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CENTRAL DERIVATION OF SOME CLASSES OF LEIBNIZ ALGEBRAS

HASSAN ALMUTARI1, ABD GHAFUR AHMAD1, §

Abstract. In this study, we deal with central derivation of finite low dimensional Leibniz

algebras. We provide some properties of the central derivation algebras. Description of the

central derivation algebras, with their dimensions, for complex Leibniz algebras of dimensions

two, three and four are given and summarized in tabular form. The result is then used to

determine which centroid is decomposable or indecomposable.
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1. Introduction

In 1965, Bloh [1] introduced Leibniz algebras as a generalization of Lie algebras and in 1993,

Loday [3] studied the properties of Leibniz algebras. Rakhimov and Al-Hossain [5] studied the

derivations of some Classes of finite dimensional Leibniz Algebra. Hassan and AbdGhafur [6]

studied the centroids and quasi-centroids of some Classes of finite dimensional Leibniz Algebra.

Biyogman et. al. [7] did some studies on central derivation of nilpotent lie superalgebra. Narayan

et. al. [8] studied lie central derivation and found the dimension of central derivation equal lie-

stem Leibniz algebras. In this paper, we study the central derivation algebras of low dimensional

Leibniz algebras and determine which classifications are indecomposable or decomposable by

using the central derivation. The outline of this paper will cover the following: section 1 provides

overview of this article. Section 2 gives preliminaries and some previous results used throughout

the article. In section 3, an algorithm for finding central derivations, from previous literatures,

of finite dimensional Leibniz algebras. This algorithm is used to compute the central derivations

of low dimensional Leibniz algebras.

2. Preliminaries

This section contains definitions used and some earlier results used throughout the paper.
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Definition 2.1. A Lie algebra L over a field K is an algebra satisfying the following conditions:

[x, x] = 0,∀ x ∈ L (1)[
[x, y], z

]
+
[
[y, z], x

]
+
[
[z, x], y

]
= 0, ∀ x, y, z ∈ L. (2)

Definition 2.2. A Leibniz algebra L is a vector space over a field F equipped with a bilinear map

[·, ·] : L× L→ L

satisfying the Leibniz identity:[
x, [y, z]

]
=
[
[x, y], z

]
−
[
[x, z], y

]
, for all x, y, z ∈ L.

Definition 2.3. A derivation of Leibniz algebra L is a linear transformation d : L→ L satisfying

d[x, y] = [d(x), y] + [x, d(y)], for all x, y ∈ Z.
for all x, y ∈ L.
The set of all derivations of a Leibniz algebra L is denoted by Der(L).

For a Liebniz algebra L we define

L = L1, Lk+1 = [Lk, L], k > 1 .

Clearly,

L1 ⊇ L2 ⊇ · · ·

Definition 2.4. Let L and L1 be two Liebniz algebras over a field K. A mapping µ : L −→ L1

is a homomorphism if satisfying

µ[x1, x2] = [µ(x1), µ(x2)], for all x1, x2 ∈ L.
for all x, y ∈ L. We can say µ is an isomorphism if it is bijective and µ is an endomorphism

when we have a linear map µ : L −→ L. The set of all endomorphisms of L is denoted by

End(L).

Definition 2.5. Let L be a Leibniz algebra over a field K. The set satisfying

Γ(L) =
{
ϕ ∈ End(L)| ϕ[a, b] = [a, ϕ(b)] = [ϕ(a), b], for all a, b ∈ L

}
for all x, y ∈ L, is called the centroids of L.

Definition 2.6. Let L1 be a nonempty subset of Leibniz algebra L. The subset

CL(L1) = {x ∈ L | [x, L1] = [L1, x] = 0}
for all x, y ∈ L, is said to be the centralizer of L1 in L. Obviously, CL(L) = C(L) is the center

of L, and we called an Ideal I of Leibniz algebra L if IL ⊆ I and LI ⊆ I.

Definition 2.7. Let L be Leibniz algebra. We say that L is indecomposable if it can not be

written as a direct sum of its ideals. Otherwise the L is called decomposable.

