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SOME INCOMPLETE RIEMANN-LIOUVILLE FRACTIONAL
DERIVATIVE OPERATORS

MUDITA MENON!, EKTA MITTAL!, RAJNI GUPTA!, §

ABSTRACT. Several investigations were done by many researchers on extended fractional
derivatives operators using different kinds of extended Beta functions (see, e.g.,([4],[7],
[8],[18],[20]), and references therein). In this sequel, we develop some new properties on
incomplete extended Riemann-Liouville fractional derivative operators with the help of
new incomplete extended Beta functions. Other than this, we also present the above
defined new incomplete extended Beta function, graphically within a wide range of as-
sumed parameters.

Keywords: Incomplete gamma function, Incomplete generalized hypergeometric func-
tions, Incomplete Pochhammer ratio, Incomplete beta function, Riemann-Liouville frac-
tional derivative.
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1. INTRODUCTION

In the last four decades, many extensions of the renowned special functions and frac-
tional calculus have been considered by sundry authors ([2],[9],[12],[14]). Because of the
effectiveness and great importance of the fractional calculus and special functions, the
authors develop a generalized incomplete form of the fractional derivative operator along
with confluent hypergeometric function. These thoughts have led various workers in the
field of special functions to explore the possible extensions and applications of the extended
fractional derivative operators. Our present study is highly motivated by the usefulness
of the above extensions.

Srivastava et al.[19] developed extended beta function and Gauss hypergeometric function
defined as

1 _
By (g, y) = /0 R (e Y <C; n; M)dt, (1)
min(Re(¢), Re(n), Re(k), Re(u)) > 0, Re(x) > —Re(k(), Re(h) > 0, Re(y) > —Re(u(),
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and

(C"’ku)(b—i-n c—0b) 2"
(Cmk) : 2
Ep\S5 (q, b e 2) E a)n Blb,c—b) E (2)

|z] < 1,min(Re((),Re(77),Re(k:),Re(u)) > 0, Re(c) > Re(b) > 0, Re(h) > 0.

Which is reducible to the generalized Beta type function defined by Parmar ([17]) when
k = u, immediately, he studied some fundamental properties and characteristics of this
generalized Beta type function

1 _
Bhg’mu(% y) == /0 tx_l(l - t)y_llFl <C§ m; M)dt, (3)
where Re(h) > 0, min(Re(x), Re(y), Re(¢), Re(n), Re(u)) > 0.

Equation (3) is reduces into the special case B, (z,y) when u = 1, further B, (z, y) re-
duces into to By, (z,y) at ( = nand B(x,y) at h = 1, { = n( see, for details, ([5],[6],[15],[16])).
Parmar ([17]) also defined the Gauss hypergeometric function as
. s B, (Gmw)(p —b) 2"
Bl (a,br s 2) o= 3 (@) D b= b) 2 ()

~ B(b,c —b) nl’

where |z| < 1, Re(h) > 0, min(Re(¢), Re(n), Re(u)) > 0, Re(c) > Re(b) > 0, Re(a) > 0.
Further, extension of extended Gauss hypergeometric function was defined by Praveen
Agrawal et. al.[1] by using extended beta function which was developed by Srivastava
such as

Z (@)n(b)n BrO" (b +n,c—b+©) 2" )
—= (O B(b+n,c—b+0) nl’
where (© < Re(b) < Re(c);|z| < 1, Re(k) > 0, Re(u) > 0), Re(h) > 0,0 € N.
Extended Riemann-Liouville fractional derivative f(z) of order v defined by them as

1 k+u

DLtk () = o) /Oz(z — )" (P (C; Uk —tk}(jt)u)dtv (6)

where (Re(v) < 0; Re(h) > 0; Re(k) > 0; Re(u) > 0).
When Re(v) > 0, © € N such that © — 1 < R(v) < ©. Then the extended Riemann-
Liouville fractional derivative of f(z) of order v was defined by

Frpula,byc;2;0) =

(vshsksu) d® (v—6;h;k;u)
D; fz) = el f(2)
B d® 1 ? O—v_1 . haltu
T d2© { F(@ — v) /0 (Z - t) f(t)lFl <<7 m; tk(z—t)u)dt} (7)

(Re(h) > 0; Re(k) > 0; Re(u) > 0).
e when h = 0, the above results become classical Riemann-Liouville fractional de-

rivtive operator.
e when h > 0 with ( =7 and k = u = 1, it gives similar results defined by [14].

