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OUTER-CONVEX DOMINATION IN THE CORONA OF GRAPHS

J. DAYAP1, §

Abstract. Let G be a connected simple graph. A subset S of a vertex set V (G) is
called an outer-convex dominating set of G if for every vertex v ∈ V (G)\S, there exists a
vertex x ∈ S such that xv is an edge of G and V (G)\S is a convex set. The outer-convex
domination number of G, denoted by γ̃con(G), is the minimum cardinality of an outer-
convex dominating set of G. In this paper, we show that every integers a, b, c, and n
with a ≤ b ≤ c ≤ n− 1 is realizable as domination number, outer-connected domination
number, outer-convex domination number, and order of G respectively. Further, we give
the characterization of the outer-convex dominating set in the corona of two graphs and
give its corresponding outer-convex domination number.
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1. Introduction

The theory of domination is an area in graph theory with numerous research activi-
ties. One of the domination parameters of interest is outer-convex domination which was
introduced by Dayap and Enriquez in 2019 [1] and further investigated in [2]. In [1],
the authors characterized the outer-convex domination in the join of two graphs and give
some of its bounds. In [2], the authors characterized the parameter in the composition
and Cartesian product of graphs. In this paper, we give the characterization of the outer-
convex dominating set in the corona of two graphs and outer-convex domination number
on the resulting graph. Further, we give some realization problems of the said domination
parameter.

Let G be a simple graph. A subset S of a vertex set V (G) is a dominating set of G if
for every vertex v ∈ V (G)\S, there exists a vertex x ∈ S such that xv is an edge of G.
The domination number γ(G) of G is the smallest cardinality of a dominating set S of G.
Dominating sets have several applications in a variety of fields, including communication
and electrical networks, protection and location strategies, data structures and others. For
further background on dominating sets, the reader may refer to [3]. Domination in graph
was introduced by Claude Berge in 1958 [4] and Oystein Ore in 1962 [5].
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A graph G is connected if there is at least one path that connects every two vertices
x, y ∈ V (G), otherwise, G is disconnected. A nonempty subset S of V (G) is a clique in G
if every two vertices in S are adjacent. For any two vertices u and v in a connected graph,
the distance dG(u, v) between u and v is the length of a shortest path in G. A u-v path of
length dG(u, v) is also referred to as u-v geodesic. The closed interval IG[u, v] consists of
all those vertices lying on a u-v geodesic in G. For a subset S of vertices of G, the union
of all sets IG[u, v] for u, v ∈ S is denoted by IG[S]. Hence x ∈ IG[S] if and only if x lies on
some u-v geodesic, where u, v ∈ S. A set S is convex if IG[S] = S. More specifically, if G
is connected graph, then V (G) is convex. If V (G)\S is convex, then S is an outer-convex
set of G. Convexity in graphs was studied in [6, 7].

A dominating set S, which is also convex, is called a convex dominating set of G. The
convex domination number γcon(G) of G is the smallest cardinality of a convex dominating
set of G. A convex dominating set of cardinality γcon(G) is called a γcon-set of G. Convex
domination in graphs was studied in [8, 9, 10]. A set S of vertices of a graph G is an
outer-connected dominating set if every vertex not in S is adjacent to some vertex in S
and the sub-graph induced by V (G) \ S is connected. The outer-connected domination
number γ̃c(G) is the minimum cardinality of the outer-connected dominating set S of a
graph G. The concept of outer-connected domination in graphs was introduced by Cyman
[12] and further investigated in [11].

A set S of vertices of a graph G is an outer-convex dominating set if every vertex
not in S is adjacent to some vertex in S and V (G) \ S is convex. The outer-convex
domination number of G, denoted by γ̃con(G), is the minimum cardinality of an outer-
convex dominating set of G. An outer-convex dominating set of cardinality γ̃con(G) will
be called an γ̃con-set.

Let G and H be graphs of order m and n, respectively. The corona of two graphs G
and H is the graph G ◦H obtained by taking one copy of G and m copies of H, and then
joining the ith vertex of G to every vertex of the ith copy of H. The join of vertex v of G
and a copy Hv of H in the corona of G and H is denoted by v +Hv.