Definition 2.8. Let L be Leibniz algebra and ϕ ∈ End(L). Then ϕ is called a central derivation,

if ϕ(L) ⊆ C(L) and ϕ(L2) = 0.

Let the set of all central derivation of a Leibniz algebra L be denoted by CL(L). The CL(L)

is an associative algebra with respect the composition operation ◦ and it is a Lie algebra with

respect to the bracket [a1, a2] = a1 ◦ a2 − a2 ◦ a1.
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Theorem 2.1. Let g : L1 −→ L2 be an isomorphism of Leibniz algebras (L1, ?) and (L2, ∗) over

a field K. The mapping φ : End(L1) −→ End(L2) defined by φ(c) = g◦c◦g−1 is an isomorphism

of CL(L1) and CL(L2), that is

φ(CL(L1)) = CL(L2).

Proof. Due to the isomorphism relation, we have x∗y = g(g−1(x)?g−1(y)). Assume c ∈ End(L1)

such that;

d
(
g−1(x1) ? g

−1(x2)
)

= c(g−1(x1)) ? g
−1(x2) + g−1(x1) ? c(g

−1(x2)).

Applying the mapping g on this equation we have

g ◦ c ◦ g−1(x1 ∗ x2) =
(
g ◦ c ◦ g−1(x1)

)
∗ x2 + x1 ∗

(
g ◦ c ◦ g−1(x2)

)
,

that is g ◦ c ◦ g−1 ∈ CL(L2). �

Proposition 2.1. Let L be Leibniz algebra. Then

i) CL(L) ⊆ Der(L).;

iii) [Γ(L),Γ(L)] ⊆ CL(L);

iv) (ϕ ◦ d)[x, y] = [(ϕ ◦ d)(x), y] + [x, ϕ ◦ d(y)];

v) [d, ϕ](x, y) = [[d, ϕ](x), y] + [x, [d, ϕ](y)]].

Proof. We prove i) and the others can be obtained by definitions.

Let L be Leibniz algebra, ϕ1 ∈ CL(L) and for all x, y ∈ L. We need to show that

ϕ1[x, y] = [ϕ1(x), y] = [x, ϕ1(y)] = 0.

Thus,

ϕ1[x, y] = [ϕ1(x), y] = 0 (3)

ϕ1[x, y] = [x, ϕ1(y)] = 0. (4)

If we add (3) with (4), we get

ϕ1[x, y] + ϕ1[x, y] = [ϕ1(x), y] + [x, ϕ1(y)].

Therefore, ϕ1[x, y] = [ϕ1(x), y] + [x, ϕ1(y)] ⊆ Der(L) since ϕ1[x, y] = 0. �

Theorem 2.2. Let Z be Leibniz algebra. Then for any ϕ ∈ Γ(L) and d ∈ Der(L) one has the

following.

a) Der(L) ∩ Γ(L) = CL(L);

b) d ◦ ϕ is contained in Γ(L) if and only if ϕ ◦ d is a central derivation of L;

c) d ◦ ϕ is a derivation of L if and only if [d, ϕ] is a central derivation of L.

Proof. a) If we assume ϕ ∈ Der(L) ∩ Γ(L) then we can say ϕ ∈ Γ(L) and ϕ ∈ Der(L). Let

x, y ∈ L. Then from derivation: ϕ[x, y] = [ϕ(x), y] + [x, ϕ(y)] and from centroid: ϕ[x, y] =

[ϕ(x), y] = [x, ϕ(y)], so we get ϕ[x, y] = [ϕ(x), y] = [x, ϕ(y)] = 0. Therefore ϕ(L2) = 0 and

ϕ(L) ⊆ Z(L). Then Γ(L) ∩Der(L) ⊆ CL(L).

