicz function , thenM(λX) ≤ λM(x)
for all λ with 0 < λ < 1. An Orlicz function M is said to satisfy 42-condition for all values
of u if there exists a constant K > 0 such that M(Lu) ≤ KLM(u) for all values of L > 1.

Lindenstrauss and Tzafriri [32] used the idea of an Orlicz function to construct the
sequence space

lM = {x ∈ w :
∞∑
k=1

M(
|xk|
ρ

) <∞ for some ρ > 0}.

The space lM becomes a Banach space with the norm

‖x‖ = inf
{
ρ > 0 :

∞∑
k=1

M
( |xK |

ρ

)
≤ 1
}
,

which is called an Orlicz sequence space. The space lM is closely related to the space lp
which is an Orlicz sequence space with M(t) = tp for1 ≤ p <∞.

Definition 1.11 [14] Let X and Y be two normed linear spaces. An operator T defined
by T : X → Y is said to be a Compact Linear Operator (completely continous linear
operator) if T is linear and T maps every bounded sequence (xk) in X onto a sequence
T (xk) in Y which has a convergent subsequence. The set of all bounded linear operators
B(X,Y) is normed linear space normed by

‖T‖ = sup
x∈X,‖x‖=1

‖Tx‖

The set of all compact linear operator C(X,Y ) is a closed subspace of B(X,Y ) and C(X,Y )
is a Banach space if Y is a Banach space.

Following Başar and Altay [1], and Sengönül [24], Das [3] introduced the triple sequence
spaces c30I(F ) and c3I(F ) with the help of sequence of moduli F = (fnkl) as follows:

c3I(F ) = {x = (xnkl) ∈ ω3 : I − lim fnkl(| xnkl − L |) = 0, for some L ∈ C} ∈ I
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c30I(F ) = {x = (xnkl) ∈ ω3 : I − lim fnkl(| xnkl |) = 0} ∈ I.
The main aim of this article is to extend the concept of I-convergence from double

sequences to triple sequences with the help of a compact linear operator and an orlicz
function and establish some useful results.

2. Mean Results

In this section we introduce the following classes of sequence spaces.

3SI(M) =

{
x = (xnkl) ∈ 3l∞ : I − lim

nkl
M(
|T (xnkl)− L|

ρ
) = 0, for some L ∈ C, ρ > 0

}
,

3SI0 (M) =

{
x = (xnkl) ∈ 3l∞ : I − lim

nkl
M(
|T (xnkl)|

ρ
) = 0, ρ > 0

}
,

3SI∞(M) =
{
x = (xnkl) ∈ 3l∞ : ∃ K > 0 s.t {(n, k, l) ∈ N× N× N : M( |T (xnkl)|

ρ ) ≥ K, ρ > 0} ∈ I
}
,

3S∞(M) =

{
x = (xnkl) : sup

nkl
M(
|T (xnkl)|

ρ
) <∞, for some ρ > 0

}
.

We also denote by,

3m
I
S(M) = 3SI(M) ∩ 3S∞(M)

3m
I
S0

(M) = 3SI0 (M) ∩ 3S∞(M)

Theorem 2.1 For an Orlicz function M the classes of triple sequences 3SI(M), 3SI0 (M),

3m
I
S(M) and 3m

I
S0

(M) are linear spaces.

Proof. We shall prove the result for the space 3SI(M). The proof for the other spaces
will follow similarly.
Let (xnkl), (ynkl) ∈ 3SI(M) and let α, β be scalars. Then there exist some positive
numbers L1, L2 ∈ C and ρ1, ρ2 > 0 such that

I − lim
nkl

M(
|T (xnkl)− L1|

ρ1
) = 0,

and

I − lim
nkl

M(
|T (ynkl)− L2|

ρ2
) = 0.

