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CYCLICAL NONLINEAR CONTRACTIVE MAPPINGS FIXED POINT

THEOREMS WITH APPLICATION TO INTEGRAL EQUATIONS

M. AL-KHALEEL1, S. AL-SHARIF2, §

Abstract. In this paper, we present new nonlinear contractions based on altering dis-
tances and prove the existence and uniqueness of fixed points for cyclic operators. We
prove here very interesting fixed point theorems in which we combine and extend the
contractive conditions of Banach, Kannan, Chatterjea, and of many others. Our results
shall serve as generalized versions of many fixed point results proved in the literature.
Examples and application to integral equations that exploits Jensen inequality are given
to illustrate the analysis and theory and validate our proved results.
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1. Introduction and Preliminaries.

Contractions are the focus of fixed point theorists where the most common contraction
on a metric space is the Banach’s contraction [1] which is given by d (Tx, Ty) ≤ αd (x, y),
for 0 < α < 1. Other common contractions are Kannan [2] and Chatterjea [3] which are
given by d(Tx, Ty) ≤ β [d (x, Tx) + d (y, Ty)] and d (Tx, Ty) ≤ γ [d (x, Ty) + d (y, Tx)]
for 0 ≤ β, γ < 1

2 , respectively. In 1972 Zamfirescu [4] introduced a very nice fixed point
theorem that combines the contractive conditions of Banach, Kannan, and Chatterjea and
says that if T satisfies any of the above contractions, then T has a unique fixed point.
Many fixed point results were proved using these types of contractions.

However, the cyclical extensions for these fixed point theorems were obtained at a later
time by considering non-empty closed subsets {Ai}mi=1 of a complete metric space X and
a cyclical operator T .

Definition 1.1. Let {Ai}mi=1 be non-empty closed subsets of a complete metric space X.

Then, T :
m⋃
i=1

Ai →
m⋃
i=1

Ai is said to be a cyclic operator if for all i ∈ {1, 2, . . . ,m} we have

T (Ai) ⊆ Ai+1.
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The cyclical extension for the Banach fixed point theorem was introduced by Kirk et.
al. [5]. Later on, Rus [6] and Petric [7] proved the cyclical extensions for Kannan’s theo-
rem and for Chatterjea and Zamfirescu theorems respectively, using fixed point structure
arguments.

Another enhancement in the fixed point theory field was the concept of a control function
in terms of altering distances which was addressed by Khan et. al. [8]. These altering
distance functions alter the metric distance between points and lead to a new category
and relatively new classes of fixed point problems.

A substantial amount of work and studies have been carried out considering the cyclic
contractive mappings as well as using the altering distances which have revealed many
interesting results in fixed point theory, see for example [9]-[28] and references therein.

In this paper, we give extensions and generalized versions of many fixed point results
proved in the literature. In particular, we present generalized versions of fixed point
theorems of cyclic nonlinear contractions type using altering distance functions. At the end
of the paper, the analysis and theory are illustrated and the proved results are validated
by some examples and applications. In the application, besides our proved results, we
shall use the well-known Jenson inequality [29] to prove the existence and uniqueness of
solutions for integral equations under certain conditions. The following definitions and
proposition shall be needed throughout the paper.

Definition 1.2. The function φ : [0,∞)→ [0,∞) is called an altering distance function,
if the following properties are satisfied.

(i) φ is continuous and nondecreasing,
(ii) φ (t) = 0 if and only if t = 0.

Definition 1.3. A function ϕ defined on an interval I is said to be convex if for each
x, y ∈ I and each λ, 0 ≤ λ ≤ 1 we have

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y).

As consequence from Jensen inequality, we have the following proposition which needed
in the application.

Proposition 1.1. (Jensen Inequality, see [29]) Let ϕ be a convex, Borel measurable func-
tion on an interval I and let f be a real valued integrable function on [0, 1]. Suppose that
the range of f is a subset of I. Then

ϕ

(∫
f(t) dt

)
≤
∫
ϕ(f(t)) dt,

provided that ϕ ◦ f is integrable.

2. Fixed Points for Cyclic Operators.

We present in this section our main results in order to prove existence and uniqueness
of fixed points for cyclic operators.