2. Results

Theorem 2.1. Given positive integers a, b, c, and n such that n ≥ 2 and a ≤ b ≤ c ≤ n−1,
there exists a connected graph G with γ(G) = a, γcon(G) = b, γ̃con(G) = c, and |V (G)| = n.

Proof. Consider the following cases:
Case 1: Suppose a = b = c = n− 1.
Let G = K2. Clearly, γ(G) = 1, γcon(G) = 1, γ̃con = 1, and |V (G)| = 2.
Case 2: Suppose a = b = c < n− 1.
Let G = Pa ◦K1 (see Figure 1) and let n = 2a.

Figure 1: A graph G with a = b = c < n− 1

Clearly, the set A = {vi : i = 1, 2, ..., a} is a γ − set, and γcon − set of G. The set B =
{ui : i = 1, 2, ..., a} is a γ̃con − set of G. Thus, |V (G)| = 2|A| = 2a = n, γ(G) = |A| = a,
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γcon = |A| = a = b, and γ̃con = |B| = a = b = c.
Case 3: Suppose a = b < c < n− 1.
Consider the graph G obtained from the graph in Figure 1 by adding the vertex xi and
the edges vixi for i = 1, 2, ..., a (see Figure 2) and let 2a = c, and 3a = n.

Figure 2: A graph G with a = b < c < n− 1

The set A = {vi : i = 1, 2, ..., a} is a γ − set, and γcon − set of G. The set B = {ui :
i = 1, 2, ..., a} ∪ {xi : i = 1, 2, ..., a} is a γ̃con − set of G. Thus, |V (G)| = 3|A| = 3a = n,
γ(G) = |A| = a, γcon(G) = |A| = a = b, γ̃con(G) = |B| = a+ a = 2a = c.
Case 4: Suppose a < b = c < n− 1.
Consider the graph G obtained from the graph in Figure 1 by adding the vertex yi and
the edges yiui for i = 1, 2, ..., a (see Figure 3) and let 2a = b, and 3a = n.

Figure 3: A graph G with a < b = c < n− 1

Clearly, the set A = {ui : i = 1, 2, ..., a} is a γ − set, B = A ∪ {vi : i = 1, 2, ..., a} is
a γcon − set, and C = A ∪ {yi : i = 1, 2, ..., a} is a γ̃con − set of G. Thus, |V (G)| =
3|A| = 3a = n, γ(G) = |A| = a, γcon(G) = |B| = |A| + a = a + a = 2a = b, and
γ̃con(G) = |C| = |A|+ a = a+ a = 2a = b = c.
Case 5: Suppose a < b < c < n− 1.
Consider the graph G obtained from the graph in Figure 3 by adding the vertices z, and
xi and edges viz, and zxi for i = 1, 2, ..., a (see Figure 4) and let b = 2a+ 1, c = 3a , and
n = 4a+ 1.
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Figure 4: A graph G with a < b < c < n− 1

Clearly, the set A = {ui : i = 1, 2, ..., a} ∪ z is a γ − set, B = A ∪ {vi : i = 1, 2, ..., a}
is γcon − set, and C = {ui : i = 1, 2, ..., a} ∪ {xi : i = 1, 2, ..., a} ∪ {yi : i = 1, 2, ..., a} is
a γ̃con − set of G. Thus, |V (G)| = 4|A| − 3 = 4(a + 1) − 3 = 4a + 4 − 3 = 4a + 1 = n,
γ(G) = |A| = a + 1, γcon(G) = |B| = |A| + a = (a + 1) + a = 2a + 1 = b, γ̃con(G) =
a+ a+ a = 3a = c.

Theorem 2.2. Given positive integers a, b, c, and n such that n ≥ 2 and a ≤ b ≤ c ≤ n−1,
there exists a connected graph G with γ(G) = a, γ̃c(G) = b, γ̃con(G) = c, and |V (G)| = n.

