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CHARACTERIZATION OF UNIFORM AND HYBRID CELLULAR

AUTOMATA WITH NULL BOUNDARY

M. RAJASEKAR1, R. ANBU2, §

Abstract. In this article, we dispute about the characterization of Cellular automata
with restricted vertical neighborhood and Von neumann neighborhood of null boundary
conditions over the field Z2 in uniform cellular automata and hybrid cellular automata.
Transition rule matrix for uniform and hybrid cellular automara with null boundary con-
dition is obtained and the reversibility of the uniform cellular automata studied.

Keywords: 2D CA,VNN, restricted vertical neighborhood, ternary field, null boundary,
matrix algebra, transition rule matrix, reversible cellular automata.
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1. Introduction

Cellular Automata shortly (CA). The embody of (CA) was present in 1950′s by John
Von neumann [12] visible that a (CA) can be global. The read of (CA) has obtain signifi-
cant assiduity in the ultimate few years [1, 5, 14], as the (CA) has been widely interrogate
in many field (For Example Mathematics, physics, computer science, chemistry, etc.) with
different scope(For Example simulation of image processing, natural phenomena, pseudo-
random number generation, analysis of universal model of computations, cryptography).
The behaviour of 2D adjecent neighbors linear (CA) with some basic and accurate math-
ematical model Null Boundary (NB) or Periodic Boundary (PB) condition using matrix
algebraic domain in the domain with two elements Z2 [4, 5, 14].

A (CA) is system of a set of ”cell” objects with the following properties.
* The cell live is at one point.
* Every cell has a state. The number of state possibilities is generally limited. The easy

model has the two possibilities of 1 and 0 (otherwise indicate to as ”ON”, ”OFF” (or)
”alive”, ”dead”).

* Every cell has an ambient. This can be distinct in number of path, but it is usually
a list of proximate cells.
m×n cells regulate the 2D CA. Each cell lease of the one values in Z2. The akin plight
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of the cells are said neighbor of the midst cell. The state of these neighbors are cash to
count the new state of the midst cell.

(a) (b) (c)

FIGURE 1. (a) Von Neumann Neighborhood (b) Moore Neighborhood (c)Restricted
Vertical Neighborhood

Type of neighborhood cells in Figure 1. (a) Von neumann Neighborhood (VNN) (top,
right, bottom and left) (b) Moore Neighborhood (All the nearest surrounding the center
cell)(c) Restricted Vertical Neighborhood (RVN) (The class of (CA) both cells in horizon-
tal and either top (or) bottom not both in vertically)

The article is provide as pursue. In 2nd section, the notion cash in the article are for-
mally apparent. In 3rd section, the algebraic structure of RVN and VnN of 2D CA is
obtained. In 4th section, the rule of the uniform cellular automata (UCA) with (RVN)
is studied. In 5th section, using both VNN and RVN the transition rule matrix of the
hybrid cellular automata (HYDCA) is obtained. In 6th section, we count the rank of rule
matrices relevant to 2D UCA and reversibility of the UCA with RVN is studied.

2. PRELIMINARIES

Definition 2.1. [8]A PB - CA is the left and right boundary cells connected to proximate
cells.

Definition 2.2. [8]A NB - CA is both left and right boundary cells connected to 0 logic.

Definition 2.3. [9]Uniform Cellular Automata (UCA): UCA is said to be all the cells
applied to same rule.

Definition 2.4. [9]Linear Cellular Automata (LCA): LCA is said to be the rule of CA
involving only XOR logic then it is called linear CA.

Definition 2.5. [2]Hybrid Cellular Automata (HYDCA): HYDCA is said to be the dif-
ferent rule applied for different cells.

Definition 2.6. [7]Reversibility of Cellular Automata: It is said that a CA can always
be replaced by a CA that will return to its original state.

Definition 2.7. [10]Restricted Vertical Neighborhood (RVN): The Restricted Vertical
Neighborhood RVN rule is the class of CA horizontal both cells and vertical either top (or)
bottom not both.