Theorem 2.1. Let {Ai}mi=1 be non-empty closed subsets of a complete metric space (X, d)

and let T :
m⋃
i=1

Ai →
m⋃
i=1

Ai be a cyclic operator satisfying for any x ∈ Ai, y ∈ Ai+1, i =

1, 2, . . . ,m the following condition

φ (d (Tx, Ty)) ≤ φ (max {(αd (x, Tx) + βd (y, Ty)) , γd(x, y)})
−ψ (d (x, Tx) , d (y, Ty)) ,

(1)
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where 0 ≤ α, 0 ≤ β < 1, 0 < α + β ≤ 1, 0 ≤ γ ≤ 1, and φ is an altering distance
function defined in Definition 1.2 and ψ : [0,∞)2 → [0,∞) is a continuous function such

that ψ (x, y) = 0 if and only if x = y = 0. Then, T has a unique fixed point u∗ ∈
m⋂
i=1

Ai.

Proof. Take x0 ∈ X and consider the sequence given by xn+1 = Txn, n ≥ 0. If there exists
n0 ∈ N such that xn0+1 = xn0 , then the point of existence of the fixed point is proved.
So, suppose that xn+1 6= xn for any n = 0, 1, . . . . Then there exists in ∈ {1, . . . ,m} such
that xn−1 ∈ Ain and xn ∈ Ain+1 . Assume T satisfies (1). Then, we have

φ (d (xn, xn+1)) = φ (d (Txn−1, Txn))
≤ φ (max{αd (xn−1, Txn−1) + βd (xn, Txn) , γd(xn−1, xn)})

−ψ (d (xn−1, Txn−1) , d (xn, Txn))
≤ φ (max{αd (xn−1, xn) + βd (xn, xn+1, γd(xn−1, xn))})

−ψ (d (xn−1, xn) , d (xn, xn+1))
≤ φ (max{αd (xn−1, xn) + βd (xn, xn+1) , γd(xn−1, xn)}) .

(2)

Let Ln = max{αd (xn−1, xn) + βd (xn, xn+1) , γd(xn−1, xn)}. Then, (2) implies

φ (d (xn, xn+1)) ≤ φ(Ln).

Since φ is a nondecreasing function, we get

d(xn, xn+1) ≤ Ln.
We have two cases to treat; either Ln = αd (xn−1, xn)+βd (xn, xn+1) or Ln = γd(xn−1, xn).
Suppose first that Ln = γd(xn−1, xn). Then, we have

d(xn, xn+1) ≤ γd(xn−1, xn).

Since, 0 ≤ γ ≤ 1, we get that d (xn, xn+1) is a nonincreasing sequence of nonnegative real
numbers. Hence, there is r ≥ 0 such that

lim
n→∞

d (xn, xn+1) = r.

Using the continuity of φ and ψ, we get

φ (r) ≤ φ (γr)− ψ (r, r)

≤ φ (r)− ψ (r, r) ,

which implies that ψ (r, r) = 0, and hence r = 0.
Similarly, if Ln = αd (xn−1, xn) + βd (xn, xn+1), then we get

d (xn, xn+1) ≤ αd (xn−1, xn) + βd (xn, xn+1) ,

which implies

d (xn, xn+1) ≤
α

1− β
d (xn−1, xn) . (3)

Since 0 < α + β ≤ 1, we get that d (xn, xn+1) is a nonincreasing sequence of nonnegative
real numbers. Hence, there is r ≥ 0 such that

lim
n→∞

d (xn, xn+1) = r.

Using the continuity of φ and ψ, we get

φ (r) ≤ φ ((α+ β)r)− ψ (r, r)

≤ φ (r)− ψ (r, r) ,

which implies that ψ (r, r) = 0, and hence r = 0.
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In the sequel, we show that {xn} is a Cauchy sequence in (X, d). To do so, we need to
prove first, the claim that for every ε > 0, there exists n ∈ N such that if p, q ≥ n with
p− q ≡ 1 (m), then d (xp, xq) < ε. Suppose the contrary, i.e., there exists ε > 0 such that
for any n ∈ N, we can find pn > qn ≥ n with pn − qn ≡ 1 (m) satisfying d (xpn , xqn) ≥ ε.
Now, we take n > 2m. Then corresponding to qn ≥ n, we can choose pn in such a way
that it is the smallest integer with pn > qn satisfying pn− qn ≡ 1 (m) and d (xpn , xqn) ≥ ε.
Therefore, d

(
xqn , xpn−m

)
< ε. Using the triangular inequality,

ε ≤ d (xpn , xqn) ≤ d
(
xqn , xpn−m

)
+

m∑
i=1

d
(
xpn−i , xpn−i+1

)
< ε+

m∑
i=1

d
(
xpn−i , xpn−i+1

)
.