To show the inverse inclusion, let ϕ ∈ C(L). Then 0 = ϕ[x, y] = [ϕ(x), y] = [x, ϕ(y)]. Thus

ϕ ∈ Γ(L) ∩Der(L). This implies Der(L) ∩ Γ(L) = C(L).

b). Assume for any ϕ ∈ Γ(L), d ∈ Der(L), ∀x, y ∈ L.
If d ◦ ϕ is contained in Γ(L), then

(d ◦ ϕ)[x, y] = [(d ◦ ϕ)(x), y] = [x, (d ◦ ϕ)(y)]. (5)
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Also,

(d ◦ ϕ)[x, y] = d ◦ [ϕ(x), y] = d ◦ [x, ϕ(y)],

then,

(d ◦ ϕ)[x, y] = d ◦ [ϕ(x), y] = [(d ◦ ϕ)(x), y] + [x, (ϕ ◦ d)(y)] (6)

(d ◦ ϕ)[x, y] = d ◦ [x, ϕ(y)] = [(ϕ ◦ d)(x), y] + [x, (d ◦ ϕ)(y)] (7)

By equation (5) and equation (6), we get [x, (ϕ ◦ d)(y)] = 0 and by equation (5) and equation

(7), we get [(ϕ ◦ d)(x), y] = 0. By (v) in Proposition 2.1, we get (ϕ ◦ d)[x, y] = 0. Then ϕ ◦ d is

central derivation of L.

To show the inverse inclusion, let ϕ ◦ d be a central derivation of L. Then 0 = (ϕ ◦ d)[x, y] =

[x, (ϕ◦d)(y)] = [(ϕ◦d)(x), y]. Subtract equation (7) from equation (6) to obtain [(d◦ϕ)(x), y] =

[x, (d ◦ ϕ)(y)]. Then we get (d ◦ ϕ)[x, y] = [(d ◦ ϕ)(x), y] = [x, (d ◦ ϕ)(y)] by equation (6).

c). Assume d ◦ ϕ ∈ Der(L) and ∀x, y ∈ L. If d ◦ ϕ ∈ Der(L). Then

(d ◦ ϕ)[x, y] = [(d ◦ ϕ)(x), y] + [x, (d ◦ ϕ)(y)]. (8)

By equation (6) and (8), we get [x, (ϕ ◦ d)(y)] = [x, (d ◦ ϕ)(y)]. On Simplification, it becomes

[x, [d, ϕ](y)] = 0. By (iv) in Proposition 2.1, [d, ϕ] is a central derivation of L. To show the inverse

inclusion, if [d, ϕ] is a central derivation of L, then
[
x, [d, ϕ](y)

]
= 0 and we get [x, (d ◦ϕ)(y)] =

[x, (ϕ ◦ d)(y)]. After substitution into equation (6), then it easy to prove d ◦ ϕ ∈ Der(L). �

Theorem 2.3. If L = L1
⊕
L2, where L1 and L2 are ideals of L. Then, Γ(L) = Γ(L1)

⊕
Γ(L2)

⊕
C1
⊕
C2

where Ci
Ci =

{
φ ∈ End (Ai, Aj) |φ (Ai) ⊆ C (Aj) , φ

(
A2
i

)
= 0
}
, 1 ≤ i 6= j ≤ 2

Proof. Let πi : L→ Li be canonical projection, i = 1, 2. Then π1, π2 ∈ Γ(L) and π1 + π2 = idL.

For any φ ∈ Γ(L), φ = (π1 + π2)φ (π1 + π2) = π1φπ1 + π1φπ2+ π2φπ1 + π2φπ2. Then πiφπj ∈
Γ(L), i, j = 1, 2, and π1Γ(L)π1+ π1Γ(L)π2 +π2Γ(L)π1 +π2Γ(L)π2 is direct sum. Now we define

a mapping π1Γ(L)π1 → Γ (L1) such that π1fπ1 7→ π1fπ1|L1
, for any f ∈ Γ(L). If π1fπ1|L1

= 0,

then by π1fπ1|L2
= 0, we get that π1fπ1 = 0, and hence the above mapping is injection. For

any φ ∈ Γ (L1) , we extend φ to L2 such that φ|L2
= 0. Then the extended φ is in Γ(L) and

