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APPROXIMATION BY DE LA VALLEE POUSSIN MEANS IN
WEIGHTED GENERALIZED GRAND SMIRNOV CLASSES

AHMET TESTICI!, §

ABSTRACT. Let G be a simple connected domain on complex plane such that I' := 0G
where I' is a Carleson curve. In this work, we investigate the rate of approximation by
De La Vallée Poussin mean constructed via p — € Faber series in the proper subclass of
weighted generalized grand Smirnov classes ep-e (G), 1 < p < oo where the w satisfying
Muckenhoupt’s condition.
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1. INTRODUCTION AND MAIN RESULTS

Let G C C be a Jordan domain bounded rectifiable curve I' and G~ := Euat I'. Let
D:={wecC:|w <1}, T:=0Dand D~ := C\D. We denote by LP(T'), 1 < p < oo the set
of all measurable complex valued functions f on I' such that |f|’ is Lebesgue integrable
with respect to arc length on I.

If there exist a sequence (G,),2; C G of domains G, which boundary rectifiable Jordan
curve (I'y))2, such that the domain G, contains each compact subset G* of G where
v > vy for some vy € N and

1imsup/|f(z)|p|dz\ < 00,
V—r00 FU
then we say that f belongs to the Smirnov class EP(G). Each function f € EP (G) has the
nontangential boundary values almost everywhere (a.e.) on I' and the boundary function
belongs to LP(T") (see, [5, p. 168] or [6, p. 438]).

Let |T'| be the Lebesgue measure of I and let w : I' — [0, co] be a weight function. The
weighted Lebesgue spaces L (T), 1 < p < oo arises the set of all measurable functions f
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on I' such that
1/p

|F1|/|f(z)lpw(z) do | < oo
I

The set of all measurable on I' functions f such that
1/(p—e)

N
s (1 F/ FEPeE el <o

O<e<p—1

for a 6 > 0 constitutes the weighted generalized grand Lebesgue space Lg)’e (T'). The
Lﬁ)’a (T),1 < p < oo, >0 become a Banach space equipped with the norm
1/(p—e)

O0<e<p—1

5‘9 _
oy =, s | [ 1P
T

Particularly, if we choose 8 = 1, then Lﬁ) a (T") turns into the weighted grand Lebesgue
space LY (") and if 6 = 0, then e)° (T') turns into the weighted Lebesgue space L, (T').
The grand and generalized grand Lebesgue spaces were introduced in [15] and [7], re-
spectively. The grand Lebesgue spaces have essential roles in the integrability problem
of Jacobian under the minimal hypotheses. Furthermore, these spaces are appropriate
for treating the existence and uniqueness, as well as the regularity problems for various
nonlinear differential equations. Hence, some properties of grand Lebesgue space and in-
tegral operators with homogeneous kernel were investigated in [22, 25, 26, 27|. For these

spaces the embedding L%, (T") C e’ (T") holds. Although there is closely relation between
LY (T') and e (T), the generalized grand Lebesgue space has specific characteristics and
advantages in comparison with the classical Lebesgue space.

Since the space LL (T') is not dense in e)? (I"), we denote by cr)* (T") the closure of
LY (T) in the e’ (T") which consists of the functions f satisfying the condition

e—0

lim E‘jr/\f(zﬂpsw(z) |dz| | = 0.

We define the generalized grand Smirnov classes
EDO(G) = {f e BN (G): fe 1D (D)}

of analytic functions f in G normed by || f|| ». . We denote the closure

(@) = ||f”Lf,>’0(F)
of Smirnov class E% (G) in the EZ (G) by 97 (G).

Direct and inverse problems of approximation theory were studied in EP (G), p > 1,
when I satisfied various geometric conditions. For instance, S. Y. Alper investigated [1] the
order of approximation in EP (G), p > 1, when G was sufficiently smooth domain. Later,
this result was extended to domain with regular boundary for p > 1 by J. E. Andersson
in [2]. In weighted Smirnov classes, direct and inverse theorems of approximation theory

were proved in [10, 8, 11]. Firstly some results on the approximation theory in P (G)

were proved in [14]. £ 0 (T") is reduced to weighted generalized grand Lebesgue spaces of
27 periodic functions defined on [0, 27] when I' is chosen as a circle particularly. In this
case, some of the fundamental problems of approximation theory were studied in [3, 24, 4].
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Later, using the more sensitive different type modulus of smoothness direct and inverse
theorems of approximation theory in Eﬁ)’e (T) were proved in [13]. Various approximation

theorems in the subspace of grand Lebesgue space were investigated in [23, 16, 17, 18].

