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HERMITE–HADAMARD INTEGRAL INEQUALITIES FOR
LOG–CONVEX INTERVAL–VALUED FUNCTIONS ON

CO–ORDINATES

M. A. ALI1, G. MURTAZA2, H. BUDAK3, §

Abstract. In this paper, we give the notion of interval-valued log–convex functions on
the co-ordinates on the rectangle from the plane. We establish Hermite-Hadamard and
related inequalities for these classes of functions. Our results are refinements of several
existing results in the field of Hermite-Hadamard inequalities. Some examples are also
given to justify our new results.
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1. Introduction

The Hermite–Hadamard inequality discovered by C. Hermite and J. Hadamard, (see [9],
[18, pp. 137]) is one of the most well established inequalities in the theory of convex
functions with a geometrical interpretation and many applications. These inequalities
state that, if f : I → R is a convex function on the interval I of real numbers and a, b ∈ I
with a < b, then

f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f (a) + f (b)

2
. (1)

Both inequalities in (1) hold in the reversed direction if f is concave. We note that Hermite–
Hadamard inequality may be regarded as a refinement of the concept of convexity and it
follows easily from Jensen’s inequality. Hermite–Hadamard inequality for convex functions
has received renewed attention in recent years and a remarkable variety of refinements and
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generalizations have been studied.
In [8], Dragomir established the following similar inequality of Hadamard type for the
co-ordinated convex functions.

Theorem 1.1. Let f : ∆ = [a, b]× [c, d]→ R is convex on co-ordinates ∆. Then following
inequalities holds:

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2

[
1

b− a

∫ b

a
f

(
x,
c+ d

2

)
dx+

1

d− c

∫ d

c
f

(
a+ b

2
, y

)
dy

]
≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c
f(x, y)dydx

≤ 1

4

[
1

b− a

∫ b

a
f(x, c)dx+

1

b− a

∫ b

a
f(x, d)dx

+
1

d− c

∫ d

c
f(a, y)dy +

1

d− c

∫ d

c
f(b, y)dy

]
≤ f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
. (2)

In [3], Alomari and Darus gave the following inequalities for co-ordinated log-convex func-
tions.

Theorem 1.2. Let f : ∆ = [a, b] × [c, d] → R is log-convex on co-ordinates ∆. Then
following inequalities holds:

f

(
a+ b

2
,
c+ d

2

)
≤ exp

[
1

(b− a)(d− c)

∫ b

a

∫ d

c
ln f(x, y)dydx

]
≤ 4

√
f(a, c)f(a, d)f(b, c)f(b, d). (3)

For more results related to (2) and (3) we refer ([1, 2, 12, 17]) and references therein.
On the other hand, several important inequalities (Hermite–Hadamard, Ostrowski, etc.)
have been studied for the interval–valued functions in recent years. In [4, 5], Chalco–
Cano et al. obtained Ostrowski type inequalities for interval–valued functions by using
Hukuhara derivative for interval–valued functions. In [19], Román-Flores et al. estab-
lished Minkowski and Beckenbach’s inequalities for interval–valued functions. For the
others, please see [6, 7, 10, 19, 20]. However, inequalities were studied for more general
set–valued maps. For example, in [21], Sadowska gave the Hermite–Hadamard inequality.
For the other studies, you can see [13, 16].

2. Preliminaries and known results

In this section we recall some basics definitions, results, notions and properties, which are
used throughout the paper. We denote R+

I the family of all positive intervals of R. The
Hausdorff distance between [X,X] and [Y , Y ] is defined as

d([X,X], [Y , Y ]) = max
{
|X − Y | , X − Y

}
.