Definition 2.8. [3]Cellular Automata(CA): CA is defined as a quadruplets A = {D,Q,N, f}
* D ∈ Z+ is the dimension of the CA.
* Q = {1, 2, ..., p} is a countable set of states.
* N = ( ~n1, ~n2, ..., ~nm) is the neighbor vector
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* f : Qm → Q is the local rule. f given the new states of a cell from the old neighbors
states of the cells.

A configuration is a mapping C : ZD → Q. Ct is denote the time t, the cell move to
next state at time t+1.

Ct+1 ~(n) = f(Ct( ~n1),Ct( ~n2), ...,Ct( ~nm))
now we consider the local rule f is a linear function

Ct+1 ~(n) = λ1Ct( ~n1) + λ2Ct( ~n2) + ...+ λmCt( ~nm))
λi is the co-efficient for neighborhood.

In this article, we discuss with CA defined by VNN and RVN under (NB) of UCA and

HYDCA. The state of the cell (r, s) at time t is represented by α
(t)
(r,s). The state of the

cell (r, s) at time (t+1) is represented by α
(t+1)
(r,s) = β

(t)
(r,s).

In [6], show the configuration matrix. We associate RVN presentations with row vectors
by transforming them from

C(t) to ([α]1×mn)=(α
(t)
11 , α

(t)
12 , · · · , α

(t)
1n, · · · , α

(t)
m1, · · · , α

(t)
mn).

where α
(t)
(i,j) ∈ Z2.

Hence, the transition matrix TR that changes set of states of cellular automata from (t)
to (t+1) such that
[(α)(1×mn).(TR)(mn×mn)] = [(β)(mn×1)],

where,

[(β)mn×1] = [(β
(t)
11 , β

(t)
12 , · · · , β

(t)
1n , · · · , β

(t)
m1, · · · , β

(t)
mn)].

3. 2D CA over the field Z2

In this section, we discuss with some types of neighbors. The cell arranged in m rows
and n column in m× n grid. The cell move to next state at the time is denoted t+1.

3.1. Restricted Vertical Neighborhood (RVN)-162 rule. In 2D CA theory, there are
a few classic sample of neighbors but in this article we only constrain ourselves to the
specific neighbors which is called (RVN).

α(p,q) α(p,q+1)
α(p,q−1)

α(p−1,q)

20 = 1 21 = 225 = 32

27 = 128

(a) (b)

FIGURE 2. (a) Element of restricted vertical neighborhood surrounding the mid cell
(b) Numbering of rules with respect to neighbors

In figure 2, we show the (RVN) which comprises 3 cells which encircle the midst cell α(r,s).
The next state of the cell at time t+1 is denoted by the local rule function.
f : Z3

2 → Z2 as follows,

α
(t+1)
(r,s) = f(α(r,s+1), α(r,s−1), α(r−1,s))

= α(r,s+1) + α(r,s−1) + α(r−1,s) . . . (1)
where, α(r,s) ∈ Z2, r = 1, 2, ...,m and s = 1, 2, ..., n.
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3.2. Von Neumann Neighborhood (VNN)-170 rule.

α(p,q) α(p,q+1)
α(p,q−1)

α(p−1,q)

20 = 1 21 = 225 = 32

27 = 128

(a) (b)

α(p+1,q) 23 = 8

FIGURE 3. (a) Element of Von Neumann neighborhood surrounding the mid cell
(b) Numbering of rules with respect to neighbors

In figure 3, we show the VNN which comprises 4 square cell surrounding the midst cell

α(r,s). The state α
(t+1)
(r,s) function f : Z4

2 → Z2 as follows.

α
(t+1)
(r,s) = f(α(r,s+1), α(r,s−1), α(r−1,s), α(r+1,s))

= α(r,s+1) + α(r,s−1) + α(r−1,s) + α(r+1,s) . . . (2)
where, α(r,s) ∈ Z2, r = 1, 2, ...,m and s = 1, 2, ..., n.

4. Uniform Cellular Automata (UCA):

4.1. Rule Matrix of the Restricted Vertical Neighborhood. We get the rule matrix
of 2D CA with (RVN) rule over the field Z2 underneath the (NB) condition. The rule
matrix which takes the tth finite configuration matrix Ct of order m×n to the t+1th state
Ct+1.