Proof. Consider the following cases:
Case 1. Suppose a = b = c = n− 1.
Let G = K2. Clearly, γ(G) = 1, γ̃c(G) = 1, γ̃con = 1, and |V (G)| = 2.
Case 2. Suppose a = b = c < n− 1.
Let G = Pa ◦K1 (see Figure 1) and let n = 2a.
Clearly, the set A = {ui : i = 1, 2, ..., a} is a γ − set, γ̃c − set, and γ̃con − set of G. Thus,
|V (G)| = 2|A| = 2a = n, γ(G) = |A| = a, γ̃c = |A| = b, and γ̃con = |A| = c.
Case 3. Suppose a = b < c < n− 1.
Let G = Pa ◦ P3 (See Figure 5) and let c = 2a and n = 4a.

Figure 5: A graph G with a = b < c < n− 1

Clearly, the set A = {ui : i = 1, 2, ..., a} is a γ − set, and a γ̃c − set and the set
B = A ∪ {ti : i = 1, 2, ..., a} is a γ̃con − set of G. Thus, |V (G)| = 4|A| = 4a = n,
γ(G) = |A| = a, γ̃c(G) = |A| = a = b, and γ̃con(G) = |B| = |A|+ a = a+ a = 2a = c.
Case 4. Suppose a < b = c < n− 1.
Consider the graph G obtained from the graph in Figure 3 and let b = 2a, and n = 3a.
The set A = {vi : i = 1, 2, ..., a} is a γ − set, and B = {ui : i = 1, 2, ..., a} ∪ {xi : i =
1, 2, ..., a} is a γ̃c−set, and γ̃con−set of G. Thus, |V (G)| = 3|A| = 3a = n, γ(G) = |A| = a,
γ̃c(G) = |B| = a+ a = 2a = b, γ̃con(G) = |B| = 2a = b = c.
Case 5. Suppose a < b < c < n− 1.
Let G = Pa ◦ P5 (See Figure 6) and let b = 2a, c = 3a, and n = 6a.
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Figure 6: A graph G with a < b < c < n− 1

Clearly, the set A = {vi : i = 1, 2, ..., a} is a γ − set, B = {si : i = 1, 2, ..., a} ∪ {wi :
i = 1, 2, ..., a} is a γ̃c − set and the set C = B ∪ {xi : i = 1, 2, ..., a} is a γ̃con − set of G.
Thus, |V (G)| = 6|A| = 6a = n, γ(G) = |A| = a, γ̃c(G) = |B| = a + a = 2a = b, and
γ̃con(G) = |C| = |B|+ a = 2a+ a = 3a = c.

This proves the assertion. �

Theorem 2.3. Let G be a connected graph and H be a connected non-complete graph.
Then a subset S of V (G ◦H) is an outer-convex dominating set in G ◦H if and only if
one of the following statements is satisfied:

(i) S =
⋃

x∈V (G)

Sx, where Sx is a dominating set in Hx and V (Hx) \ Sx is convex in

x+Hx for all x ∈ V (G).

(ii) S = V (G)
⋃
Sx

⋃ ⋃
z∈V (G)\{x}

V (Hz)

 for some x ∈ V (G), where Sx = V (Hx)

or V (Hx) \ Sx is a clique set in Hx.

(iii) S = SG
⋃ ⋃

x∈V (G)\SG

Sx

⋃ ⋃
z∈SG

V (Hz)

, where SG is an outer-convex set

in G, Sx is a dominating set in Hx and V (Hx) \ Sx is convex in x+Hx.

Proof. Suppose that a subset S of V (G ◦H) is an outer-convex dominating set in G ◦H.
Then S is a dominating set and V (G◦H)\S is a convex set in G◦H. Set SG = S

⋂
V (G)

and Sx = S
⋂
V (Hx). Consider the following cases:

Case 1: SG = ∅
Then, obviously, S will be the one given in (i). Next, one needs to show that, for

an arbitrary x ∈ V (G), Sx is an outer-convex dominating set of x + Hx, that is, Sx
is a dominating set in Hx and V (Hx) \ Sx is convex in x + Hx. Suppose that Sx is

not a dominating set in Hx for all x ∈ V (G). Then S =
⋃

x∈V (G)

Sx is clearly not a

dominating set, contrary to our assumption. Thus, Sx must be a dominating set in Hx for
all x ∈ V (G). Now, suppose that V (Hx)\Sx is not convex in x+Hx for all x ∈ V (G). Then,⋃
x∈V (G)

(V (Hx) \Sx), is not convex. Thus, V (G)∪

 ⋃
x∈V (G)

(V (Hx) \ Sx)

 = V (G ◦H) \S

is not convex, contrary to our assumption. Thus, V (Hx) \Sx must be convex in G ◦H for
all x ∈ V (G). This proves statement (i).