Letting n→∞ in the last inequality, and taking into account that lim
n→∞

d (xn, xn+1) = 0,

we obtain lim
n→∞

d (xpn , xqn) = ε. Again, by triangle inequality, we have

ε ≤ d(xqn , xpn)

≤ d(xqn , xqn+1) + d(xqn+1 , xpn+1) + d(xpn+1 , xpn)

≤ d(xqn , xqn+1) + d(xqn+1 , xqn) + d(xqn , xpn) + d(xpn , xpn+1) + d(xpn+1 , xpn)

≤ 2d(xqn , xqn+1) + d(xqn , xpn) + 2d(xpn , xpn+1).

Taking the limit as n → ∞, and taking into account that lim
n→∞

d (xn, xn+1) = 0, we get

lim
n→∞

d
(
xqn+1 , xpn+1

)
= ε. Since xpn and xqn lie in different adjacently labelled sets Ai and

Ai+1 for certain 1 ≤ i ≤ m, assuming that T satisfies (1), we have

φ
(
d
(
xqn+1 , xpn+1

))
= φ (d (Txqn , Txpn))
≤ φ (max{αd (xqn , Txqn) + βd (xpn , Txpn) , γd(xqn , xpn)})

−ψ (d (xqn , Txqn) , d (xpn , Txpn)) .
(4)

Again, let Ln = max{αd (xqn , Txqn) +βd (xpn , Txpn) , γd(xqn , xpn)}. If Ln = γd(xqn , xpn),
then by letting n→∞ in the last inequality, we obtain

φ (ε) ≤ φ (γε)− ψ (0, 0) = φ (γε) .

Since, φ is a nondecreasing function and 0 ≤ γ ≤ 1, we get ε = 0 which is a contradiction.
Now, if Ln = αd (xqn , Txqn)+βd (xpn , Txpn), then by letting n→∞ in the last inequality,
we obtain

φ (ε) ≤ φ (0)− ψ (0, 0) = 0.

Therefore, we get also ε = 0 which is again a contradiction.
From the above proved claim, and for arbitrary ε > 0, we can find n0 ∈ N such that if

p, q > n0 with p − q = 1(m), then d (xp, xq) < ε. Since lim
n→∞

d(xn, xn+1) = 0, we can find

n1 ∈ N such that

d(xn, xn+1) ≤
ε

m
, for n > n1.

Now, for r, s > max{n0, n1} and s > r, there exists k ∈ {1, 2, . . . ,m} such that s − r =
k(m). Therefore, s− r + j = 1(m) for j = m− k + 1. So, we have

d(xr, xs) ≤ d(xr, xs+j) + d(xs+j , xs+j−1) + · · ·+ d(xs+1, xs).

This implies

d(xr, xs) ≤ ε+
ε

m

m∑
j=1

1 = 2ε.
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Thus, {xn} is a Cauchy sequence in
m⋃
i=1

Ai. Consequently, {xn} converges to some u∗ ∈
m⋃
i=1

Ai. However, in view of cyclical condition, the sequence {xn} has an infinite number

of terms in each Ai, for i = 1, 2, . . . ,m. Therefore, u∗ ∈
m⋂
i=1

Ai.

Now, we will prove that u∗ is a fixed point of T . Suppose u∗ ∈ Ai, Tu∗ ∈ Ai+1, and we
take a subsequence xnk

of {xn} with xnk
∈ Ai−1. Then, assuming that T satisfies (1), we

have

φ
(
d
(
xnk+1

, Tu∗
))

= φ (d (Txnk
, Tu∗))

≤ φ (max{αd (xnk
, Txnk

) + βd (u∗, Tu∗) , γd(xnk
, u∗)})

−ψ (d (xnk
, Txnk

) , d (u∗, Tu∗))
≤ φ (max{αd (xnk

, Txnk
) + βd (u∗, Tu∗) , γd(xnk

, u∗)}) .

(5)

Letting k →∞, we have

φ (d (u∗, Tu∗)) ≤ φ (max{αd (u∗, u∗) + βd (u∗, Tu∗) , γd(u∗, u∗)}) ,

and since φ is a nondecreasing function, we get

d (u∗, Tu∗) ≤ βd (u∗, Tu∗) .

Thus, since 0 ≤ β < 1, we have d (u∗, Tu∗) = 0, and hence u∗ = Tu∗. �

Theorem 2.2. Let {Ai}mi=1 be non-empty closed subsets of a complete metric space (X, d)

and let T :
m⋃
i=1

Ai →
m⋃
i=1

Ai be a cyclic operator satisfying for any x ∈ Ai, y ∈ Ai+1, i =

1, 2, . . . ,m the following condition.