The (RI , d) is a complete metric space. For more details and basic notations on interval-
valued functions see ([15, 22]).
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It is remarkable that Moore [14] introduced the Riemann integral for the interval-valued
functions. The set of all Riemann integrable interval-valued functions and real-valued
functions on [a, b] are denoted by IR([a,b]) and R([a,b]), respectively. The following theorem
gives relation between (IR)–integrable and Riemann integrable (R–integrable) (see [15],
pp. 131):

Theorem 2.1. Let F : [a, b] → RI be an interval–valued function such that F (t) =[
F (t), F (t)

]
. F ∈ IR([a,b]) if and only if F (t), F (t) ∈ R([a,b]) and

(IR)

b∫
a

F (t)dt =

(R)

b∫
a

F (t)dt, (R)

b∫
a

F (t)dt

 .
In [11], Guo et al. introduced a kind of log-convex interval–valued function as follows:

Definition 2.1. [11]Let h : [c, d]→ R be a non-negative function, (0, 1) ⊆ [c, d] and h 6= 0.
A function F : [a, b] → R+

I is said to be logarithmically interval-valued-h-convex function
if for all x, y ∈ [a, b] and t ∈ [0, 1], we have

[F (x)]h(t) [F (y)]h(1−t) ⊆ F (tx+ (1− t)y).

For brevity, we can denote these classes of functions by F ∈ SX(log−h, [a, b],R+
I ).

Otherwise, Guo et al. obtained the following Hermite–Hadamard inequality for interval–
valued log-convex functions by using h–convex:

Theorem 2.2. [11] Let F : [a, b] → R+
I be an interval–valued function such that F (t) =

[F (t), F (t)] and F ∈ IR([a,b]), h : [0, 1] → R be a non–negative function and h
(

1
2

)
6= 0. If

F ∈ SX(log−h, [a, b],R+
I ), then

[
F

(
a+ b

2

)] 1

2h( 1
2) ⊇ exp

 1

b− a
(IR)

b∫
a

lnF (x)dx

 ⊇ [F (a)F (b)]

1∫
0

h(t)dt
. (4)

Remark 2.1. (i) If h(t) = t, then (4) reduces to the following result:

F

(
a+ b

2

)
⊇ exp

 1

b− a
(IR)

b∫
a

lnF (x)dx

 ⊇√F (a)F (b). (5)

(ii) If h(t) = ts, then (4) reduces to the following result:

[
F

(
a+ b

2

)]2s−1

⊇ 1

b− a
(IR)

b∫
a

F (x)dx ⊇ [F (a)F (b)]s+1 .

In [24], Zhang et al. established following new results for interval-valued log-convex func-
tions.
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Theorem 2.3. [24]Let F : [a, b] → R+
I , h : [0, 1] → R+ and h

(
1
2

)
6= 0. If F ∈

SX(log−h, [a, b],R+
I ) and F ∈ I∗R([a,b]), then following inequalities hold:(
F

(
a+ b

2

)) 1

2h2( 1
2) ⊇ ∆

1

4h( 1
2)

1

⊇
(∫ b

a
F (x)dx

) 1
b−a

⊇ ∆
1
2

∫ 1
0 h(t)dt

2

⊇ (F (a)F (b))[
1
2

+h( 1
2)]

∫ 1
0 h(t)dt , (6)

where

∆1 = F

(
3a+ b

4

)
F

(
a+ 3b

4

)
∆2 = F (a)F (b)F 2

(
a+ b

2

)
.

For more details and notations involved in Theorem 2.3, one can read [24].

Remark 2.2. (i)If we set h(t) = t in Theorem 2.3, we have(
F

(
a+ b

2

))2

⊇
√

∆1 ⊇
(∫ b

a
F (x)dx

) 1
b−a

⊇ ∆
1
4
2 ⊇ G (F (a) , F (b)) . (7)

(ii) If we choose h (t) = ts in Theorem 2.3, we have(
F

(
a+ b

2

))22s−1

⊇ ∆2s−2

1 ⊇
(∫ b

a
F (x)dx

) 1
b−a

⊇ ∆
1

2(s+1)

2 ⊇ (F (a)F (b))
1

s+1 [ 12+ 1
2s ] .

Theorem 2.4. [24]Let F,G : [a, b] → R+
I , h : [0, 1] → R+ and h

(
1
2

)
6= 0. If F,G ∈

SX(log−h, [a, b],R+
I ) and F,G ∈ I∗R([a,b]), then following double inequalities hold:[

F

(
a+ b

2

)
G

(
a+ b

2

)] 1

2h( 1
2) ⊇

(∫ b

a
F (x)dx .

∫ b

a
G (x)dx

) 1
b−a

⊇ [F (a)F (b)G (a)G(b)]
∫ 1
0 h(t)dt . (8)

Remark 2.3. (i) If h(t) = t in Theorem 2.4, then we have:

F

(
a+ b

2

)
G

(
a+ b

2

)
⊇

(∫ b

a
F (x)dx .