Theorem 4.1. Let m > 2 and n > 2. Then the rule matrix TR−162 from Zmn
2 → Zmn

2

corresponding to the 2D UCA that takes from configuration the state Ct of order m× n to
the t+ 1th state Ct+1 is given by,

TR=



P I 0 0 0 . . . 0 0
0 P I 0 0 . . . 0 0
0 0 P I 0 . . . 0 0
0 0 0 P I . . . 0 0
...

...
...

...
... . . .

...
...

0 0 0 0 0 . . . P I
0 0 0 0 0 . . . 0 P


mn×mn

where each partitioned matrix is of order n× n.

P=



0 1 0 0 0 . . . 0 0 0
1 0 1 0 0 . . . 0 0 0
0 1 0 1 0 . . . 0 0 0
0 0 1 0 1 . . . 0 0 0
...

...
...

...
... . . .

...
...

...
0 0 0 0 0 . . . 1 0 1
0 0 0 0 0 . . . 0 1 0


n×n

where, I is an identity matrix and 0 is zero matrix is of order n× n

Proof. Let us consider TR.α(r,s) = β(r,s). β(r,s) = α
(t+1)
(r,s) is a analogous to the linear

clubbing of the neighbors in the following equation (1). The co-efficient of α(r,s) = 0 if



612 TWMS J. APP. AND ENG. MATH. V.12, N.2, 2022

r ≤ 0 or s ≤ 0. By use the local rule of the CA we have congest the following,
β(1,1) = α(1,2)

β(1,2) = α(1,3) + α(1,1), 2 ≤ s ≤ n− 1
β(1,s) = α(1,s+1) + α(1,s−1)
β(1,n) = α(1,n−1)
For 2 ≤ r ≤ m− 1 we have,
β(r,1) = α(r,2) + α(r−1,1)
β(r,s) = α(r,s+1) + α(r,s−1) + α(r−1,s), 2 ≤ s ≤ n− 1
β(r,n) = α(r,n−1) + α(r−1,n)
Finally, we have
β(m,1) = α(m,2) + α(m−1,1)
β(m,s) = α(m,s+1) + α(m,s−1) + α(m−1,s), 2 ≤ s ≤ n− 1
β(m,n) = α(m,n−1) + α(m−1,n)
Finally we get the rule matrix TR−162. �

Example 4.1. Let m = 4 and n = 4 then, we obtain the rule matrix TR−162 of 2D CA
with RVN rule over the field Z2 be as follows,

TR−162 =


P I 0 0
0 P I 0
0 0 P I
0 0 0 P


where, P =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


P, I are the sub matrices of order (4 × 4), 0 is the zero matrices and I is an identity
matrix.

4.2. Rule Matrix of the Von Neumann Neighborhood. We get the rule matrix of
2D CA with (VNN) rule over the field Z2 underneath the (NB) condition. The rule matrix
which takes the tth finite configuration matrix Ct of order m×n to the t+ 1th state Ct+1.

Theorem 4.2. Let m > 2 and n > 2. Then the rule matrix TR−170 from Zmn
2 → Zmn

2

corresponding to the 2D UCA that takes from configuration the state Ct of order m× n to
the t+ 1th state Ct+1 is given by,

TR=



P I 0 0 0 . . . 0 0
I P I 0 0 . . . 0 0
0 I P I 0 . . . 0 0
0 0 I P I . . . 0 0
...

...
...

...
... . . .

...
...

0 0 0 0 0 . . . P I
0 0 0 0 0 . . . I P


mn×mn

where each partitioned matrix is of order n× n.
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P=



0 1 0 0 0 . . . 0 0 0
1 0 1 0 0 . . . 0 0 0
0 1 0 1 0 . . . 0 0 0
0 0 1 0 1 . . . 0 0 0
...

...
...

...
... . . .

...
...

...
0 0 0 0 0 . . . 1 0 1
0 0 0 0 0 . . . 0 1 0


n×n

where, I is an identity matrix and 0 is zero matrix is of order n× n

Proof. The proof of the Theorem following alike steps as the proof of Theorem 4.1 �

5. Hybrid Cellular Automata (HDYCA)

In the aspect study, the work with specific 2D CA defined by (HDYCA) rule over the
field Z2 under (NB) condition. We will resolve the rule matrix Ct of matrix of order m×n.