π1φπ|L1
= φ. Thus π1Γ(L)π1 ∼= Γ (L1) as vector space. Similarly, we get that π2Γ(L)π2 ∼= Γ (L2)

Define a mapping π1Γ(L)π2 → C2 such that π1fπ2 7→ π1fπ2|L2

For x ∈ L2, y ∈ L1, π1fπ2(x)y = π1fπ2(xy) = 0, and y (π1fπ2(x)) = π1fπ2(yx) =

0, then π1fπ2(x) ∈ C (L1) For x, y ∈ L2, π1fπ2(xy) = 0, then π1fπ2 (L1) = 0 and π1fπ2|L2
∈ C2

If π1fπ2|L2
= 0 and π1fπ2|L1

= 0, then π1fπ2|L = 0, and the above mapping is injection.

For any φ ∈ C2, we extend φ to L1 denoted by φ̄ such that φ̄
∣∣
L1

= 0. Then φ̄ ∈ Γ(L) by the

following three equations.

φ̄(xy) = φ̄ (x1y1 + x2y2) = φ (x2y2) = 0

xφ̄(y) = (x1 + x2) φ̄ (y1 + y2) = x2φ (y2) = 0

φ̄(x)y = φ (x2) (y1 + y2) = φ (x2) y = 0

So π1φ̄π2 (x2) = π1φ̄ (x2) = π (x2) . Then π1φ̄π2 7→ φ, which says the mapping above is onto.

Thus π1Γ(A)π2 ∼= C2 as vector space. Similarly, we can get that π2Γ(L)π1 ∼= C1. The theorem is

proven. �

Corollary 2.1. If CL(L) = 0, then Γ(L) is decomposable.

Proof. It is clear from theorm 2.3 and defintion 2.7. �
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In the next section, we used an algorithm, described below, to find the central derivation

of low-dimensional complex Leibniz algebras. Note that there is no one-dimensional Leibniz

algebra except for abelian.

3. An algorithm for finding central derivations

Firstly, let
{
e1, e2, ..., en

}
be a basis of an n-dimensional Leibniz algebras L. Then

[ei, ej ] =

n∑
k=1

γkijek, i, j = 1, 2, ..., n.

The coefficients
{
γkij
}

of the above linear combinations are called the structure constants. An

element a of central derivation, CL(L) being a linear transformation of the Leibniz algebras L

is represented in a square matrix form [aij ]i,j=1,2,3,...,n , that is

ϕ(ei) =
n∑
t=1

atiet, i = 1, 2, 3, ..., n.

According to the Theorem 2.2, the central derivation CL(L) is equal intersection between cen-

troid Γ(L) and derivation Der(L). From definition of centroid and central derivation we get an

algorithm to find central derivation CL(L) as given below:

n∑
t=1

γtijakt =

n∑
t=1

atiγ
k
tj =

n∑
t=1

atjγ
k
it = 0, ∀ i, j, k = 1, 2, 3, ..., n. (9)

This approach can be applied to find the central derivations of complex Leibniz algebras in

dimension 2, 3, and 4. Besides, we use the classification result from [5] and [4] together with the

algorithm mentioned above to get the central derivation and the result is summarized in tabular

form .

Theorem 3.1. Any two-dimensional Leibniz algebra L is isomorphic to
L1 : [e1, e1] = e2.

L2 : [e1, e2] = −[e2, e1] = e2.

L3 : [e2, e2] = [e1, e2] = e1.

Table 1. derivation of two-dimensional complex Zinbiel algebras

Isomorphism Class Central Derivation Dimension

L1

(
0 0

a21 0

)
1

L2

(
0 0

0 0

)
0

L3

(
0 0

0 0

)
0

Corollary 3.1. Any two dimensional leibniz algebras, the centroid of L1 is decomposable.

