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ACCURATE APPROXIMATE SOLUTION OF CLASSES OF

BOUNDARY VALUE PROBLEMS USING MODIFIED DIFFERENTIAL

TRANSFORM METHOD

S. AL-AHMAD1, N. R. ANAKIRA2∗, M. MAMAT1, A. F. JAMEEL3, R. ALAHMAD4,5,
A. K. ALOMARI5, §

Abstract. In this paper, a numerical scheme so-called modified differential transfor-
mation method (MDTM) based on differential transformation method (DTM), Laplace
transform and Padé approximation will be used to obtain accurate approximate solution
for a class of boundary value problems (BVP’s). The MDTM is employed as an alter-
native technique to overcome some difficulties in the behavior of the solution and to be
valid for a large region. The numerical results obtained demonstrate the applicability
and validity of this technique. Numerical comparison is made with existing exact solu-
tion.

Keywords: Boundary value problems, Differential transform method, Laplace transform,
Padé approximants.
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1. Introduction

Boundary value problems are considered as one of an important kind of ordinary dif-
ferential equations that arise in several branches of engineering, optimization, technology
control etc. For instance, in engineering it occurs in beam deflections, optimal control,
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fluid dynamics, hydrodynamics and hydro magnetics stability. Obtaining numerical or ap-
proximate solutions for BVPs have been proposed in last few years by many researchers,
for example see [1, 2, 3, 4]. Another kind of BVPs which attracted the attention of re-
searchers in last years called multipoint BVP, which is an ordinary differential equations
with boundary conditions, specified at different points equals to the order of the differen-
tial equation. This type of differential equation has received much attention because its
wide applications in different area of applied science and engineering. For example, theory
of elasticity and fluid flow through porous plate, the vibrations in a wire of uniform cross
sections and composed of materials with different densities.

Many research papers have been carried out to find accurate approximate solutions of
second order three point BVPs and third order multipoint BVPs via different methods
[2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31]. In the last years, DTM has been applied
successfully to obtain approximate solution for various types of differential equations such
as initial value problems, difference equations, and BVPs. The idea of DTM is based on
the concept of Taylor series [16, 17, 18, 19], and it usually gets the solution in a series
form. This method constructs an analytical solution in the form of a polynomial. It uses
the form of polynomials as the approximation to exact solutions which are sufficiently
differentiable. However, DTM has some hitches. By using DTM, we obtain a truncated
series solution. This series solution is in a good approximation which converge to the exact
solution but in a small region [20].

In order to improve the accuracy of DTM, we use an alternative technique (MDTM)
which modifies the series solution for classes of BVPs by applying the Laplace transfor-
mation to the truncated series obtained by DTM followed by converting the transformed
series into a meromorphic function by Padé approximants, and finally by applying the
inverse Laplace transform to the obtained analytic solution, which gives the exact solution
or give more accurate solution than the DTM solution large region.

This paper is organized as follows. In section 2, a brief overview of some fundamental
concepts and definitions related to differential transformation method, Padé approximan-
tion and Laplace transformation are presented. Section 3 presents several examples to
prove and demonstrate the validity and efficiency of our technique. Finally, conclusion
and discussion are given in section 4.

2. Preliminaries

In this section, we present some definitions of DTM and Padé approximants.

2.1. Differential Transform.

Definition 2.1. [21]
If a function f(x) is analytical with respect to x in the domain of interest, then

F (k) =
f (k)(x0)

k!
. (1)

The inverse differential transform of F (k) is defined as:

f(x) =
∞∑
k=0

F (k)(x− x0)k. (2)

From (1) and (2), we have

f(x) =

∞∑
k=0

f (k)(x0)

k!
(x− x0)k. (3)
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If U(k), G(k) and H(k) are the differential transforms of u(x), g(x) and h(x) respectively
at x0 = 0 , then the main operations of the DTM

Table 1. Main operations of the DTM

Original function Transformed function

u(x) = g(x) + h(x) U(k) = G(k) +H(k)
u(x) = cg(x) U(k) = cG(k)

u(x) = dng(x)
dxn U(k) = (k+n)!

k! G(k + n)

u(x) = g(x)h(x) U(k) =
∑k

i=0G(i)H(k − i)
u(x) = xn U(k) = δ(k − n)

u(x) = exp(cx) U(k) = ck

k!

u(x) = cos(ωx) U(k) = ωk

k! cos(
kπ
2 )

u(x) = sin(ωx) U(k) = ωk

k! sin(kπ2 )

Theorem 2.1. [22]
If f (x) =g (x+a), then

F (k) =
N∑
h=k

(
N
k

)
ah−kG (h) for N→ ∞.