For any ε > 0, the sets

A1 = {(n, k, l) ∈ N× N× N : M(
|T (xnkl)− L1|

ρ1
) ≥ ε

2
} ∈ I, (1)

and

A2 = {(n, k, l) ∈ N× N× N : M(
|T (ynkl)− L2|

ρ2
) ≥ ε

2
} ∈ I. (2)

Let ρ3 = max{2|α|ρ1, 2|β|ρ2}. Since M is non-decreasing and convex function, we have
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M(
|T (αxnkl + βynkl)− (αL1 + βL2)|

ρ3
) = M(

|αT (xnkl) + βT (ynkl)− αL1 − βL2|
ρ3

)

≤M(
|α||T (xnkl)− L1|

ρ3
) +M(

|β||T (ynkl)− L2|
ρ3

)

≤M(
|T (xnkl)− L1|

ρ1
) +M(

|T (ynkl)− L2|
ρ2

)

≤M(
|T (xnkl)− L1|

ρ1
) +M(

|T (ynkl)− L2|
ρ2

).

(3)

Therefore, from (1), (2) and (3), we have

{(n, k, l) ∈ N× N× N : M(
|T (αxnkl + βynkl)− (αL1 + βL2)|

ρ3
) ≥ ε} ⊂ (A1 ∪A2) ∈ I,

this implies that

{(n, k, l) ∈ N× N× N : M(
|T (αxnkl + βynkl)− (αL1 + βL2)|

ρ3
) ≥ ε} ∈ I.

⇒ lim
nkl

M(
|T (αxnkl + βynkl)− (αL1 + βL2)|

ρ3
) = 0

⇒ αxnkl + βynkl ∈ 2SI(M).

Hence 3SI(M) is a linear space.

Remark. For an Orlicz function M , the spaces 3m
I
S0

(M) and 3m
I
S(M) are Banach spaces

normed by

‖x‖ = inf{ρ > 0 : sup
nkl

M(
|T (xnkl)|

ρ
) < 1, ρ > 0}.

Theorem 2.2 Let M1,M2 be two Orlicz functions statisfying 42 condition, then

(a) X(M2) ⊆ X(M1M2)

(b) X(M1) ∩X(M2) ⊆ X(M1 +M2) for X = 3SI , 3SI0 , 3m
I
S and 3m

I
S0

.

Proof. (a) Let x = (xnkl) ∈ 3SI0 (M2) be an arbitrary element
⇒ ρ > 0 such that

I − lim
nkl

M2(
|T (xnkl)|

ρ
) = 0. (4)

Let ε > 0 and choose δ with 0 < δ < 1 such that M1(t) < ε for 0 ≤ t ≤ δ.
Put ynkl = M2(

|T (xnkl)|
ρ ) and consider,

lim
nkl

M1(ynkl) = lim
ynkl≤δ, n,k,l∈N

M1(ynkl) + lim
ynkl>δ, n,k,l∈N

M1(ynkl). (5)

Now, since M1 is an Orlicz function so we have M1(λx) ≤ λM1(x), 0 < λ < 1.
Therefore we have,

lim
ynkl≤δ, n,k,l∈N

M1(ynkl) ≤M1(2) lim
ynkl≤δ, n,k,l∈N

(ynkl).
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For ynkl > δ, we have ynkl <
ynkl
δ < 1 + ynkl

δ . Now, since M1 is non-decreasing and convex,
it follows that

M1(ynkl) < M1(1 +
ynkl
δ

) <
1

2
M1(2) +

1

2
M1(

2ynkl
δ

).

Since M1 satisfies the 42- condition we have,

M1(ynkl) <
1

2
K
ynkl
δ
M1(2) +

1

2
KM1(

2ynkl
δ

)

<
1

2
K
ynkl
δ
M1(2) +

1

2
K
ynkl
δ
M1(2)

= K
ynkl
δ
M1(2).

This implies that

M1(ynkl) < K
ynkl
δ
M1(2).

Hence,we have

lim
ynkl>δ, n,k,l∈N

M1(ynkl) ≤ max{1,Kδ−1M1(2) lim
ynkl>δ,n,k,l∈N

(ynkl)}.