φ (d (Tx, Ty)) ≤ φ(max{(αd (x, Ty) + βd (y, Tx) , γd(x, y))})
−ψ (d (x, Ty) , d (y, Tx)) ,

(6)

where 0 ≤ α ≤ 1
2 , 0 ≤ β, 0 < α + β ≤ 1, 0 ≤ γ ≤ 1, and φ is an altering distance

function defined in Definition 1.2 and ψ : [0,∞)2 → [0,∞) is a continuous function such

that ψ (x, y) = 0 if and only if x = y = 0. Then, T has a unique fixed point u∗ ∈
m⋂
i=1

Ai.

Proof. The proof follows exactly the same as the proof of Theorem 2.1. Therefore, for the
seek of avoiding unnecessarily repetition, we shall mention here only the slight modifica-
tions. Assuming T satisfying (6), then (2) needs to be replaced by

φ (d (xn, xn+1)) = φ (d (Txn−1, Txn))

≤ φ (max{αd (xn−1, Txn) + βd (xn, Txn−1) , γd(xn−1, xn)})
−ψ (d (xn−1, Txn) , d (xn, Txn−1))

≤ φ (max{αd (xn−1, xn+1) + βd (xn, xn) , γd(xn−1, xn)})
−ψ (d (xn−1, xn+1) , d (xn, xn))

≤ φ (max{αd (xn−1, xn+1) , γd(xn−1, xn)}) .

Since, φ is a nondecreasing function, we get

d (xn, xn+1) ≤ max{αd (xn−1, xn+1) , γd(xn−1, xn)}. (7)

Let Ln = max{αd (xn−1, xn+1) , γd(xn−1, xn)}. Then, we again have two cases. Assume
first that Ln = γd(xn−1, xn), then as in the proof of Theorem 2.1, we get lim

n→∞
d (xn, xn+1) =
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0. Now, assume Ln = αd (xn−1, xn+1), then by triangular inequality, we have

d (xn, xn+1) ≤ αd (xn−1, xn+1)

≤ α [d (xn−1, xn) + d (xn, xn+1)] ,

which implies

d (xn, xn+1) ≤
α

1− α
d (xn−1, xn) . (8)

Since 0 ≤ α ≤ 1
2 , we get that {d (xn, xn+1)} is a nonincreasing sequence of nonnegative

real numbers. Hence, there is r ≥ 0 such that

lim
n→∞

d (xn, xn+1) = r.

Now, if α = 0, then clearly, r = 0, and if 0 < α < 1
2 , then α

1−α < 1, and by induction, we
have

d (xn, xn+1) ≤
(

α

1− α

)n
d (x0, x1) ,

and hence r = 0. Now, if α = 1
2 , then from (7), we have

d (xn−1, xn+1) ≥ 2d (xn, xn+1) ,

and hence

lim
n→∞

d (xn−1, xn+1) ≥ 2r,

but

d (xn−1, xn+1) ≤ d (xn−1, xn) + d (xn, xn+1) ,

and as n→∞, we have

lim
n→∞

d (xn−1, xn+1) ≤ 2r.

Therefore, lim
n→∞

d (xn−1, xn+1) = 2r. Using the continuity of φ and ψ, we get

φ (r) ≤ φ

(
1

2
2r

)
− ψ (2r, 0)

= φ (r)− ψ (2r, 0) ,

which implies that ψ (2r, 0) = 0, and hence r = 0.
Another modification is (4) which needs to be replaced by

φ
(
d
(
xqn+1 , xpn+1

))
= φ (d (Txqn , Txpn))

≤ φ (max{αd (xqn , Txpn) + βd (xpn , Txqn) , γd(xqn , xpn)})
−ψ (d (xqn , Txpn) , d (xpn , Txqn)) .

We again let Ln = max{αd (xqn , Txpn)+βd (xpn , Txqn) , γd(xqn , xpn)} and treat two cases.
If Ln = γd(xqn , xpn), then by letting n→∞ in the last inequality, we obtain

φ (ε) ≤ φ (γε)− ψ (ε, ε) .

Since φ is a nondecreasing function and 0 ≤ γ ≤ 1, we have ψ (ε, ε) = 0, and hence ε = 0,
which is a contradiction. Now, if Ln = αd (xqn , Txpn) + βd (xpn , Txqn), then by letting
n→∞ in the last inequality, we obtain

φ (ε) ≤ φ ((α+ β)ε)− ψ (ε, ε) .