Case 2: SG = V (G)
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Set S = V (G)
⋃
Sx

⋃ ⋃
z∈V (G)\{x}

V (Hz)

. If S = V (G ◦ H), then Sx = V (Hx)

for all x ∈ V (G). Suppose, S 6= V (G ◦ H). Then, there exists x ∈ V (G) such that
Sx 6= V (Hx). Suppose V (Hx) \ Sx is not a clique set in Hx. Then, V (Hx) \ Sx = V (G ◦

H)\

V (G)
⋃
Sx

⋃ ⋃
z∈V (G)\{x}

V (Hz)

. It follows that, V (Hx)\Sx = V (G◦H)\S is

not a clique set. This implies that there exist u, v ∈ V (G◦H)\S such that uv /∈ E(G◦H).
Since ux, xv ∈ E(G ◦ H) for some x ∈ V (G), x ∈ IG◦H [V (G ◦ H) \ S]. Now, x ∈ V (G)
implies that x ∈ S and so x /∈ V (G ◦H) \ S. Thus, IG◦H [V (G ◦H) \ S] 6= V (G ◦H) \ S,
that is, V (G ◦H) \ S is not convex contrary to our assumption. Hence, V (Hx \ Sx) must
be a clique set. Suppose, there exists y 6= x ∈ V (G) such that V (Hy) \ Sy is clique set
in Hy. Since x, y ∈ V (G) implies that x, y ∈ S, it follows that x, y 6= V (G ◦ H) \ S.
Clearly,IG◦H [V (G ◦H) \ S] 6= V (G ◦H) \ S that is, V (G ◦H) \ S is not convex, contrary
to our assumption. Hence, V (Hx) \ Sx is clique set in Hx for some x ∈ V (G), showing
statement (ii).

Case 3: SG 6= ∅ and SG 6= V (G)

Set S = SG
⋃ ⋃

x∈V (G)\SG

Sx

⋃ ⋃
z∈SG

V (Hz)

. Suppose SG is not an outer-convex

set in G. Then, V (G) \SG is not convex in G. Consequently, IG[V (G) \SG] 6= V (G) \SG.
Now, pick distinct elements x and y in V (G)\SG. Then, x, y /∈ SG, implies x, y /∈ S. This
means, x, y ∈ V (G ◦H) \ S. Obviously, IG◦H [V (G ◦H) \ S] 6= V (G ◦H) \ S.This implies
that V (G◦H)\S is not convex, contrary to our assumption. Hence, SG must be an outer-
convex set in G. Suppose Sx is not a dominating set in Hx for all x ∈ V (G) \ SG, then
there exists w ∈ V (Hx) \ Sx such that wy /∈ E(Hx) for all y ∈ Sx. Since for all z ∈ SG,
wz /∈ E(G ◦H) and for all u ∈ V (Hz), wu /∈ E(G ◦H), it follows that wv /∈ E(G ◦H) for

all v ∈

SG⋃ ⋃
x∈V (G)\SG

Sx

⋃ ⋃
z∈SG

V (Hz)

. Thus, there exists w ∈ V (G◦H)\S

such that wv /∈ E(G◦H) for all v ∈ S, contrary to our assumption that S is a dominating
set in G ◦ H. Thus, Sx must be a dominating set in Hx for all x ∈ V (G) \ SG.Now, let
distinct elements x, y ∈ V (G ◦H) \ S with Sx ⊆ V (Hx). Then

y ∈ V (G ◦H) \

SG⋃
Sx

⋃ ⋃
z∈SG

V (Hz)


y /∈

SG⋃
Sx

⋃ ⋃
z∈SG

V (Hz)


y /∈ Sx

y ∈ V (Hx) \ Sx

Thus, V (G ◦H) \S ⊆ V (Hx) \Sx. Since V (Hx) \Sx ⊆ V (G ◦H) \S for all x ∈ V (G) \SG
is clear, it follows that V (G◦H)\S = V (Hx)\Sx. Hence, V (x+Hx)\Sx is convex set in
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G ◦H. Therefore, S = SG
⋃ ⋃

x∈V (G)\SG

Sx

⋃ ⋃
z∈SG

V (Hz)

, where SG is an outer-

convex set in G, Sx is a dominating set in Hx and (V (Hx) \ Sx) is convex in x+ V (Hx)
proving (iii).