Ozarslan et al.[13] defined incomplete Riemann-Liouville fractional derivatives D,[f(2);y]
and D,"{f(z);y} as

D:"[f(2),y T, (3)
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where Re(v) <0,
and its counterpart is by

—v

I'(—v)

1—y
D{f(2), ) = /0 F((1 = )2y, (9)

where Re(v) < 0.

Our present study is highly motivated by the usefulness of the above extended Riemann-
Liouville fractional derivative operator by extending the work of some more researchers (
see, e.g.,[3],[10],[11]). This paper is organized in three sections. The first section contain
the properties based on Incomplete Riemann-Liouville fractional derivative. In the second
section we discuss about Incomplete beta function graphically with different perameters.
In the third section we define the conclusion.

2. INCOMPLETE EXTENDED RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE

In this section, we introduce and investigate Incomplete extended beta function, In-
complete extended Gauss hypergeometric function, and Incomplete extended Riemann-
Liouville fractional derivative, with Re(h) > 0 as :

S
Bﬁiﬁ’k’“(x,y)z/ t”‘l(l—t>y_11F1<45”;_W)dt’ (10)
i -

(1
and its counterpart

1-s
k - _ h
Bfljf;;“(y,fv)Z/ 1 - 1) 11F1(C;77;—7tk(1
; =

dt

o)
min{Re((), Re(n), Re(k), Re(u) > 0} > 0, Re(x) > —Re(k(), Re(y) > —Re(u().

The Incomplete extended beta function satisfies the relation

By (a,y) + By (v, @) = By (a,y), 0<s <L

The Incomplete extended Gauss hypergeometric function defined as

< B4 e —b) o

) 7k7u h78
F}E?gn )(a, byc;z) = Z(a)n Blbc—0) o (11)
n=0 ’ ’

where B(u,v) is the familiar Beta function defined by

Jy e (1 =) dt,  (Re(u) > 0; Re(v) > 0)
B(u,v) = (12)

Fp(ﬁfiff;), (u,v € C other than Zy™)

Now we define the incomplete extended Riemann-Liouville fractional derivative operators
DL f(2);9) and DEMEILf(2);y} as
e when Re(v) <0

27 v —h

ng;h;k;u) [f(2);y] = T(—v) /Oy foiz)(1 - v1)_v_11F1 (Q m vlk(l—vl)u> dvy,  (13)
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and its counterpart is given by
DR () g = s [ )=o) (G, (1
z Yy = F(—U) y 1 1 141 3175 Ulk(l_vl)u 1,

where

DEIE(f(z);y) + DY f(2); 9} i= DITROf(2), (Re(v) <0).  (15)
e When Re(v) >0
© € N with the condition ® — 1 < Re(v) < O,

— d© o omn
DERE(f(2);y) = @Dg ORI [f(2);9]

e Z@—v —

where (Re(h) > 0; Re(k) > 0; Re(u) > 0)
and

ek d® o_ohika
DI f(2),y} = dzi@Dg OmELf(2); 9}

- d@ Z@—v 1—y w1 Y . —h
T dz@{r(@_v) /0 (t) f((l t) )1F1<Ca777 (1—t)k(t)u)dt}7 (17)

where (Re(h) > 0; Re(k) > 0; Re(u) > 0).
e — when h = 0, Equation (15) converts into classical Riemann-Liouville fractional
derivative operator.
— when h > 0 with ¢ = n and & = u = 1, equation (15) give similar result
defined by [14].

Theorem 2.1. Let if © — 1 < Re(v) < O for some © € N and Re(v) < Re(\)
Re(h) > 0; Re(k) > 0; Re(u) > 0, then

D(v;h;k;u) [zk. F(A * UBI%Z;M()‘ +1,0— v)

W T T R )BT 1O — ) 2 (18)

Proof. Applying equation (16) by substituting f(z) = 2, we have

d° ,0—v Y —h
pwshiku) A 1. / 1—9p)9 01 SV 2N Y —"
> [Z ,y] 120 F(@—U) ; ( Ul) (1}12) 1 1<C777a Ulk(l —Ul)u) v1 ¢,

A o_yin 1 Y O—v-1, \A —h
= v 1— v F 1, d 19
dZ@Z F(@—’U) /0 ( Ul) (Ul) 1 1((5777 ’Ulk(l—vl>u) V1 ¢, ( )
using the property

4 o, TUH+A—v+6) 5,

dz® T+ A—v)
using property (20) and (10) in equation (19), we led to the desired result.