∫ b

a
G (x)dx

) 1
b−a

⊇ G (F (a) , F (b)) .G (G (a) , G (b)) . (9)

(ii) If h(t) = ts in Theorem 2.4, then we have:[
F

(
a+ b

2

)
G

(
a+ b

2

)]2s−1

⊇
(∫ b

a
F (x)dx .

∫ b

a
G (x)dx

) 1
b−a

⊇ [F (a)F (b)G (a)G (b)]
1

s+1 .
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3. Interval-valued double integral

A set of numbers {ti−1, ξi, ti}mi=1 is called tagged partition P1 of [a, b] if

P1 : a = t0 < t1 < . . . < tn = b

and if ti−1 ≤ ξi ≤ ti for all i = 1, 2, 3, . . . ,m. Moreover if we have ∆ti = ti − ti−1, then
P1 is said to be δ−fine if ∆ti < δ for all i. Let P(δ, [a, b]) denote the set of all δ−fine
partitions of [a, b]. If {ti−1, ξi, ti}mi=1 is a δ−fine P1 of [a, b] and if {sj−1, ηj , tj}nj=1 is δ−fine
P2 of [c, d], then rectangles

∆i,j = [ti−1, ti]× [sj−1, sj ]

partition the rectangle ∆ = [a, b] × [c, d] and the points (ξi, ηj) are inside the rectangles
[ti−1, ti] × [sj−1, sj ]. Further, by P (δ,∆) we denote the set of all δ−fine partitions P of
∆ with P1 × P2, where P1 ∈ P(δ, [a, b]) and P2 ∈ P(δ, [c, d]). Let ∆Ai, j be the area of
rectangle ∆i,j . In each rectangle ∆i,j , where 1≤ i ≤ m, 1 ≤ j ≤ n, choose arbitrary (ξi, ηj)
and get

S(F, P, δ,∆) =

m∑
i=1

n∑
j=1

F (ξi, ηj)∆Ai, j .

We call S(F, P, δ,∆) is integral sum of F associated with P ∈ P(δ,∆).
Now we recall the concept of interval-valued double integral given by Zhao et al. in [23].

Theorem 3.1. [23]Let F : ∆→ RI . Then F is called ID−integrable on ∆ with ID−integral
U = (ID)

∫∫
∆

F (t, s)dA, if for any ε > 0 there exist δ > 0 such that

d(S(F, P, δ,∆)) < ε

for any P ∈ P(δ,∆). The collection of all ID−integrable functions on ∆ will be denoted
by ID(∆).

Theorem 3.2. [23]Let ∆ = [a, b]× [c, d]. If F : ∆→ RI is ID−integrable on ∆, then we
have

(ID)

∫∫
∆

F (s, t)dA = (IR)

∫ b

a
(IR)

∫ d

c
F (s, t)dsdt.

Example 3.1. Let F : ∆ = [0, 1]× [1, 2]→ R+
I be defined by

F (s, t) = [st, s+ t],

then F (s, t) is integrable on ∆ and (ID)
∫∫
∆

F (t, s)dA =
[

3
4 , 2
]
.

4. Main Results

In this section, we define interval-valued co-ordinated log-convex function and prove some
inequalities of Hermite-Hadamard type by using our new definition. Throughout this
section we will use ∆ = [a, b]× [c, d], where a < b and c < d, a, b, c, d ∈ R.

Definition 4.1. A function F : ∆ → R+
I is said to be interval-valued co-ordinated log-

convex function, if the following inequality holds:

F (tx+ (1− t)y, su+ (1− s)w)

⊇ F (x, u)tsF (x,w)t(1−s)F (y, u)s(1−t)F (y, w)(1−s)(1−t),

for all (x, y), (u,w) ∈ ∆ and s, t ∈ [0, 1].
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Lemma 4.1. A function F : ∆→ R+
I is interval-valued log-convex on co-ordinates if and

only if there exists two functions Fx : [a, b] → R+
I , Fx(w) = F (x,w) and Fy : [c, d] →

R+
I , Fy(u) = F (u, y) are interval-valued log-convex.