In this paper, we investigate approximation properties of De La Vallée Poussin means
constructed via p — ¢ Faber series of functions f belonged to 55)’0 (G). Similar result in
Smirnov classes with variable exponent and weighted Smirnov-Orlicz spaces were proved
where I' is Dini-smooth curve that more narrow curve than Carlson curves in [12] and [19],
respectively.

Definition 1.1. A rectifiable Jordan curve I' is called a Carleson or regular curve if

I (2, 7)|
sup sup ——— < 0
zel’ r>0 r

where I' (z,1) is portion of I" in the open disk of radius r centered at z with length |I' (z,7)].
We denote by S the set of all Carleson curves.

Definition 1.2. Let w be a weight function on I' € §S. We say that w satisfy Mucken-
houpt’s A,, 1 < p < oo condition on I' if
p—1
1 1
sup sup | — / w(z) |dz| - / [w(2)] 7Y PV |dz| < 0.
zo€el r>0 r r
T'(z0,r) I'(zo,r)

We denote by Ay (I') the set of all weights w satisfying Muckenhoupt’s A, condition on I
Let zg € T and let

se) o=t [ L and ae () )=t [ i1
'\I'(zo0,r) I'(z0,r)

be the Cauchy singular integral and the Hardy-Littlewood maximal function of f € L' (T"),
respectively, existing for almost all z5 € T'.

Theorem 1.1 ([20]). LetT' € S, 1 < p < 0o and § > 0. The operators Sr (f) and Mr (f)
are bounded in LV’ (I') if and only if w € A, (T').

Let f € [,f,)’e (T),1<p<ooand>0. For a given r € N:={1,2,...} we set

r

ALf )= 30 (-1 (1) (we) >0

s=0
We define the operator

1 rh
s )= [ 1857 @)lde, 1 >0,
If we Ap(T), then by using Theorem 1.1 we get

sup lo7, f (W)l pr.0 gy < € LFll o gy < 00

Definition 1.3. Let f € LPY (T,w), 1 < p < 00, w € Ap(T), and § > 0. The function
Qr (f,)p) 00 1 [0,00) = [0,00) defined as

Q (f7 6)p),9,w = ii%) HAhf (’UJ) HLE)’B(']I')
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is called the modulus of f.

By ¢ we denote the conformal mappings of G~ onto D™ respectively, normalized by the
conditions

@ (00) =00, lim ¢(z)/z>0.
Z— 00
Let 1) be the inverse mappings of ¢. The mappings ¢ and 1 have the continuous extensions
to I and T, respectively. Their derivatives ¢’ and 1)’ have the definite nontangential limit
values a.e on I" and T, the limit functions are Lebesgue integrable on I' and T, respectively
[6, pp. 419-438].
For any f € o)’ (I') and w € A, (I') we set

fo(w) == £ [ ()] (¢ @) wp (w) = w [t (w)]
Obviously if f € L¥)? (T') then fo € L2’ (T) (see [14]).
For a given function f € Lf’J) 0 (') we define the Cauchy type integral
fo(2) Jo®) ..

27m Z—w
T

fo (w) =

which are analytic in D.
We define rth mean modulus of smoothness for f € P (G, w) as

Q, (f? 5)G,p),0,w =0, (fg_’é)p)ﬁ,wo ,0>0.
),0

The best approximation number for f € &5
mials of degree not exceeding n is defined as

E, (f)G,p),G,w = Pirelg)n Hf - PTLHLIL:%G(F)

(G) in the class P, of algebraic polyno-

The set
Liph)? (G, a) = { f € €D (G) : 0 (f,0) g 00 = O(07), >0}

is called the generalized grand Lipschitz class for a given a € (0, 1].

For construction of the approximation aggregates in 55)’0 (G), we use the p — ¢ Faber
polynomials of G. Since the conformal mapping ¢ is analytic in G—, the function

e ()] [¢ (2]

has a pole order k at oco. Applying technique in [9] we obtain the representation

[ (w)]' /P9 Frp - .
o (w) == —Z k£k+1 , zeGwebh; (1)

for 1 < p <ooand 0 < e < p—1 where Fj,_.(z) is called p — ¢ Faber polynomials
of G. Fyp_. are algebraic polynomials with respect to z and have the following integral
representation for every k = 1,2, ..., :

L T (L C0) i

Fr ., _ = — d d 1.
kep—e (2) 2772./ o (w) 7 w, z€ G and R >
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Using (1) and Cauchy’s integral formula