Therefore from (4) and (5) we have

I − lim
nkl

M1(ynkl) = 0.

⇒ I − lim
nkl

M1M2(
|T (xnkl)|

ρ
) = 0.

This implies that x = (xnkl) ∈ 3SI0 (M1M2). Hence X(M2) ⊆ X(M1M2) for X = 3SI0 .
The other cases can be proved in a similar way.

(b) Let x = (xnkl) ∈ 3SI0 (M1) ∩ 3SI0 (M2). Let ε > 0 be given, then ∃ρ > 0 such
that,

I − lim
nkl

M1(
|T (xnkl)|

ρ
) = 0, (6)

and

I − lim
nkl

M2(
|T (xnkl)|

ρ
) = 0. (7)

Therefore

I − lim
nkl

(M1 +M2)(
|T (xnkl|

ρ
) = I − lim

nkl
M1(
|T (xnkl)|

ρ
) + I − lim

nkl
M2(
|T (xnkl)|

ρ
),

from (6)and(7)

⇒ I − lim
nkl

(M1 +M2)(
|T (xnkl)|

ρ
) = 0.

we get

x = (xnkl) ∈ 3SI0 (M1 +M2).

Hence we get 3SI0 (M1) ∩ 3SI0 (M2) ⊆ 3SI0 (M1 +M2).
For X = 3SI , 3m

I
S , 3m

I
S0

the inclusion are similar.

Corollary. X ⊆ X(M) for X = 3SI , 3SI0 , 3m
I
S and 3m

I
S0

.

Theorem 2.3 For an Orlicz function M , the spaces 3SI0 (M) and 3m
I
S0

(M) are solid and
monotone.
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Proof. Here we consider 3SI0 (M) and for 3m
I
S0

(M) the proof shall be similar.

Let x = xnkl ∈ 3SI0 (M) be an arbitrary element , ⇒ ∃ρ > 0 such that

I − lim
nkl

M(
|T (xnkl)|

ρ
) = 0.

Let (αnkl) be a sequence of scalars with |αnkl| ≤ 1 for n, k, l ∈ N.
Now, M is an Orlicz function and for ε > 0, the results follows from the following inclusion

{(n, k, l) ∈ N×N×N : M(
|T (αnklxnkl)|

ρ
) ≥ ε} ⊆ {(n, k, l) ∈ N×N×N : M(

|T (xnkl)|
ρ

) ≥ ε}.

This implies that,

I − lim
nkl

M(
|T (αnklxnkl)|

ρ
) = 0.

Thus we have (αnklxnkl) ∈ 3SI0 (M). Hence 3SI0 (M) is solid. Therefore 3SI0 (M) is
monotone. Since every solid sequence space is monotone. For 3m

I
S0

(M) the proof shall be
similar.

Theorem 2.4 For an Orlicz function M ,the space 3SI(M) and 3m
I
S(M) are neither solid

nor monotone in general.

Proof. Here we give counter example for establishment of this result. Let X = 3SI and

3m
I
S . Let us consider I = Iδ and M(x) = x2, for all x = xnkl ∈ [0,∞) and T is an identity

operator on R. Consider,the K-step space XK(M) of X(M) defined as follows:
Let x = (xnkl) ∈ X(M) and y = (ynkl) ∈ XK(M) be such that

ynkl =

{
xnkl, if n+k+l is even,
0, otherwise.

Consider the sequence (xnkl) defined by (xnkl) = 1 for all n, k, l ∈ N.
Then x = (xnkl) ∈ 3SI(M) and 3m

I
S(M), but K-step space preimage does not belong to

3SI(M) and 3m
I
S(M). Thus 3SI(M) and 3m

I
S(M) are not monotone and hence they are

not solid.

Theorem 2.5 For an Orlicz function M and an identity operator T on R, the spaces

3SI0 (M) and 3SI(M) are sequence algebra.