Therefore, since 0 < α+ β ≤ 1, we again get ψ (ε, ε) = 0, and hence ε = 0, which is again
a contradiction.
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Finally, (5) needs to be replaced by

φ
(
d
(
xnk+1

, Tu∗
))

= φ (d (Txnk
, Tu∗))

≤ φ (max{αd (xnk
, Tu∗) + βd (u∗, Txnk

) , γd(xnk
, u∗)})

−ψ (d (xnk
, Tu∗) , d (u∗, Txnk

))

≤ φ (max{αd (xnk
, Tu∗) + βd (u∗, Txnk

) , γd(xnk
, u∗)}) .

Letting k →∞, we have

φ (d (u∗, Tu∗)) ≤ φ (max{αd (u∗, Tu∗) + βd (u∗, u∗) , γd(u∗, u∗)}) ,

since φ is a nondecreasing function, we get

d (u∗, Tu∗) ≤ αd (u∗, Tu∗) .

Thus, since 0 ≤ α ≤ 1
2 , we have d (u∗, Tu∗) = 0, and hence u∗ = Tu∗. �

3. Examples and Applications.

In this section, as an application to our theory, we prove the existence and uniqueness
of a non-negative solution for the integral equation given below in (9) under certain con-
ditions. We also give two examples in order to validate the proved results.

Application 3.1. Let X = C [0, 1], the space of all continuous real valued functions
on [0, 1] endowed with the max metric, d(u, v) = max

t∈[0,1]
|u(t)− v(t)|. Consider the integral

equation

v(s) =

∫ 1

0
K(s, t)h (t, v(t)) dt, (9)

for all s ∈ [0, 1], where h : [0, 1] × R → R and K : [0, 1] × [0, 1] → [0,∞) are continuous
functions. Now, for f, g ∈ X, let a, b ∈ R be such that

a ≤ f(s) ≤ g(s) ≤ b, (10)

for all s ∈ [0, 1]. Assume also that for all s ∈ [0, 1], we have

f(s) ≤
∫ 1

0
K(s, t)h (t, g(t)) dt and g(s) ≥

∫ 1

0
K(s, t)h (t, f(t)) dt. (11)

Further, assume that for all t ∈ [0, 1], h(t, .) be a nonincreasing function on R, that is,

for x, y ∈ R, x ≥ y ⇒ h(t, x) ≤ h(t, y), (12)

and for all s ∈ [0, 1], for all x, y ∈ R with (x ≤ b and y ≥ a) or (x ≥ a and y ≤ b), we have

|h(s, x)− h(s, y)| ≤ ρ (|x− y|) , (13)

where ρ is a real valued continuous function satisfying

ρ (t) ≤ δ t, 0 < δ ≤ 1. (14)

Theorem 3.1. Let ϕ be a convex continuous altering distance function satisfying ϕ(xy) ≤
ϕ(x)ϕ(y). Then if the conditions (10)-(14) are satisfied, the integral equation (9) has a
unique solution v∗ ∈ {v ∈ X : f(t) ≤ v(t) ≤ g(t), t ∈ [0, 1]}, where K : [0, 1] × [0, 1] →
[0,∞) is a continuous function that satisfies

sup
t∈[0,1]

∫ 1

0
K(t, s) ds ≤ 1.
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Proof. In order to prove the existence of a unique non-negative solution of (9), we define
the map T : X → X as

Tv(s) =

∫ 1

0
K(s, t)h (t, v(t)) dt,

and the two closed subsets A1, A2 of X as

A1 = {u ∈ X : u ≤ g} and A2 = {u ∈ X : u ≥ f}.
First, we will show that T : A1 ∪ A2 → A1 ∪ A2 is a cyclic map. Let u ∈ A1. Then for
all t ∈ [0, 1], we have u(t) ≤ g(t). Now, since h (s, .) is a nonincreasing function on R and
K(s, t) ≥ 0 for all t, s ∈ [0, 1], we get