/ 11/p5
2@/ fo(w ¢ } dw, z € G,
T

lw|=1

= C—z
r

which holds for every f € en’ (G) C EY(G), we have

f(z)NZak (f)Fk,p—E(z) aZGGv (2)
k=0
where
1
a (f) == 3 {Zlﬁ?dw, k=0,1,2,..,
T

The series (2) are called the p — e Faber series of f € e’ (@), and the coefficients ay, (f),
0

k=0,1,2,..., are called p — ¢ Faber coefficient of f € 8p)’ (G). The nth partial sum of
p — ¢ Faber series of f is defined as

S??(f) Zak Fk:pa ) 7”’:172a3a“'7' (3)

De Vallée Poussin mean of f € 55)’ (G) is defined as

m—+n

Vn(?m(f) (fa _n+1 Zsk f7

for m,n=1,2,..., and if m = 0, then me (f) mean coincides with the Cesaro mean

oS () =0 (,2) = —= > SE(1,2)
k=0

We use the notations m = O (n), if there exist a positive constant ¢z such that m < con
and we denote the different constants in the different relations in this work. Our main
results are following.

Theorem 1.2. LetI' € S, 1 < p < oo and § > 0. If f € eno (G), we Ay(I') and
wo € Ap (T) , then

Hf - Vn(,;m (f)HLf))’G(F) =0 (QT' (f7 l/n)G,p),aw) :
Theorem 1.2 implies that following corollaries.

Corollary 1.1. LetI' € S, 1 < p< oo and § > 0. If f € eno (G), we A, (I') and
wo € A4p (T) , then

17 = Dll oy =0 (2 U1 /m)gy0.).

Corollary 1.2. LetT' € S, 1 < p < 00, § > 0 and « € (0,1). If f € Lz’pfj)’a (G, a),
we A, (') and wy € A, (T) , then

If -~ Vnc,;m (f)HLgW(p) =0 (n™?).

Corollary 1.1 implies that
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Corollary 1.3. Let ' € §, 1 < p < o0, 8§ >0, and a € (0,1). If f € Lz’pg)’g (G, ),
we A, (T) and wy € A, (T), then

Hf - Ug (f)HL’L)’e(F) =0 (n_o‘) .
2. AUXILIARY RESULTS

Let f € L' (T) and

oo

F@~ Y (et
k=—o00

be its Fourier series representation with the Fourier coefficients
T
1 .
Cp = — /f(t) e Mt k=0,41,+2,...,
27
-7

Let

n

Su(f):=8n(frz)= Y a(f)e*, n=12,.,
k=—n

and
m—+n

1
Vn,m (f) = Vn,m (f,ﬂl’) = 7 Z Sk (fvx)a m,n = 1,27""
n+1 =
be the nth partial sum of Fourier series and De Vallée Poussin mean of f € L! (T) respec-
tively.

Let II,, be the set of the trigonometric polynomials of degree not exceeding n. The best
approximation number of f € Ef,)’e (T) is defined as

En (f)p)ﬁ,w = inf {Hf - T"”ij)’e('ﬂ‘) : Tn S HTL} , N = Oa ]-a 25 ey
and if By (f),) 00 = If — T;:HL;U:),G(T), then 7, € II, is called the best approximation
trigonometric polynomial to f € Ef}’e (T).

Theorem 2.1 ([24]). Let 1 < p < oo and 8 > 0. Then there exists a positive constant c3
such that the inequality

Sup|S’n (f)|‘ SC?’Hf”Lf,)’e(T) ) n = ]-525'"’
n

£ (m)
holds for every f € ) (T) if and only if w € Ap (T).

Theorem 2.1 implies that the operator Sy, : f — S, (f) is uniformly bounded in Lf,)’e (T)

with respect to n. Moreover, S, (f) convergences to f in norm with respect to e)? (T),
that is

nlg{olo ”S’n (f) - f”Lz%e(T) =0
for f e b7 (T) where 1 <p < 00, §# >0 and w € A4, (T).

Theorem 2.2 ([13]). Let 1 < p < o0, § > 0 and w € A,(T). If f € co)? (T) then there
exists a positive constant c4 such that the inequality

En (f)p)ﬂw < sy (f7 1/n)p),9,w ,m=1,2,...,
holds.
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We define the operator T),_. : Esz)’e (D) — DY (G) as
1 / w 1-1/(p—e)
[HB

2mi Y (w) —z
T

n n
7, . (z w) =3 i (2
k=0 k=0

is an algebraic polynomials with respect to w on D.