Proof. The proof of this lemma follows immediately by the definition of interval-valued
co-ordinated convex function. �

Lemma 4.2. Let F : ∆→ R+
I be an interval-valued function such that F (x, y) =

[
F , F

]
,

then F is called interval-valued log-convex function if and only if F is log-convex and F is
log-concave function.

Proof. This proof is similar to Theorem 3.7 in [22], so it is omitted. �

In what follows, without causing confusion, we will delete notations of (R), (IR) and (ID).
We start with the following Theorem.

Theorem 4.1. If F : ∆→ R+
I is a continuous and interval-valued co-ordinated log-convex

function on ∆ such that F (t) =
[
F (t), F (t)

]
, then following inequalities holds:

F

(
a+ b

2
,
c+ d

2

)
⊇ exp

[
1

2 (b− a)

∫ b

a
lnF

(
x,
c+ d

2

)
dx+

1

2 (d− c)

∫ d

c
lnF

(
a+ b

2
, y

)
dy

]
⊇ exp

[
1

(b− a)(d− c)

∫ b

a

∫ d

c
lnF (x, y)dydx

]
⊇ exp

[
1

4 (b− a)

∫ b

a
lnF (x, c)dx+

1

4 (b− a)

∫ b

a
lnF (x, d)dx

+
1

4 (d− c)

∫ d

c
lnF (a, y)dy +

1

4 (d− c)

∫ d

c
lnF (b, y)dy

]
⊇ [F (a, c)F (a, d)F (b, c)F (b, d)]

1
4 . (10)

Proof. Since F is an interval-valued co-ordinated log-convex function on co-ordinates ∆,
then Fx : [c, d] → R+

I , Fx(y) = F (x, y) is an interval-valued log-convex function on [c, d]
and for all x ∈ [a, b]. From inequality (5), we have

lnFx

(
c+ d

2

)
⊇ 1

d− c

∫ d

c
lnFx (y) dy ⊇ ln

√
Fx(c)Fx(d),

that can be written as

lnF

(
x,
c+ d

2

)
⊇ 1

d− c

∫ d

c
lnF (x, y) dy ⊇ ln

√
F (x, c)F (x, d). (11)

Integrating (11) with respect to x over [a, b] and dividing both sides by (b− a), we have

1

b− a

∫ b

a
lnF

(
x,
c+ d

2

)
dx

⊇ 1

(b− a)(d− c)

∫ b

a

∫ d

c
lnF (x, y) dydx

⊇ 1

2(b− a)

[∫ b

a
lnF (x, c)dx+

∫ b

a
lnF (x, d)dx

]
. (12)
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Similarly, Fy = [a, b] → R+
I , Fy(x) = F (x, y) is an interval-valued log-convex function on

[a, b] and y ∈ [c, d], we have

1

d− c

∫ d

c
lnF

(
a+ b

2
, y

)
dy

⊇ 1

(b− a)(d− c)

∫ b

a

∫ b

a
lnF (x, y)dydx

⊇ 1

2(d− c)

[∫ d

c
lnF (a, y)dy +

∫ d

c
lnF (b, y)dy

]
. (13)

By adding (12) and (13) and using Theorem 2.1, we have second and third inequality in
(10). We also have from (5),

lnF

(
a+ b

2
,
c+ d

2

)
⊇ 1

b− a

∫ b

a
lnF

(
x,
c+ d

2

)
dx (14)

lnF

(
a+ b

2
,
c+ d

2

)
⊇ 1

d− c

∫ d

c
lnF

(
a+ b

2
, y

)
dy. (15)

By adding (14) and (15) and using Theorem 2.1, we have first inequality in (10). At the
end, again from (5) and Theorem 2.1, we have