(20)
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Theorem 2.2. Let if © — 1 < Re(v) < © for some © € N and Re(v) < Re()\),
Re(h) > 0; Re(k) > 0; Re(u) > 0, then

LA+ 1By (A + 1,0 — v)
I'A—v+1)B(A+1,0 —v)

DR LA, ) = A, (21)

A

Proof. Applying equation (17) by substituting f(z) = 2*, we have

O—v+A

vihika) Ay . 40 ] Y e . —h
Dg hik ){Z)\ay} T dZ@{l—\(@ . U) /O (t)® 1(1 - t))\lFl (g,"?, (1—t)k(t)u>dt}7

ng;h;k;u){z)\; y} = Lzz@—U+A # /l—y (t)®_v_1(1—t)>\1F1 (C, ; ;ﬁ;)dt s

(22)
using property (20) and counterpart of equation (10) in equation (22), we led to the desired
result.

0

We use the extended Riemann-Liouville fractional derivative to a function f(z) analytic
at the origin.

Theorem 2.3. Let if ©—1 < Re(v) < © for some © € N, Re(h) > 0; Re(k) > 0; Re(u) >
0. Suppose a function f(z) is analytic at the origin with its Maclaurin’s expansion given
by f(z) =Y 0 panz"(|z| < p1) for some p1 € RT. Then, we have

DU ()] = 3 an D[

Proof. Applying equation (16) to the function f(z) with its series expansion, we have

— d@ Z@—v Y
DIk [£(2),y] = dz@{l“@—v/o (1 —’Ul)e o (C ; )Zan (v12) dvl}

(23)
For any closed disk centered at the origin with its radius smaller then p;, the power series
converges uniformly. The series on the line segment from 0 to a fixed z for |z| < p1,
changing the order of summation and integration, we have

Dvhiki) [ ¢ Za - /y (1—wv)? " LF (CW _7h> (v12)"dv
! oo, O A (G e
DEFEO[(2), 4] = Y anDLFHOL:1, ], 29
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Theorem 2.4. Let ©—1 < Re(v) < © for some ©® € N, Re(h) > 0; Re(k) > 0; Re(u) > 0.
Suppose a function f(z) is analytic at the origin with its Maclaurin’s expansion given by
f(z) =302 ganz"(|z| < p1) for some p1 € RT.Then, we have

DI £(2), 4} —Zan itk (),

Proof. Applying equation (17) to the function f(z) with its series expansion, we have

DR f(2), y}

© Z@—U 1—y
= ddze{l“((a—v)/o (t)@_v LF 1(( ; )Zan (1—1t)z ”dt} (25)

For any closed disk centered at the origin with 1ts radlus smaller then p1, the power series
converges uniformly. The series on the line segment from 0 to a fixed z for |z| < p, changing
order of summation and integration, we have

DRI f(2), y}

9 Y 1~y O—v-—1 Lo —h — )"
_Zandz { — [ o B (G ) (=09 dt},

DIMED{f(2), y} —Za DR L1y} (26)

0

Theorem 2.5. Let © — 1 < Re(v) < © < Re(X) for some © € N, Re(h) > 0; Re(k) >
0; Re(u) > 0. Suppose a function f(z) is analytic at the origin with its Maclaurin expan-
sion given by f(z) =Y o7 anz"(|z| < p1) for some p1 € R*. Then, we have

ng;h;ku [ A— lf Zan vhku )\+n 1 y]’

A—v—1 BOTRY (N 4, @ — v)2"
= P()\)Z Zan ()\)n hy ( ) . (27)
F(A-v) = "(A-v), BQA+n06-0)

and its counterpart is given by

ng;h;ku{ A— lf y} _Zan vhku )\+n 1 y}’

P2 s (W, Bﬁ T+ n,0 —v)e”
INOEEY) "A=v), BA+n,0-—v)

(28)
n=0
Proof. To prove theorem 2.5, If we use f(z) = Y o2 a,2" in equation (16) and (17)
and applying results of theorems 2.1 and 2.2, after simplifying them we get the desired
result. g
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Here we present two subsequent theorems which may be useful to find certain generat-
ing functions and their relations.