Proof. Here we consider 3SI0 (M). Let (xnkl), (ynkl) ∈ 3SI(M) be any two arbitrary
elements. ⇒ ∃ρ1, ρ2 > 0 such that,

I − lim
nkl

M(
|T (xnkl)|

ρ1
) = 0,

and

I − lim
nkl

M(
|T (ynkl)|

ρ2
) = 0.

Let ρ = ρ1ρ2 > 0. Then

M(
|T (xnkl) T (ynkl)|

ρ
) = M(

|T (xnkl)|
ρ1

)M(
|T (ynkl)|

ρ2
)

⇒ I − lim
nkl

M(
|T (xnkl) T (ynkl)|

ρ
) = 0.
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Therefore we have (xnklynkl) ∈ 3SI0 (M).
Hence 3SI0 (M) is sequence algebra.

Theorem 2.6 Let M be an Orlicz function. Then

3SI0 (M) ⊂ 3SI(M) ⊂ 3SI∞(M).

Proof. Let M be an Orlicz function. Then, we have to show that

3SI0 (M) ⊂ 3SI(M) ⊂ 3SI∞(M).

Firstly, 3SI0 (M) ⊂ 3SI(M) is obvious. Now, let x = (xnkl) ∈ 3S
I(M) be any arbi-

trary element ⇒ ∃ρ > 0 such that I − lim
nkl

M( |T (xnkl)−L|
ρ ) = 0 for some L ∈ C. Now,

M( |T (xnkl)|
2ρ ) ≤ 1

2M( |T (xnkl)−L|
ρ ) + 1

2M( |L|ρ ). Taking supremum over n,k,l on both sides, we

have x = (xnkl) ∈ 3SI∞(M). Thus 3SI0 (M) ⊂ 3SI(M) ⊂ 3SI∞(M).

Theorem 2.7 The set 3m
I
S(M) is closed subspace of 3S∞(M).

Proof. Let (x
(pqr)
nkl ) be a Cauchy sequence in 3m

I
S(M) such that x(pqr) → x. We show

that x ∈ 3m
I
S(M). Since, (x

(pqr)
nkl ) ∈ 3m

I
S(M) then there exists apqr, and ρ > 0 such that

{n, k, l ∈ N : M(
|T (x

(pqr)
nkl )− apqr|

ρ
) ≥ ε} ∈ I.

We need to show that
(1) (apqr) converges to a.

(2) If U = {n, k, l ∈ N : M(
|T (x(pqr)nkl )−a|

ρ ) ≥ ε}, then U c ∈ I.

Since (x
(pqr)
nkl ) is a Cauchy sequence in 3m

I
S(M) then for a given ε > 0 there exists k0 ∈ N

such that

sup
nkl

M(
|T (x

(pqr)
nkl )− T (x

(p′q′r′)
nkl )|

ρ
) <

ε

3
, for all p, q, r ≥ k0 and p′, q′, r′ ≥ k0.

For a given ε > 0, we have

Bpqrp′q′r′ = {n, k, l ∈ N : M(
|T (x

(pqr)
nkl )− T (x

(p′q′r′)
nkl )|

ρ
) <

ε

3
},

Bpqr = {n, k, l ∈ N : M(
|T (x

(pqr)
nkl )− apq|
ρ

) <
ε

3
},

Bp′q′r′ = {n, k, l ∈ N : M(
|T (x

(p′q′r′)
nkl )− ars|

ρ
) <

ε

3
}.

Then Bc
pqrp′q′r′ , B

c
pqr, B

c
p′q′r′ ∈ I. Let Bc = Bc

pqrp′q′r′ ∩Bc
pqr ∩Bc

p′q′r′ ,

where B = {n, k, l ∈ N : M(
|apqr−ap′q′r′ |

ρ ) < ε}, then Bc ∈ I. We choose k0 ∈ Bc, then for

each p, q, r,≥ k0 and p′, q′, r′ ≥ k0 we have

{n, k, l ∈ N : M(
|apqr − ap′q′r′ |

ρ
) < ε} ⊇

[
{n, k, l ∈ N : M(

|T (x
(pqr)
nkl )− apqr|

ρ
) <

ε

3
}

∩{n, k, l ∈ N : M(
|T (x

(pqr)
nkl )− T (x

(p′q′r′)
nkl )|

ρ
) <

ε

3
}
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∩{n, k, l ∈ N : M(
|T (x

(p′q′r′)
nkl )− ap′q′r′ |

ρ
) <

ε

3
}
]
.