Tp—s (f) (Z) =

then we have

n
where > apw
k=0
Theorem 2.3 ([14]). LetI' € S, 1 <p < oo, we A,(I") and 0 > 0. If wy € A, (T) then
the following assertions hold:
i) The operator T,_. is linear and bounded,

k

ii) The operator T),_. : 852)’9 (D) — en? (G) is one-to-one and onto and we have
Tp—c (fg) = [ for a given f € &p? (G).

ForagivenfeLfJ)’e(F) weA[I),I1<p<oocand0<e<p—1weset

: Qm/g“— ¢, z€G

and
f(2): 2m/€— ¢, z€G™.

The functions f* (2) and f~ (2) have the non—tangentlal limit a.e. on I' and the following
formulas

FHE) =80 (f) () + 5 f () and f7 () =50 (1) (2) — 5f (2)
hold, hence we have
FE =1 ()= ) (@
a.e. onI' [6, p. 431].

Lemma 2.1 ([14]). LetI' € S, 1 <p < oo, w € A,(T), § > 0. If f € e’ (T') then
Fre EDY(G) and f~ € EP? (G7).

3. PROOF OF MAIN RESULT

Proof Theorem 1.2. Let I' € S, 1 < p < o0, w € Ay(I), wo € A,(T) and 6 > 0.
If fe e (G) then fy € 55)0’9 (T) and by Lemma 2.1 we have f; € 552{9 (D7) and

fife 552)’9 (D) C E' (D). Hence the boundary function f;" belongs to 55,)0’9 (T). Theorem
2.1 implies that there exists a positive constant such that

1 m-+n

n+1 Z Sk (fo+)
k=m

1 m—+n
n+1 D 15k (fJ)HLEL’G(m S Hf(THLfo(T)' (5)
k=m

HVn:m (f(;r) HLf)O’G('ﬂ‘)

L2y’ (m)

IN
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Let T (f;) € I, be the best approximation polynomial to fi € ££)0’6 (T). Since
Vam (f) is a quasi projector on II,, we have V;, , (T,jf (f;)) =1Tr (fgr). Applying the
technique in [21, p. 207], (5) and Theorem 2.2 we can obtain that

Hfgr—me (fO+)HL5)079('[r) = Hfo -7, (fO)HLP>9 (T)
T (6 = Vam (o) 10y
= (f() ) ),0,w0 + HVT”” (T* (fO ) f(;r)Hng@(T)
<

En (fo )p)ewo +oes || Ty (fo) — fJHLpL,o(T)
< ok, (fo) 0w < gy (fo,l/n) b (6)

where the constants independent of n. Since fo is analytic function on D, it has the Taylor
series expansion

0 0

oo
:Zﬁk (fgr)wk, w € D.
k=0
0 .
Let > ¢ ( fgr ) e’*® be the Fourier series expansion of the boundary function fo+
k=—o0

Ef,)o’g (T). Then by Theorem 3.4 given in [5, p. 38] we have

5,k
Ck(fJ)Z{ Bk(({())/é<0,20

and
=> o (f)wh
k=0
Taking into account fy € 852)’6 (D) and f; € 552)’0 (D7), by (4)

1 Jo (w)

ag (f) + =-— wk+1dw

1 [ (w) L[ fy (w)
= — 0 dw—m/ E)kﬂ dw
T

2mi wk+l
T

1 +

T

which shows that the p — ¢ Faber coefficients of f are Taylor coefficients of fgr at the

origin, that is
Z a ( w w € D.

Hence, we obtain

(50 ) = Ty (ch () w) S ) By (2) = SE0)

k=0

3

for any n = 1,2, ..., and also

Type (Vo (f3)) = ViT (f) - (7)
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By Theorem 2.3, (7) and (6) we have

Hf - me (f)HLf)ﬁ(r) = HTP—E (f(j_) —Tp—-e (Vn,m (f(;r))HL%@(T)
< HTP—EH Hf(;r - Vn,m (fJ)HLf))dg(’]l‘)
< e, (1),

. (Q (f, 1/”)G,p),9:w) '

4. CONCLUSIONS

The grand Lebesgue spaces have been considered in various fields of application, espe-
cially PDE theory. For this reason, investigations of the approximation process in these
spaces have become significant. In this work, we investigate the properties of approxi-
mation aggregates as De La Vallée Poussin means of p — ¢ Faber series in the subclass
of weighted generalized Smirnov classes of analytic functions defined on simply connected
domain bounded by Carleson curve. The appropriate estimation is obtained in terms of

higher modulus of smoothness for a given function f € 55)’9 (G) where the w belongs to
Muckenhoupt’s class. Finally, some results related to Césaro means constructed via p — e
Faber series are given in this work.
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