Theorem 2.6. Let O —1 < Re(A—v) < © < Re(\) for some © € N, Re(h) > 0; Re(k) >
0; Re(u) > 0. Then we have

DgA—U;h;k;u) [Z)\—l(l o Z)_C, y]

_TO)2 7 & (QnW)n By A+ = A+ 0) o
G 2 (V)n E(A+n,v—>\+@) nl’ (29)

n=0

Proof. Using the binomial theorem:
o
- ©)
n=0
we may write

A=v;hsku) [ A—11 _ ¢ . (>\ vhku Al

ZL (A= vhku)[ A+n—1 y] (30)

using equation (18) in equatlon (30), after some simplification we get the desired result

Theorem 2.7. Let if © —1 < Re(A —v) < © < Re(X) for some © € N, Re(h) >
0; Re(k) > 0; Re(u) > 0. Then

D()\ Uhku){zz\ 1( Z) 7]-/}

T2 & (OnN)n BiTEy A+ 1,0 = A+ ) 20
L(v) (V) BA+n,v—XA+0) nl

(31)

n=0

Proof. To prove this theorem, we follow the process defined in theorem (2.6) and we obtain
the required result.

Theorem 2.8. Let © —1 < Re(A—v) < © < Re(\) for some © € N, Re(h) > 0; Re(k) >
0; Re(u) > 0. Then, we have

D;\*“h;k’“[z/\*l(l — az)_<(1 —bz) "y

)n(N)n+p(M)p Bgzku(/\ +n+p,0 = A+v) (az)" (bz)P

)‘ LU 1
" I'(v) ;0 (V)ntp BA+n+p,©—A+0) n!  pl

(32)

(laz| < 1,]bz| < 1;a,b,(,n € C)

and its counterpart

DYTmR AT — az) (1= b2) T, )
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=Tty Ol Bl Odn4p0 -2 40) @ b o
- I'(v) Bt (V)ntp BA+n+p,0—-X+v) n!  pl
(laz] < 1,[bz| < L;a,b,¢,n € C)
Proof. Using the binomial theorem for
o
_ —¢ ._ (C)n(az)
(1—az) Z YR
n=0
and
oo
- (1)p(b2)”
_ n._
p=0
we have
o~ (Onlm)pa™bPzmtr
DIIEUAT (1 az) (1= b)) s= DY kA o (el ol
nlp!
n,p=0
changing the order of integration and summation, we get
a™bP
— Z nl}? D)\ vhku[ An+p—1, y]’
n,p=0 p
using equation (18) with some simplifications, we yield the desired result. ]

Theorem 2.9. Let © —1 < Re(A—v) < O < Re(X) for some © € N, Re(h) > 0; Re(k) >
0; Re(u) > 0. Then, we have

D;‘ﬂ’;h;k’”[z}‘*l(l — az)fc(l —b2)7"T(1 —c2)77,y]

)

NGV Z p+q+r Op(M)g()r Bra™ A+ p +a+7,0=A+0) (a2)P (b2)7 (c2)"
I'(v) V) ptgtr BA+p+qg+rv—A+0) pl ¢ 7!
(34)

p,q,r=0

and its counterpart is
DRk AT (] — 02) TS (1 = b2) (1 — ¢2) 7, y}

— )‘ Lol Z p+q+r‘ Op(mqg(¥)r BfCL ?ﬂkyu()‘ +p+tqgt+r,v—A+0) (az)P (bz)4 (cz)"
- T(v) (V)ptgtr BA+p+q+rv-A+0) pl ¢ 7!
(35)

;
p,q,r=0

(laz] < 1;[bz| < 1;lez| < 1;a,b,¢,m,7 € C).