Then (apqr) is a Cauchy sequence in C. So, there exists a scalar a ∈ C such that (apqr)→
a, as p, q, r →∞.
(2) For the next step, let 0 < δ < 1 be given. Then, we show that if,

U = {n, k, l ∈ N : M(
|T (x

(pqr)
nkl )− a|
ρ

) < δ}

then U c ∈ I. Since x
(pqr)
nkl → x, then there exists p0, q0, r0 ∈ N such that,

P = {n, k, l ∈ N : M(
|T (x

(p0q0r0)
nkl )− T (x)|

ρ
) <

δ

3
}

implies P c ∈ I. The numbers p0, q0, r0 be so choosen such that we have

Q = {n, k, l ∈ N : M(
|ap0q0r0 − a|

ρ
) <

δ

3
}

such that Qc ∈ I. Since (x
(pqr)
nkl ) ∈ 3m

I
S(M).

We have

{n, k, l ∈ N : M(
|T (x

(p0q0r0)
nkl )− ap0q0r0 |

ρ
) ≥ δ} ∈ I.

Then we have a subset S of N such that Sc ∈ I, where

S = {n, k, l ∈ N : M(
|T (x

(p0q0r0)
nkl )− ap0q0r0 |

ρ
) <

δ

3
}.

Let U c = P c ∪Qc ∪ Sc, where

U = {n, k, l ∈ N : M(
|T (x)− a|

ρ
) < δ}

Therefore, for each n, k, l ∈ U c we have

{n, k, l ∈ N : M(
|T (x)− a|

ρ
) < δ} ⊇

[
{n, k, l ∈ N : M(

|T (x
(p0q0r0)
nkl )− T (x)|

ρ
) <

δ

3
}

∩{n, k, l ∈ N : M(
|ap0q0r0 − a|

ρ
) <

δ

3
}

∩{n, k, l ∈ N : M(
|T (x

(p0q0r0)
nkl )− ap0q0r0 |

ρ
) <

δ

3
}
]
.

Hence the result 3m
I
S(M) ⊂ 3S∞(M) follows.

Acknowledgement. The authors are grateful to the referees for their valuable comments
and remarks for the improvement of the paper.



V. A. KHAN, M. I. IDRISI, M. AHMAD: ON I− CONVERGENT TRIPLE SEQUENCE SPACES ... 1021

References

[1] Basar, F. and Altay, B., (2003), On the spaces of sequences of p-bounded variation and related matrix
mappings, Ukrainion Math. J. 55(1), pp. 136-147.

[2] Braha, N. L., Srivastava, H. M. and Mohiuddine, S. A., (2014), A Korovin’s type approximation
theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin
mean, Appl. Math. Comput., 228, pp. 162-169.

[3] Das, B. C., (2017), Some I-convergent triple sequence spaces defined by a sequence of modulus function,
Proyecciones Journal of Mathematics, Vol.36, pp. 117-130.

[4] Datta, A. J., Esi, A. and Tripathy, B. C., (2013), Statistically convergent triple sequence spaces
defined by Orlicz function, J. Math. Anal., 4(2), pp. 16-22.

[5] Debnath, S., Sarma, B. and Das, B. C., (2015), Some generalized triple sequence spaces of real
numbers, J. Nonlinear Anal. Optimi. 6(1), pp. 71-79.

[6] Esi, A., (2014), On some triple almost lacunary sequence spaces defined by orlicz functions,Research
and Reviews: Discrete Mathematical Structures, 1(2), pp. 16-25.