1

b− a

∫ b

a
lnF (x, c)dx ⊇ ln

√
F (a, c)F (b, c),

1

b− a

∫ b

a
lnF (x, d)dx ⊇ ln

√
F (a, d)F (b, d),

1

d− c

∫ d

c
lnF (a, y)dy ⊇ ln

√
F (a, c)F (a, d),

1

d− c

∫ d

c
lnF (b, y)dy ⊇ ln

√
F (b, c)F (b, d)

and proof is completed. �

Example 4.1. Suppose that [a, b] = [0, 1] and [c, d] = [1, 2]. Let F : [a, b]× [c, d]→ R+
I be

given as F (x, y) = [ex+y, x+ y], for all x ∈ [a, b] and y ∈ [c, d]. We have

lnF

(
a+ b

2
,
c+ d

2

)
= [2, 0.6931] ,

1

2

[
1

b− a

∫ b

a
lnF

(
x,
c+ d

2

)
dx+

1

d− c

∫ d

c
lnF

(
a+ b

2
, y

)
dy

]
= [2, 0.6825] ,

1

(b− a)(d− c)

∫ b

a

∫ d

c
lnF (x, y)dydx = [2, 0.6711] ,

1

4

[
1

b− a

∫ b

a
lnF (x, c)dx+

1

b− a

∫ b

a
lnF (x, d)dx

+
1

d− c

∫ d

c
lnF (a, y)dy +

1

d− c

∫ d

c
lnF (b, y)dy

]
= [2, 0.6478] ,

[F (a, c)F (a, d)F (b, c)F (b, d)]
1
4 . = [2, 0.6212] .

Hence from (10), we have [2, 0.6931] ⊇ [2, 0.6825] ⊇ [2, 0.6711] ⊇ [2, 0.6478] ⊇ [2, 0.6212] .

Remark 4.1. If F = F , then Theorem 4.1 reduces to [3, Corollary 3.1].
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Theorem 4.2. If F : ∆ → R+
I is continuous and interval–valued co-ordinated log-convex

function such that F (t) =
[
F (t), F (t)

]
, then following inequalities holds:

F

(
a+ b

2
,
c+ d

2

)
⊇ exp

[
1

2 (b− a)

∫ b

a
lnF

(
x,
c+ d

2

)
dx+

1

2 (d− c)

∫ d

c
lnF

(
a+ b

2
, y

)
dy

]
⊇ exp

[
1

4 (b− a)

∫ b

a
lnF

(
x,

3c+ d

4

)
F

(
x,
c+ 3d

4

)
dx

+
1

4 (d− c)

∫ d

c
lnF

(
3a+ b

4
, y

)
F

(
a+ 3b

4
, y

)
dy

]
⊇ exp

[
1

(b− a) (d− c)

∫ b

a

∫ d

c
F (x, y) dydx

]
⊇ exp

[
1

8 (b− a)

∫ b

a
lnF (x, c)F (x, d)F 2

(
x,
c+ d

2

)
dx

+
1

8 (d− c)

∫ d

c
lnF (a, y)F (b, y)F 2

(
a+ b

2
, y

)
dy

]
⊇ exp

[
1

2 (b− a)

∫ b

a
lnF (x, c) dx+

1

2 (b− a)

∫ b

a
lnF (x, d) dx

1

2 (d− c)

∫ d

c
lnF (a, y) dy +

1

2 (d− c)

∫ d

c
lnF (b, y) dy

]
⊇

[
F (a, c)F (b, c)F (a, d)F (b, d)F

(
a+ b

2
, c

)
× F

(
a+ b

2
, d

)
F

(
a,
c+ d

2

)
F

(
b,
c+ d

2

)]
⊇

√
F (a, c)F (b, c)F (a, d)F (b, d). (16)

Proof. Since F is an interval-valued co-ordinated log-convex function on co-ordinates ∆,
then Fx : [c, d] → R+

I , Fx(y) = F (x, y) is an interval-valued log-convex function on [c, d]
and for all x ∈ [a, b]. From inequality (7), we have

lnF 2
x

(
c+ d

2

)
⊇ ln

√
Fx

(
3c+ d

4

)
Fx

(
c+ 3d

4

)
⊇ 1

d− c

∫ d

c
lnFx (y) dy

⊇ ln

[
Fx (c)Fx (d)F 2

x

(
c+ d

2

)] 1
4

⊇ lnFx (c)Fx (d) ,
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that can be written as

lnF 2

(
x,
c+ d

2

)
⊇ ln

√
F

(
x,

3c+ d

4

)
F

(
x,
c+ 3d

4

)
⊇ 1

d− c

∫ d

c
lnF (x, y) dy

⊇ ln

[
F (x, c)F (x, d)F 2

(
x,
c+ d

2

)] 1
4

⊇ lnF (x, c)F (x, d) , (17)