Proof. we prove the above theorem by using the binomial property and changing the order
of integration and summation, Finally using equation (18), we get the desired result. [
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Theorem 2.10. Let © — 1 < Re(A —v) < © < Re(A) and © < Re(n) < Re(y),
for some © € N, Re(h) > 0; Re(k) > 0; Re(u) > 0. Then we have

—vhkaur A— _ T
DU AT(L — 2) CFh;k,u(C,n;%E;@),y]
; C) 7;k7
Y “Z n+p () (Np BY" ™ (41,7 —n+0) Bry™ A +p,0 = A+ 6) g 2»
['(u) n(V)p Bn+mn,y—n+0) BA+p,v—XA+0) nlpl

n,p=0
(36)

Proof. Using the binomial theorem for (1—2)~¢ and applying the equation (5) for .z . (—)
we get

—v:h: _ _ X
DR (L = )™ P (7 7—10), 9]
_ pA-uhikup AL CZ n BRO™FY (n 4,y — 77+@)( x e
nn‘ Bn+ny—-n+06) ‘l1-z""~

changing the order of 1ntegrat10n and summation, we have

_ Z th n”k7u(’r’ + n ’Y T] + 9) D/\f’v;h;k‘,’u[z)\fl(l

Bln+my—-n+0) nl * )Myl (37)

—Z

Finally, using equation (29), in the above expression, we obtain the result.

([l
Theorem 2.11. Let if © — 1 < Re(A —v) < O < Re(A) and © < Re(n) < Re(y)
for some © € N, Re(h) > 0; Re(k) > 0; Re(u) > 0. Then
DAL = 2B (Gmi i ©), )
IO g n+p Wa Ny By + 1,5y =0+ ©) B,S?”’f;“(A +pv—A+0)gn2p
'(u) o n(V)p Bn+n,y—n+0) BA+p,v—XA+0) nlp’
(38)

Proof. Using the binomial theorem for (1—2)~¢ and applying the equation (5) for .z ..(—)
we get

vk _ _ x
DRI LATU L = 2) ™ Py (G v T—30) 0}
_ p)uhiku g A=l <Z )n B () 4,y — 17+@)( T )"y}
nn‘ Bn+ny—-n+0) ‘l1-z""~
Cn”ku(ﬁJrn’Y n+0)a" T7 A vihikug A1 _ \—¢—n 39
Now, using equat10n(31), we obtain the desired result. ]

2.1. special cases.
e By combining the result of theorems (2.1) & (2.2), (2.3) & (2.4), (2.6) & (2.7) ,
(2.10) & (2.11), we get the simlilar properties established by Agrawal et al.[1].
e The results of theorems (2.5), (2.8), (2.9), together with their counterparts are also
converted into the properties defined by Agrawal et al.[1].
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3. GRAPHICAL REPRESENTATION AND DISCUSSION

In this section, we discuss the changes of results in incomplete extended beta function
with assumed parameters graphically.
The representation of incomplete beta functions B, ; and Bj 1—s with a fixed s value as
0.25 for various values of h, k and u is shown in the figure 1 to 6 and table 1 to 6. Here
we have chosen a fixed range for ¢ between 1 to 5 and 1 between 0.5 to 1 and fixed values
of x=0.5, y=0.2 {z,y > 0}.
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a1 RN
e Curve between { and B n ~5% Qurve between { and Bn
FIGURE 1. t from 0 to 0.25 FIGURE 2. t from 0.25 to 1
(Curve between zeta and By, with x=0.5, y=0.2, u=k=h=1)
T
~0.0020 Qurve between 7 and B. :Zz:ziz' Qurve between{ and B.
FIGURE 3. t from 0 to 0.25 FIGURE 4. t from 0.25 to 1
(Curve between zeta and By, with x=0.5, y=0.2, u=k=1, h=5)
&T] BT}
-0.015 Qurve between { and Bn - Qurve between { and B
FIGURE 5. t from 0 to 0.25 FIGURE 6. t from 0.25 to 1
(Curve between zeta and By, with x=0.5,y=0.2,u=2,k=h=1)
(=1 (=2 (=3 (=4 (=5
n 1F By, 15 By, 1F By, 15 By, 17 By,
0.5 | -0.0532 | -0.0529 | 0.0120 | 0.0170 | -0.0057 | 0.004 | 0.0007 |-0.0118 | 0.0043 | -0.0068
0.6 | -0.0420 | -0.0409 | 0.0085 | 0.0100 | -0.0033 | 0.0053 | -0.0004 | -0.0075 | 0.00325 | -0.0061
0.7 | -0.0311 | -0.0297 | 0.0056 | 0.0050 | -0.0017 | 0.0059 | -0.0010 | -0.0046 | 0.0023 | -0.0053
0.8 [ -0.02058 | -0.0191 | 0.0032 | 0.0014 | -0.0005 | 0.0056 | -0.0012 | -0.0026 | 0.0016 | -0.0044
0.9 | -0.0101 | -0.0090 | 0.0013 | -0.0011 | 0.0001 | 0.0051 |-0.0012 | -0.0011 | 0.0011 | -0.0035
1.0 | 0.0000 | 0.0005 |-0.0001 | -0.0029 | 0.0006 | 0.0044 | -0.0011 |-0.0001 | 0.0007 |-0.0027