For the converse, suppose that statement (i), (ii), or (iii) is satisfied. Consider first that
statement (i) holds. Since for each x ∈ V (G), Sx is a dominating set in Hx, it follows that

S =
⋃

x∈V (G)

Sx is a dominating set in G ◦H. Let r, s ∈ V (G ◦H) \S such that r 6= s.Then,

r, s ∈ V (G ◦H) \

 ⋃
x∈V (G)

Sx


∈ V (G)

⋃ ⋃
x∈V (G)

(V (Hx) \ Sx)



To show that V (G ◦H) \ S is convex, it is enough to show that IG[r, s] ⊆ V (G ◦H) \ S.
Now, suppose r, s ∈ V (G). Clearly, IG[r, s] ⊆ V (G) ⊆ V (G ◦H) \ S. Thus, V (G ◦H) \ S
is convex in G ◦H. Accordingly, S is an outer-convex dominating set in G ◦H.

Next, suppose that statement (ii) holds. Since V (G) is a dominating set in G ◦H,

S = V (G)
⋃
Sx

⋃ ⋃
z∈V (G)\{x}

V (Hz)

 is a dominating set in G ◦H. Now, V (G ◦H) \S

= V (G ◦H) \

V (G)
⋃
Sx

⋃ ⋃
z∈V (G)\{x}

V (Hz)


=

V (G)
⋃ ⋃

z∈V (G)

V (Hz)

 \
V (G)

⋃
Sx

⋃ ⋃
z∈V (G)\{x}

V (Hz)


=

V (G)
⋃ ⋃

z∈V (G)\{x}

V (Hz)

⋃
V (Hx)

 \
V (G)

⋃
Sx

⋃ ⋃
z∈V (G)\{x}

V (Hz)


= V (Hx) \ Sx.

Since V (Hx) \ Sx is a clique set, it follows that V (G ◦ G) \ S is a clique set. Thus,
V (G ◦ H) \ S is convex in G ◦ H. Accordingly, S is an outer-convex dominating set in
G ◦H.
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Finally, suppose that statement (iii) holds. Since Sx is a dominating set in Hx, S =

SG
⋃ ⋃

x∈V (G)\SG

Sx

⋃ ⋃
z∈SG

V (Hz)

 is a dominating set in G◦H. Now, V (G◦H)\S

=

V (G)
⋃ ⋃

z∈V (G)

V (Hz)

 \ S
=

V (G)
⋃ ⋃

z∈V (G)

V (Hz)

 \
SG⋃ ⋃

x∈V (G)\SG

Sx

⋃ ⋃
z∈SG

V (Hz)


=

V (G)
⋃ ⋃

z∈SG

V (Hz)

⋃ ⋃
x∈V (G)\SG

V (Hx)

 \
SG⋃ ⋃

x∈V (G)\SG

Sx

⋃ ⋃
z∈SG

V (Hz)


=

V (G)
⋃ ⋃

x∈V (G)\SG

V (Hx)

 \
SG⋃ ⋃

x∈V (G)\SG

Sx


= (V (G) \ SG)

⋃ ⋃
x∈V (G)\SG

V (Hx) \ Sx

 .