Integrating (17) with respect to x over [a, b] and dividing both sides by (b− a), we have

1

b− a

∫ b

a
lnF 2

(
x,
c+ d

2

)
dx

⊇ 1

2 (b− a)

∫ b

a
lnF

(
x,

3c+ d

4

)
F

(
x,
c+ 3d

4

)
dx

⊇ 1

(b− a)(d− c)

∫ b

a

∫ d

c
lnF (x, y) dydx

⊇ 1

4 (b− a)

∫ b

a
lnF (x, c)F (x, d)F 2

(
x,
c+ d

2

)
dx

⊇ 1

b− a

∫ b

a
lnF (x, c)F (x, d) dx. (18)

Similarly, Fy = [a, b] → R+
I , Fy(x) = F (x, y) is an interval-valued log-convex function on

[a, b] and y ∈ [c, d], we have

1

d− c

∫ d

c
lnF 2

(
a+ b

2
, y

)
dy

⊇ 1

2 (d− c)

∫ d

c
lnF

(
3a+ b

4
, y

)
F

(
a+ 3b

4
, y

)
dy

⊇ 1

(b− a)(d− c)

∫ b

a

∫ d

c
lnF (x, y) dydx

⊇ 1

4 (d− c)

∫ d

c
lnF (a, y)F (b, y)F 2

(
a+ b

2
, y

)
dx

⊇ 1

d− c

∫ d

c
lnF (a, y)F (b, y) dy. (19)

By adding (18) and (19) and using Theorem 2.1, we have second and third inequality in
(16). We also have from (7),

lnF

(
a+ b

2
,
c+ d

2

)
⊇ 1

b− a

∫ b

a
lnF 2

(
x,
c+ d

2

)
dx (20)

lnF

(
a+ b

2
,
c+ d

2

)
⊇ 1

d− c

∫ d

c
lnF 2

(
a+ b

2
, y

)
dy. (21)
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By adding (20) and (21) and using Theorem 2.1, we have first inequality in (16). Again
from (7) and Theorem 2.1, we have

1

b− a

∫ b

a
lnF (x, c)dx ⊇ ln

[
F (a, c)F (b, c)F 2

(
a+ b

2
, c

)] 1
4

⊇ ln
√
F (a, c)F (b, c),

1

b− a

∫ b

a
lnF (x, d)dx ⊇ ln

[
F (a, d)F (b, d)F 2

(
a+ b

2
, d

)] 1
4

⊇ ln
√
F (a, d)F (b, d),

1

d− c

∫ d

c
lnF (a, y)dy ⊇ ln

[
F (a, c)F (a, d)F 2

(
a,
c+ d

2

)] 1
4

⊇ ln
√
F (a, c)F (a, d),

1

d− c

∫ d

c
lnF (b, y)dy ⊇ ln

[
F (b, c)F (b, d)F 2

(
b,
c+ d

2

)] 1
4

⊇ ln
√
F (b, c)F (a, d),

and proof is completed. �

Theorem 4.3. If F,G : ∆ → R+
I are continuous and interval-valued co-ordinated log-

convex functions on ∆ such that F (t) =
[
F (t), F (t)

]
and,G(t) =

[
G(t), G(t)

]
then following

inequalities holds:

F

(
a+ b

2
,
c+ d

2

)
G

(
a+ b

2
,
c+ d

2

)
⊇ exp

[
1

2 (b− a)

∫ b

a
lnF

(
x,
c+ d

2

)
G

(
x,
c+ d

2

)
dx

+
1

2 (d− c)

∫ d

c
lnF

(
a+ b

2
, y

)
G

(
a+ b

2
, y

)
dy

]
⊇ exp

[
1

(b− a)(d− c)

∫ b

a

∫ d

c
lnF (x, y)G (x, y) dydx

]
⊇ exp

[
1

4 (b− a)

∫ b

a
lnF (x, c)G (x, c) dx+

1

4 (b− a)

∫ b

a
lnF (x, d)G (x, d) dx

+
1

4 (d− c)

∫ d

c
lnF (a, y)G (a, y) dy +

1

4 (d− c)