Table of Figure-1
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(=1 (=2 (=3 (=4 (=5
n 1Fq By, 1Fq By 1Fq By, 1Fq By 1F By
0.5 | -0.1440 | -0.3360 | 0.0521 | 0.0687 | 0.0602 | 0.1649 | -0.0401 | 0.0098 | -0.0744 | -0.1233
0.6 | -0.1076 | -0.2479 | 0.0235 | 0.0141 | 0.0526 | 0.1281 | -0.0176 | 0.0323 | -0.0538 | -0.0747
0.7 | -0.0755 | -0.1712 | 0.0046 | -0.0202 | 0.0443 | 0.0979 | -0.0040 | 0.0425 | -0.0386 | -0.0426
0.8 | -0.0464 | -0.1024 | -0.0079 | -0.0415 | 0.0363 | 0.0729 | 0.0041 | 0.0457 | -0.0271 | -0.0211
0.9 | -0.0198 | -0.0398 | -0.0160 | -0.0540 | 0.0288 | 0.0523 | 0.0089 | 0.0450 | -0.0183 | -0.0065
1.0 | 0.0048 | 0.0178 | -0.0209 | -0.0602 | 0.0219 | 0.0351 | 0.0115 | 0.0419 | -0.0117 | 0.0031
Table of Figure-2
= =2 ¢=3 (=4 ¢=5
n 1y By 17 By, 17 By 17 By, 17 By
0.5] -0.0095 | -0.0083 | 0.0002 0.0003 0.0000 | -0.00003 | 9.8¥10~7 | 4.4%10-F |-9.75%10~° | -1.04*10~0
0.6 -0.007 | -0.0066 | 0.0001 0.0002 | -9.55¥10~° | -0.00002 | 6.79%10" | 3.05710°° | -6.56*10° | -6.87710 "
0.7] -0.005 20.005 0.0001 0.00017 |-6.33¥10-° | -0.00001 | 4.36%10~7 | 1.94%10°0 | -4.11%10~° | -4.22¥10~"
0.8 -0.0036 | -0.0033 | 0.00008 | 0.0001 |-3.70%10 0 | -8.22%10°© | 2.47%10 7 | 1.0S*10 © | -2.26%10 ° | -2.28%10 7
09| -0.00 | -0.0016 | 0.0000 0.000 | -L.6¥10°° | -3.5510-° | 1.0°10~" | 4.5710 7 | -9.2F10 9 | -9.1¥10°%
1.0 | 745102 | 8.3%10 1 [-4.0710 2 | 2.2710 2 | 1.0710 2¥ | 2.7%10° 17 | -1.7710° 2 | -2.010- ™ | 2.1710- ™ | 1.0¥10° 7
Table of Figure-3
¢=1 (=2 (=3 =14 (=5
n 17 By 17y By 1Fy B 17y B 1Fy By
05| -0.0199 | -0.0474 0.0013 0.0032 20.0001 | -0.0004 | 0.00003 0.0001 | -9.38¥10-° | -0.00006
0.6 -0.015 20.0378 0.0009 0.0024 20.0001 | -0.0003 | 0.00002 | 0.00009 |-6.13*10-°| -0.00003
07| -0.0118 | -0.0282 0.0006 0.0016 | -0.00007 | -0.0002 | 0.00001 | 0.00005 |-3.72*10~°| -0.00002
08| -0.0078 | -0.0187 0.0004 0.0010 | -0.00004 | -0.0001 | 7.42¥10-° | 0.00003 |-1.99%10~° | -9.46%10~0
09| -0.0039 | -0.0093 0.0001 0.0004 | -0.00001 | -0.00005 | 3.07*10~° | 0.00001 |-7.78*10~7 | -1.83%10~°
1.0 | 2.62710- 12 [ 9.86710- 10 | 6.73%10~ 17 | -1.92%10~° | 7.95710~ ™ | 1.67%10~7 | -5.69%10~7 | -8.55%10~7 | 2.74¥10~° | 2.77%10°©
Table of Figure-4
¢=1 =2 ¢=3 ¢=4 ¢=5
n 1F By 1F By 1F By 1F By 171 By,
0.5| -0.0469 |-0.0420| 0.0088 | 0.0117 | -0.0038 | -0.0028 | 0.0014 |-0.0056 | 0.0016 | 0.0025
0.6 | -0.0371 |-0.0330| 0.0063 | 0.0077 | -0.0023 | -0.0005 | 0.0004 |-0.0045 | 0.0014 | 0.0009