Theorem 3.2. An arbitrary non split three-dimensional complex Leibniz algebras is isomorphic

to the following pairwise non isomorphic algebras:
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L1 : [e3, e2] = e2, [e2, e2] = e1, [e1, e3] = −2e1, [e2, e3] = −e2.
L2 : [e3, e3] = e1, [e1, e3] = δe1, [e2, e3] = −e2, [e3, e2] = e2, δ ∈ C.
L3 : [e2, e3] = e1, [e3, e3] = δe1, [e2, e2] = e1, δ ∈ C \ {0}.
L4 : [e2, e2] = e1, [e3, e3] = e2.

L5 : [e2, e3] = e1, [e1, e3] = e2.

L6 : [e1, e3] = e2, [e2, e3] = δe1 + e2, δ ∈ C.
L7 : [e2, e3] = e2, [e1, e3] = e1.

L8 : [e1, e3] = e2, [e3, e3] = e1.

L9 : [e3, e3] = e1, [e1, e3] = e1 + e2.

L10 : [e1, e2] = e1.

L11 : [e2, e3] = e2, [e1, e3] = e1 + e2.

L12 : [e1, e2] = e3, [e2, e3] = −e2, [e1, e3] = 2e1.

L13 : [e1, e3] = e1, [e2, e3] = δe3, δ ∈ C \ {0}.

Corollary 3.2. In any three dimensional Leibniz algebras, the centroid of L1, L2, L5, L7, L11, L12

and L13 are decomposable.

Theorem 3.3. The isomorphism class of four-dimensional complex nilpotent Leibniz algebras

are given by the following

L1 : [e1, e1] = e2, [e3, e1] = e4, [e2, e1] = e3.

L2 : [e1, e1] = e3, [e2, e1] = e3, [e1, e2] = e4, [e3, e1] = e4.

L3 : [e3, e1] = e4, [e1, e1] = e3, [e2, e1] = e3.

L4 : [e1, e1] = e3, [e1, e2] = δe4, [e2, e2] = e4, [e2, e1] = e3,

e4 = [e3, e1], δ ∈ {0, 1}.
L5 : [e1, e2] = e4, [e1, e1] = e3, [e3, e1] = e4.

L6 : [e2, e2] = e4, [e1, e1] = e3, [e3, e1] = e4.

L7 : [e1, e1] = e4, [e3, e1] = e4, [e2, e1] = e3, [e1, e2] = −e3,
−e4 = [e1, e3].

L8 : [e1, e1] = e4, [e3, e1] = e4, [e2, e1] = e3, [e1, e2] = −e3 + e4,

−e4 = [e1, e3].

L9 : [e1, e1] = e4, [e2, e2] = e4, [e2, e1] = e3, [e1, e2] = −e3 + 2e4,

−e4 = [e1, e3], [e3, e1] = e4.

L10 : [e2, e1] = e3, [e1, e1] = e4, [e2, e2] = e4, [e3, e1] = e4,

−e3 = [e1, e2], [e1, e3] = −e4.
L11 : [e1, e2] = e3, [e1, e1] = e4, [e2, e1] = −e3, [e2, e2] = −2e3 + e4.

L12 : [e2, e1] = e4, [e1, e2] = e3, [e2, e2] = −e3.
L13 : [e1, e2] = e4, [e1, e1] = e3, [e2, e1] = −δe3, [e2, e2] = −e4, δ ∈ C.
L14 : [e3, e3] = e4, [e1, e2] = δe4, [e2, e1] = −δe4, [e2, e2] = e4,

e4 = [e1, e1], δ ∈ C.
L15 : [e1, e3] = e4, [e1, e2] = e4, [e2, e1] = −e4, [e2, e2] = e4.

L16 : [e1, e1] = e4, [e2, e1] = −e4, [e1, e2] = e4, [e3, e3] = e4.

L17 : [e1, e2] = e3, [e2, e1] = e4.

L18 : [e2, e2] = e4, [e1, e2] = e3, [e2, e1] = −e3.
L19 : [e2, e1] = e4, [e2, e2] = e3.