Case(i). m is even, the rule matrix TR is given in the following theorem

Rule 170NB

Rule 170NB

Rule 162NB

Rule 162NB

α(1,1) α(1,2) α(1,3) α(1,4) α(1,n)

α(2,1) α(2,2) α(2,3) α(2,4) α(2,n)

α(3,1) α(3,2) α(3,4) α(3,n)

α(m,1)

α(3,3)

α(m,2) α(m,3) α(m,4) α(m,n)

...

...

...

...

...

...

...

... ...

...

FIGURE 4. Hybrid rule means that it is applied 170 NB and 162 NB respectively for
each rows when m is even on (m× n) CA

Theorem 5.1. Let us consider m > 2 and n > 2. Then the rule matrix TR − (HYDCA)
from Zmn

2 → Zmn
2 which takes tth state to (t+ 1)th state is given by

TR − (HYDCA)=



P I 0 0 0 0 . . . 0 0 0
I P I 0 0 0 . . . 0 0 0
0 0 P I 0 0 . . . 0 0 0
0 0 I P I 0 . . . 0 0 0
0 0 0 0 P I . . . 0 0 0
...

...
...

...
...

... . . .
...

...
...

0 0 0 0 0 0 . . . 0 P I
0 0 0 0 0 0 . . . 0 I P


mn×mn

where each partitioned matrix is of order n× n.
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P=



0 1 0 0 0 . . . 0 0 0
1 0 1 0 0 . . . 0 0 0
0 1 0 1 0 . . . 0 0 0
0 0 1 0 1 . . . 0 0 0
...

...
...

...
... . . .

...
...

...
0 0 0 0 0 . . . 1 0 1
0 0 0 0 0 . . . 0 1 0


n×n

where, I is an identity matrix and 0 is zero matrix is of order n× n

Proof. Let us consider TR.α(r,s) = β(r,s). β(r,s) = α
(t+1)
(r,s) is a analogous to the linear

clubbing of the neighbors in the following equation (1) and (2). The co-efficient of α(r,s) = 0
if r ≤ 0 or s ≤ 0. By use the local rule of the CA we have congest the following,
β(1,1) = α(1,2) + α(2,1)

β(1,s) = α(1,s+1) + α(1,s−1) + α(2,s), 2 ≤ s ≤ n− 1
β(1,n) = α(1,n−1) + α(2,n)

when m is odd
β(r,s) = α(r,s+1) + α(r,s−1) + α(r−1,s) + α(r+1,s), 2 ≤ r ≤ m− 1
β(2,1) = α(2,2) + α(1,1)

β(2,s) = α(2,s+1) + α(2,s−1) + α(1,s), 2 ≤ s ≤ n− 1
β(2,n) = α(2,n−1) + α(1,n)

when m is even
β(r,s) = α(r,s+1) + α(r,s−1) + α(r−1,s), 2 ≤ r ≤ m− 1
Finally we get the rule matrix TR−HYDCA. �

Case(ii). m is odd, the rule matrix TR is given in the following theorem

Rule 170NB

Rule 170NB

Rule 162NB

Rule 162NB

α(1,1) α(1,2) α(1,3) α(1,4) α(1,n)

α(2,1) α(2,2) α(2,3) α(2,4) α(2,n)

α(3,1) α(3,2) α(3,4) α(3,n)

α(m,1)

α(3,3)

α(m,2) α(m,3) α(m,4) α(m,n)

...

...

...

...

...

...

...

...

...

...

Rule 170NB

α(4,1) α(4,2) α(4,3) α(4,4) α(4,n)

FIGURE 5. Hybrid rule means that it is applied 170 NB and 162 NB respectively for
each rows when m is odd on (m× n) CA

Theorem 5.2. Let us consider m > 2 and n > 2. Then the rule matrix TR − (HYDCA)
from Zmn

2 → Zmn
2 which takes tth state to (t+ 1)th state is given by
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TR −HYDCA=



P I 0 0 0 0 . . . 0 0 0
I P I 0 0 0 . . . 0 0 0
0 0 P I 0 0 . . . 0 0 0
0 0 I P I 0 . . . 0 0 0
0 0 0 0 P I . . . 0 0 0
...