0.7] -0.0275 -0.0242 | 0.0042 0.0047 | -0.0013 | 0.0007 |-0.00007 |-0.0035 | 0.0012 | -0.00003
0.8 -0.0181 |-0.0158 | 0.0025 | 0.0023 |-0.00062 | 0.00143 | -0.0003 | -0.0026 | 0.0009 | -0.0005
0.9 -0.0089 |-0.0077| 0.0010 | 0.0005 | -0.0001 | 0.0017 | 0.0004 |-0.0019 | 0.0007 | -0.0008
1.0 [ 4.34*¥1075 | 0.0001 |-0.00004 | -0.0007 | 0.0002 0.0018 | -0.0005 |-0.0013 | 0.0005 | -0.0009
Table of Figure-5
(=1 (=2 (=3 (=4 (=5
7 1F By, 1 By, 17 By, 15y By, 17 By,
0.5 1 -0.0961 | -0.105 | 0.0393 | 0.0332 0.001 -0.0017 | -0.0334 | -0.0225 | -0.0041 | -0.0008
0.6 | -0.0742 | -0.0818 | 0.0240 | 0.0209 | 0.0072734 | 0.0035 |-0.0234 | -0.0162 | -0.0078 | -0.0039
0.7 | -0.0538 | -0.0599 | 0.0130 | 0.0118 0.0101 0.0062 | -0.016 | -0.011 |-0.0091 | -0.0051
0.8 | -0.0346 | -0.0389 | 0.0050 | 0.0051 0.0110 0.0073 | -0.010 |-0.0078 | -0.009 | -0.0054
0.9 | -0.0164 | -0.0188 | -0.0008 | 0.00009 0.0107 0.007 | -0.0066 | -0.0050 | -0.0083 | -0.0051
1.0 | 0.0008 | 0.0005 | -0.0049 | -0.0035 0.0098 0.0074 | -0.0036 | -0.0029 | -0.0072 | -0.0046

Table of Figure-6
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e In the above figures, it can easily be seen that the variations in incomplete beta
function are very high for small values of n and the graph shows flat behaviour as
Zeta increases.

e For less h values, beta function will attain similar values after ( greater than 10.

e For high h values, beta function has high variations between ¢ 1 to 3 and shows
flat behaviour after { greater than 3.

e In last curves 5 and 6, we have chosen u = 2 which shows the similar behavior of
incomplete beta functions as the above curves.

4. CONCLUSIONS

In this following investigation, we establish a new form of incomplete extended Riemann
Liouville fractional integral and derivative operator with the help of incomplete extended
beta function in terms of confluent hypergeometric function as its kernal. Further we
developed some properties like power function, generating function for this new function.
In viewing the last set of curves, it can easily be seen that the variations in incomplete beta
functions will be approximately similar, whether we vary the parameter in the power of t
or the parameter in the power of (1-t) in the kernel of incomplete extended beta function.
The variation in x and y parameters does not make any sense as incomplete beta functions
behave like they do in the range of x and y between ( 0, 1).
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