[7] Esi, A. and Savas, A., (2015), On lacunary statistically convergent triple sequences in probabilistic
normed space, Appl. Math.i nf. Sci., 9(5), pp. 2529-2534.

[8] Fast,H., (1951), Surla convergence statistique, Colloq. Math., (2), pp. 241-244.
[9] Debnath, S. and Subramanian, N., (2017), The generalized non-absolute type of triple Γ3 sequence

spaces defined Musielak-orlicz function, Facta Universitatis (NIS) Ser. Math. Inform. Vol. 32(3), pp.
413-420.

[10] Khan, V. A., Ahmad, M., Hasan, SN., Ahmad R., (2019), I− Convergent difference sequence spaces,
Journal of Mathematical Analysis, Vol.10(2), pp. 58-68.

[11] Khan, V. A., Rababah, R. K. A., Ahmad M., Esi, A., Idrisi, M. I., (2019), I− convergent difference
sequence spaces defined by compact operator and sequence of moduli, ICIC Express Letters, Vol. 13
(10), pp. 907-912, DOI: 10.24507/iciel.13.10.907

[12] Kizmaz, H., (1981), On certain sequence spaces, Canad. Math. Bull., 24(2), pp. 169-176.
[13] Kostyrko, P., Salat, T., Wilczynski, W., (2000), I− convergence, Real Anal. Exch., 26(2), pp. 669-686.
[14] Kreyszig, E., (1978), Introductory functional analysis with applications, John Wiley and Sons Inc,

New York-Chichester-Brisbane-Toronto.
[15] Malkowsky, E., (1997), Recent results in the theory of matrix transformation in sequence spaces,

Math. Vesnik, 49, pp. 187-196.
[16] Mursaleen, M. and Edly H. H., (2003), Statistical convergence of double sequences, J. Math. Anal.

Appl., pp. 223-231.
[17] Mursaleen, M., Khan, A. and Srivastava, H. M., (2012), Operators constructed by means of q−

Lagranges polynomial and A− statistical approximation theorems, Math. Comput. Modelling, 55, pp.
2040-2051.

[18] Pringsheim, A., (1900), Zur theorie der zweifach unendlichen Zahlenfolgen, Mathematische Annalen,
Vol. 53(3), pp. 289-321.

[19] Subramanian N. and Esi A., (2015), Some new semi-normed triple sequence spaces defined by a
sequence Of moduli, Journal of Analysis and Number Theory, Vol. 3(2), pp. 121-125.

[20] Sahiner, A., Gurdal, M. and Duden, K., (2007), Triple sequences and their statistical convergence,
Selcuk. J. Appl. Math., 8(2), pp. 49-55.

[21] Sahiner, A. and Tripathy, B. C., (2008), Some I− related properties of triple sequences, Selcuk.J.Appl.
Math., 9(2), pp. 9-18.

[22] Salat, T., Tripathy, B. C. and Ziman, M., (2004), On some properties of I-convergence, Tatra Moun-
tain Mathematical Publications, 28(2) pp. 274-286.

[23] Schoenberg, I. J., (1959), The intregrability of certain functions and related summability methods,
Amer. Math. Monthly, (66), pp. 361-375.

[24] Sengönül, M., (2007), On The Zweier Sequence Space, Demonstratio mathematica, Vol.XL No.(1),
pp. 181-196.

[25] Steinhaus, H., (1951), Sur la convergence ordinaire et la convergence asymtotique, Colloq. Math., (2),
pp. 73-74.

[26] Tripathy, B. C., (2003), Statistical convergence double sequences, Tamkang J. Math., 34(3), pp. 231-
237.

[27] Tripathy, B. C., (2005), On I− convergent double sequences, Soochow J. of Math., 31(4), pp. 549-560.
[28] Dündar E. and Ulusu U., (2018), Asymptotically I− Cesaro equivalence of sequences of sets, Univers.

J. Math. Appl., 1(2), pp. 101-105.



1022 TWMS J. APP. AND ENG. MATH. V.11, N.4, 2021
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