...
...

...
...

... . . .
...

...
...

0 0 0 0 0 0 . . . 0 P I
0 0 0 0 0 0 . . . 0 0 P


mn×mn

where each partitioned matrix is of order n× n.

P=



0 1 0 0 0 . . . 0 0 0
1 0 1 0 0 . . . 0 0 0
0 1 0 1 0 . . . 0 0 0
0 0 1 0 1 . . . 0 0 0
...

...
...

...
... . . .

...
...

...
0 0 0 0 0 . . . 1 0 1
0 0 0 0 0 . . . 0 1 0


n×n

where, I is an identity matrix and 0 is zero matrix is of order n× n

Proof. The proof of the Theorem following alike steps as the proof of Theorem 5.1 �

6. Reversible of UCA with RVN

This is section we discuss with reversible of CA. If the rule matrix has full rank then
the matrix is invertible, then 2D CA is reversible otherwise it is irreversible.

Lemma 6.1. For n > 2 is odd, hence rank (P)= n-1.

Proof. We put induction on n.
For n=3, then

P=

0 1 0
1 0 1
0 1 0


C1 ⇔ C2

=

1 0 0
0 1 1
1 0 0

R3 ⇒ R1 −R3

=

1 0 0
0 1 1
0 0 0


the rank of 3× 3 matrix is equals to 2.
for n = 5, then

P=


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0


C1 ⇔ C2
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P=


1 0 0 0 0
0 1 1 0 0
1 0 0 1 0
0 0 1 0 1
0 0 0 1 0

 R3 ⇒ R1 −R3

P=


1 0 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 1 0 1
0 0 0 1 0

 R5 ⇒ R3 +R5

C4 ⇔ C3
1 0 0 0 0
0 1 1 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 0


the rank of 5× 5 matrix is equals to 4.

Inductively, by use correspondent row operation, we get the result.
Hence, when n is odd the rank of matrix P is (n-1). �

Lemma 6.2. For all even n > 3, rank (P) = n. Then P is invertible.

Proof. We put induction on n.
For n = 4

P =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


det(P(4×4)) = (−1)

1 1 0
0 0 1
0 1 0


=(−1)2

det(P(4×4)) = (−1)2

For n = 6

P =


0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0


= −1[1(det(P(4×4)))− (0)]

=(−1)3

det(P(6×6)) = (−1)3

for n = 2k+2
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P =



0 1 0 0 . . . 0 0 0
1 0 1 0 . . . 0 0 0
0 1 0 1 . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . 1 0 1
0 0 0 0 . . . 0 1 0


(2k+2)×(2k+2)

= −1[1(det(P(2k×2k)))− 0]

=(−1)k+1

If the result is true for n = 2k + 2, we prove that it is also true for n = 2k + 4.

P =



0 1 0 0 0 . . . 0 0 0
1 0 1 0 0 . . . 0 0 0
0 1 0 1 0 . . . 0 0 0
0 0 1 0 1 . . . 0 0 0
...

...
...

...
... . . .

...
...

...
0 0 0 0 0 . . . 1 0 1
0 0 0 0 0 . . . 0 1 0


(2k+4)×(2k+4)

= −1[1(det(P(2k+2×2k+2)))− 0]

=(−1)k+2

then P is invertible.
�

Theorem 6.1. For every rule matrix of n is odd, then TR−162 is not reversible in uniform
cellular automata.

Theorem 6.2. For every rule matrix of n is even, then TR−162 is reversible in uniform
cellular automata.

7. Conclusions (mandatory)

In this article, 2D CA of RVN and VNN are discussed. The rule matrix TR of 2D CA
is computed. We show that (i) Every rule matrix of n is odd, hence TR − 162 is not
reversible. (ii) Every rule matrix of n is even, hence TR − 162 is reversible in Uniform
Cellular Automata. In future i will try to apply the concept of this article to the new
cellular automata over the field Z3.

Acknowledgement. The authors would like to thank the anonymous referees for their
valuable comments that considerably improved the presentation of the paper.
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