K(s, t)h (t, u(t)) ≥ K(s, t)h (t, g(t)) ,

for all t, s ∈ [0, 1]. Consequently, we have∫ 1

0
K(s, t)h (t, u(t)) dt ≥

∫ 1

0
K(s, t)h (t, g(t)) dt ≥ f(s),

for all s ∈ [0, 1]. Hence, Tu ∈ A2. Similarly, if u ∈ A2, then∫ 1

0
K(s, t)h (t, u(t)) dt ≤

∫ 1

0
K(s, t)h (t, f(t)) dt ≤ g(s)

for all s ∈ [0, 1] and hence Tu ∈ A1. Thus, T is a cyclic map from A1 ∪ A2 into A1 ∪ A2.
Now, for a convex continuous altering distance function ϕ and (u, v) ∈ A1 × A2, u(s) ≤
b, v(s) ≥ a, for all s ∈ [0, 1], we have

ϕ(|Tu− Tv|) = ϕ

(∣∣∣∣∫ 1

0
K(s, t)h (t, u(t)) dt−

∫ 1

0
K(s, t)h (t, v(t)) dt

∣∣∣∣)
≤ ϕ

(∫ 1

0
K(s, t) |h (t, u(t))− h (t, v(t))| dt

)
.

Using Jenson Inequality 1.1, and properties of the functions ϕ, h and ρ, we have

ϕ (|Tu− Tv|) ≤
∫ 1

0
ϕ (K(s, t) |h (t, u(t))− h (t, v(t))|) dt

≤
∫ 1

0
ϕ (K(s, t))ϕ (|h (t, u(t))− h (t, v(t))|) dt

≤
∫ 1

0
ϕ (K(s, t))ϕ (ρ (|u(t)− v(t)|)) dt

≤ ϕ (ρ (d (u, v)))

∫ 1

0
ϕ (K(s, t)) ds

≤ ϕ (γd (u, v))

≤ ϕ (max {αd (u, Tu) + βd (v, Tv) , γd (u, v)})
− (ϕ (max {αd (u, Tu) + βd (v, Tv) , γd (u, v)})− ϕ (γd (u, v))) .

Therefore, the map T is a cyclic contractive satisfying the conditions of Theorem 2.1.
Hence, T has a unique fixed point v∗ in A1 ∩A2 = {u ∈ X = C [0, 1] : f (t) ≤ u (t) ≤ g (t)
for all t ∈ [0, 1]}. Hence, v∗ is a solution of the integral equation (9). �

Example 3.1. Let X be a complete metric space, m positive integer, A1, . . . , Am

non-empty closed subsets of X, and X =
m⋃
i=1

Ai. Let T : X → X be an operator such that
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a) X =
m⋃
i=1

Ai is a cyclic representation of X with respect to T .

b) for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m, where Am+1 = A1 and ρ : [0,∞)→ [0,∞)

is a Lebesgue integrable mapping satisfies
∫ t
0 ρ(s) ds > 0 for t > 0, we have one of

the following:∫ d(Tx,Ty)

0
ρ(t) dt ≤

∫ max{(αd(x,Tx)+βd(y,Ty)),γd(x,y)}

0
ρ(t) dt,

or ∫ d(Tx,Ty)

0
ρ(t) dt ≤

∫ max{(αd(y,Tx)+βd(x,Ty)),γd(x,y)}

0
ρ(t) dt.

Then T has a unique fixed point z ∈
m⋂
i=1

Ai.

In order to see this, one shall let φ : [0,∞) → [0,∞) be defined as φ(t) =
∫ t
0 ρ(s) ds > 0.

Then φ is altering distance function, and by taking ψ(t) = 0, we get the result.
Example 3.2. Let X = [−1, 1] ⊆ R with d(x, y) = |x − y|. Let T : [−1, 1] → [−1, 1] be
given by

T (x) =


−1

2xe
− 1
|x| , x ∈ (0, 1],

0, x = 0,

−1
3xe
− 1
|x| , x ∈ [−1, 0).

By taking ψ(t) = 0, φ(t) = t, and x ∈ [0, 1], y ∈ [−1, 0], we have

|Tx− Ty| = | − 1
2xe
− 1
|x| + 1

3ye
− 1
|y| |

≤ 1
2 |x|+

1
3 |y|

≤ 1
2 |x+ 1

2xe
− 1
|x| |+ 1

3 |y + 1
3ye
− 1
|y| |

= 1
2 |Tx− x|+

1
3 |Ty − y|,

which implies that T has a unique fixed point in [−1, 0] ∩ [0, 1] which is z = 0.

4. Conclusions.

Using nonlinear contractions based on altering distances, we prove new fixed point
theorems that generalize and extend many previous theorems in the literature in the sense
that those previous results are special cases of our new proved results. Furthermore,
we prove the existence and uniqueness of solutions for integral equations under certain
conditions using Jenson inequality and our presented fixed point results.
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