L20 : [e2, e2] = e3, [e1, e2] = e4, [e2, e1] = 1+δ
1−δe4, δ ∈ C \ {1}.

L21 : [e2, e1] = −e4, [e1, e2] = e4, [e3, e3] = e4.
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Table 2. derivation of three-dimensional complex Leibniz algebras

Isomorphism Class Central Derivation Dimension

L1

 0 0 0

0 0 0

0 0 0

 1

L2

 0 0 a13
0 0 0

0 0 0

,(δ = 0) 1

 0 0 0

0 0 0

0 0 0

,(δ 6= 0) 0

L3

 0 a12 a13
0 0 0

0 0 0

 2

L4

 0 0 a13
0 0 0

0 0 0

 1

L5

 0 0 0

0 0 0

0 0 0

 0

L6

 a11 0 a13
−a11 0 −a13

0 0 0

,(δ = 0) 2

 0 0 0

0 0 0

0 0 0

,(δ 6= 0) 0

L7

 0 0 0

0 0 0

0 0 0

 0

L8

 0 0 0

0 0 a23
0 0 0

 1

L9

 0 0 0

0 0 a23
0 0 0

 1

L10

 0 0 0

0 0 0

0 a32 a33

 2

L11

 0 0 0

0 0 0

0 0 0

 0

L12

 0 0 0

0 0 0

0 0 0

 0

L13

 0 0 0

0 0 0

0 0 0

 0

Corollary 3.3. The centroid of four dimensional Leibniz algebras are indecomposable.
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Isomorphism Class Central Derivation Dimension

L1


0 0 0 0

0 0 0 0

0 0 0 0

a41 0 0 0

 1

L2


0 0 0 0

0 0 0 0

0 0 0 0

a41 a42 0 0

 2

L3


0 0 0 0

0 0 0 0

0 0 0 0

a41 a42 0 0

 2

L4


0 0 0 0

0 0 0 0

0 0 0 0

a41 a42 0 0

 2

L5


0 0 0 0

0 0 0 0

0 0 0 0

a41 a42 0 0

 2

L6


0 0 0 0

0 0 0 0

0 0 0 0

a41 a42 0 0

 2

L7


0 0 0 0

0 0 0 0

0 0 0 0

a41 a42 0 0

 2

L8


0 0 0 0

0 0 0 0

0 0 0 0

a41 a42 0 0

 2

L9


0 0 0 0

0 0 0 0

0 0 0 0

a41 a42 0 0

 2

L10


0 0 0 0

0 0 0 0

0 0 0 0

a41 a42 0 0

 2

L11


0 0 0 0

0 0 0 0

a31 a32 0 0

a41 a42 0 0

 4
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L12


0 0 0 0

0 0 0 0

a31 a32 0 0

a41 a42 0 0

 4

L13


0 0 0 0

0 0 0 0

a31 a32 0 0

a41 a42 0 0

 4

L14


0 0 0 0

0 0 0 0

0 0 0 0

a41 a42 a43 0

 3

L15


0 0 0 0

0 0 0 0

0 0 0 0

a41 a42 a43 0

 3

L16


0 0 0 0

0 0 0 0

0 0 0 0

a41 a42 a43 0

 3

L17


0 0 0 0

0 0 0 0

a31 a32 0 0

a41 a42 0 0

 4

L18


0 0 0 0

0 0 0 0

a31 a32 0 0

a41 a42 0 0

 4

L19


0 0 0 0

0 0 0 0

a31 a32 0 0

a41 a42 0 0

 4

L20


0 0 0 0

0 0 0 0

a31 a32 0 0

a41 a42 0 0

 4

L21


0 0 0 0

0 0 0 0

0 0 0 0

a41 a42 a43 0

 3

Corollary 3.4. i) The dimensions of the central derivation of two-dimensional complex

Leibniz algebras is one.

ii) The dimensions of the central derivation of three-dimensional complex Leibniz algebras

vary between one and two.

iii) The dimensions of the central derivation of four-dimensional complex Leibniz algebras

vary between one and four.
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