∫ d

c
lnF (b, y)G (b, y) dy

]
⊇ [F (a, c)F (a, d)F (b, c)F (b, d)G(a, c)G(a, d)G(b, c)G(b, d)]

1
4 . (22)

Proof. Since F and G are interval-valued co-ordinated log-convex functions on ∆, therefore

Fx(y) : [c, d]→ R+
I , Fx(y) = F (x, y), Gx(y) : [c, d]→ R+

I , Gx(y) = G(x, y),

and

Fy(x) : [a, b]→ R+
I , Fy(x) = F (x, y), Gy : [a, b]→ R+

I , Gy(x) = G(x, y)

are interval-valued convex functions on [c, d] and [a, b] respectively for all x ∈ [a, b], y ∈
[c, d].
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From inequality (9), we have

lnFx

(
c+ d

2

)
Gx

(
c+ d

2

)
⊇

[
1

d− c

∫ d

c
lnFx (y)Gx (y) dy

]
⊇ ln

(√
Fx(c)Fx(d)Gx(c)Gx(d)

)
,

that can be written as

lnF

(
x,
c+ d

2

)
lnG

(
x,
c+ d

2

)
⊇

[
1

d− c

∫ d

c
lnF (x, y)G (x, y) dy

]
⊇ ln

(√
F (x, c)F (x, d)G(x, c)G(x, d)

)
. (23)

Integrating (23) with respect to x over [a, b] and dividing both sides by (b− a), we have

1

b− a

∫ b

a
lnF

(
x,
c+ d

2

)
G

(
x,
c+ d

2

)
dx

⊇ 1

(b− a)(d− c)

∫ b

a

∫ d

c
lnF (x, y)G (x, y) dydx

⊇ 1

2(b− a)

[∫ b

a
lnF (x, c)G(x, c)dx+

∫ b

a
lnF (x, d)G(x, d)dx

]
. (24)

Similarly, we have

1

d− c

∫ d

c
lnF

(
a+ b

2
, y

)
G

(
a+ b

2
, y

)
dy

⊇ 1

(b− a)(d− c)

∫ b

a

∫ b

a
lnF (x, y)G(x, y)dydx

⊇ 1

2(d− c)

[∫ d

c
lnF (a, y)G(a, y)dy +

∫ d

c
lnF (b, y)G(b, y)dy

]
. (25)

By adding (24) and (25) and using Theorem 2.1, we have second and third inequality in
(22). We also have from (9),

lnF

(
a+ b

2
,
c+ d

2

)
G

(
a+ b

2
,
c+ d

2

)
⊇ 1

b− a

∫ b

a
lnF

(
x,
c+ d

2

)
G

(
x,
c+ d

2

)
dx(26)

lnF

(
a+ b

2
,
c+ d

2

)
G

(
a+ b

2
,
c+ d

2

)
⊇ 1

d− c

∫ d

c
lnF

(
a+ b

2
, y

)
G

(
a+ b

2
, y

)
dy.(27)

By adding (26) and (27) and using Theorem 2.1, we have first inequality in (22). At the
end, again from (9) and Theorem 2.1, we have

1

b− a

∫ b

a
lnF (x, c)G(x, c)dx ⊇ ln

√
F (a, c)F (b, c)G(a, c)G(b, c),

1

b− a

∫ b

a
lnF (x, d)G(x, d)dx ⊇ ln

√
F (a, d)F (b, d)G(a, d)G(b, d),

1

d− c

∫ d

c
lnF (a, y)G(a, y)dy ⊇ ln

√
F (a, c)F (a, d)G(a, c)G(a, d),

1

d− c

∫ d

c
lnF (b, y)G(b, y)dy ⊇ ln

√
F (b, c)F (b, d)G(b, c)G(b, d)

and proof is completed. �
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Remark 4.2. If F = F , then resultant results coincides with the [1, Theorem 2.4].

5. Conclusion

In this study, the notion of interval-valued log convex functions on the co-ordinates
on the rectangle from the plane is given. Some new inequalities of Hermite-Hadamard
type for these new classes of functions are proved. It is also proved that the results
proved in this paper are potential generalization of the existing comparable results in the
literature. As future directions, one may finds the similar inequalities through different
types of convexities.
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