To show that V (G ◦H) \ S is convex, it is enough to show that for all r, s ∈ V (G) \ SG,
IG[r, s] ⊆ V (G ◦H) \ S. Suppose, r, s ∈ V (G) \ SG. Since V (G) \ SG is convex in G, then
IG[r, s] ⊆ V (G) \ SG ⊆ V (G ◦ H) \ S. It follows that V (G ◦ H) \ S is convex in G ◦ H.
Accordingly, S is an outer-convex dominating set in G ◦H. �

Corollary 2.1. Let G be a connected graph of order m ≥ 2 and H be any graph order n.
If Sx ⊆ V (Hx) is a minimum outer-convex dominating set of x+Hx for each x ∈ V (G),
then γ̃con(G ◦H) = mγ̃con(x+Hx).

Proof. Suppose that Sx ⊆ V (Hx) is a minimum outer-convex dominating set of x + Hx

for each x ∈ V (G). Then Sx is a dominating set of Hx and V (Hx)\Sx is convex in

x+Hx. Then by Theorem 2.3, S =
⋃

x∈V (G)

Sx is an outer-convex dominating set in G ◦H

. Thus, γ̃con(G ◦H) ≤ |S| = |
⋃

x∈V (G)

Sx| = |V (G)||Sx| = mγ̃con(x+Hx). Now, let S∗ be a

minimum outer-convex dominating set of G ◦H. Since m ≥ 2, by Theorem 2.3, it is clear

that S∗ ⊆
⋃

x∈V (G)

Sx. Since Sx is the minimum outer-convex dominating set of x+Hx, it

follows that,

γ̃con(G ◦H) = |S∗| = |
⋃

x∈V (G)

S∗x| ≥ |
⋃

x∈V (G)

Sx|

= |V (G)||Sx|
= mγ̃con(x+Hx).

Therefore, γ̃con(G ◦H) = mγ̃con(H).
In view of Theorem 2.3 and Corollary 2.1, the following corollary is immediate.
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Corollary 2.2. Let G be a connected graph of order m ≥ 2 and H be any graph of
order n. The set S ⊂ V (G ◦ H) is a minimum outer-convex dominating set in G ◦ H if

S =
⋃

x∈V (G)

Sx,where Sx ⊆ V (Hx) is a minimum outer-convex dominating set in x+Hx.

The following result is due to Dayap and Enriquez [2].

Remark 2.1. Let G be a nontrivial connected graph of order n. Then 1 ≤ γ(G) ≤
γ̃con(G) ≤ n− 1

The following result is due to Canoy and Go [13].

Corollary 2.3. Let G be a connected graph of order m and let H be any graph of order
n. Then γ(G ◦H) = m.

Corollary 2.4. Let G be a connected graph and H be a complete graph. Then γ̃con(G ◦
H) = |V (G)|

Proof. Suppose that Sx is a minimum dominating set of Hx. Since H is complete, it

follows that V (Hx)\Sx is convex in x+Hx and |Sx| = 1. Then, S =
⋃

x∈V (G)

Sx is an outer-

convex dominating set in G◦H. Thus, γ̃con(G◦H) ≤ |S| = |
⋃

x∈V (G)

Sx| = |V (G)||Sx| = m.

By Corollary 2.3, γ(G ◦ H) = m. Also, by Remark 2.1, γ(G ◦ H) ≤ γ̃con(G ◦ H). This
implies that m = γ(G ◦H) ≤ γ̃con(G ◦H) ≤ m. Therefore, γ̃con(G ◦H) = m.

3. Conclusion

An outer-convex domination is a new variant of domination in graphs and the corona of
two graphs is one of the graph operations that plays a very important role in mathematical
chemistry. Hence, this paper is a contribution to the development of the application of
domination theory in the field of mathematical chemistry. Since this is new, further
investigations must be promoted to come up with coherent and substantial results of the
parameter, an outer-convex domination number. Thus, the characterization of the outer-
convex dominating set on some special graphs and some binary operations such as the
sequential join and Square of Normal Product of two graphs are recommended for further
study. Moreover, the applications of the characterization of the said parameter in the
corona of two graphs are further to be looked into. The aforementioned characterization
might be used as a tool in finding simpler graphs on some chemically interesting graphs and
a tool in developing a symmetric encryption algorithm. Finally, domination in graphs is
rich with immediate applications in the real world such as routing problems in the Internet,
problems in electrical networks, data structures, neural and communication networks,
protection and location strategies and many others. The outer-convex domination in
graphs is not far from these applications.
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