Theorem 2.2. [23]
If f (y) =ym, then

F (k) =

{
(Y (0))m, k= 0

1
Y (0)

∑k
r=1

(
(m+1)r−k

k

)
Y (r)F (k−r) , k≥1

Theorem 2.3. [23]
If f (y) =eay, then

F (k) =

{
eaY (0), k= 0

a
∑k−1

r=0
r+1
k Y (r+1)F (k−1−r) , k≥1

Theorem 2.4. [23]
If f (y) =sin (αy) and g (y) =cos (αy) , then

F (k) =

{
sin (αY (0)) , k= 0

α
∑k−1

r=0
k−r
k G (r)Y (k−r) , k≥1

and

G (k) =

{
cos (αY (0)) , k= 0

−α
∑k−1

r=0
k−r
k F (r)Y (k−r) , k≥1

Using the differential transform, a differential equation in the domain of interest can be
transformed into an algebraic equation in the K-domain and f (t) can be obtained by the
finite-term Taylor series expansion plus a remainder,as

f(t) =

N∑
k=0

F (k)
(t−t0)k

k!
+RN+1(t) (4)

The series solution (4) converges rapidly only in a small region; in the wide region, they
may have very slow convergence rates, and then their truncations yield inaccurate results.
In the MDTM, we apply a Laplace transform to the series obtained by DTM, then convert
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the transformed series into a meromorphic function by forming its Padé approximants,
and then invert the approximant to obtain an analytic solution, which may be periodic
or a better approximation solution than the DTM truncated series solution. For further
reference on DTM see [24, 25, 26, 27].

2.2. Padé approximation. Padé approximant is the ratio of two polynomials constructed
from the coefficients of the Taylor series expansion of a function y(x).
The [L/M ] Padé approximants to a function y(x) are given by[

L

M

]
=

PL(x)

QM (x)

where PL(x) is a polynomial of degree at most L and QM (x) is a polynomial of degree at
most M . The formal power series

y (x) =
∞∑
i=1

aix
i,

y (x)− PL (x)

QM (x)
= O

(
xL+M+1

)
(5)

determine the coefficients of PL(x) and QM (x) by the equation. Since we can clearly
multiply the numerator and denominator by a constant and leave [L/M ] unchanged, then
we impose the normalization condition

QM (0) = 1. (6)

Finally, we require that PL(x) and QM (x) have no common factors. If we write the
coefficient of PL(x) and QM (x) as{

PL (x) = p0 + p1x+ p2x
2 + · · ·+ pLx

L

QM (x) = q0 + q1x+ q2x
2 + · · ·+ qMx

M (7)

then, by (6) and (7), we may multiply (5) by QM (x), which linearizes the coefficient
equations. We can write out (5) in more detail as

aL+1 + aLq1 + · · ·+ aL−M+1qM = 0
aL+2 + aL+1q1 + · · ·+ aL−M+2qM = 0

.

.
aL+M + aL+M−1q1 + · · ·+ aLqM = 0

(8)



a0 = p0
a0 + a0q1 = p1

a2 + a1q1 + a0q2 = p2
.
.

aL + aL−1q1 + · · ·+ a0qL = pL

(9)

To solve these equations, we start with equation (8), which is a set of linear equations for
all the unknown q′s. Once the q′s are known, then equation (9) gives an explicit formula
for the unknown p′s, which complete the solution.
If equation (9) and equation (8) are non-singular, then we can solve them directly and
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obtain equation (10) [28], where equation (10) holds, and if the lower index on a sum
exceeds the upper, the sum is replaced by zero:

[
L

M

]
=

det



aL−M+1

.

.

.
aL∑L

j=M aj−Mx
j

aL−M+2

.

.

.
aL+1∑L

j=M−1 aj−M+1x
j

...
.
.
.
...
...

aL+1

.

.

.
aL+M∑L
j=0 ajx

j



det


aL−M+1

.

.

.
aL
xM

aL−M+2

.

.

.
aL+1

xM−1

...
.
.
.
...
...

aL+1

.

.

.
aL+M

1



(10)

To obtain diagonal Padé approximants of different order such as [2 /2], [4/4] or [6/6] we
can use the symbolic calculus software, MATLAB.
Note that typically the Padé approximant, obtained from a partial Taylor sum, is more
accurate than the latter. However; the Padé, being a rational expression, has poles, which
are not present in the original function. It is a simple algebraic task to expand the form
of an [N, M ] Padé in a Taylor series and compute the Padé coefficients by matching with
the above [29].

3. Numerical Results

In this section, we have been solved three problems related by BVPs.

3.1. Problem 1. Consider the following second order linear differential equation with
boundary conditions at two points [1]

y
′′

+ y = 0, (11)

subject to the boundary conditions

y (0) =
1

2
, y
(π

3

)
=

1

2
, (12)

and the exact solution

y (t) =
1

2
cos (t) +

√
3

6
sin (t) .

Transforming Eq.(11) with the boundary conditions Eq.(12), we obtain

Y (k + 2) = − Y (k)

(k + 1)(k + 2)
. (13)

Y (0) =
1

2
, Y (1) = A. (14)

Substituting Eq.(14) in Eq.(13), yields the following:

Y (2) = −1

4
, Y (3) = −A

6
, Y (4) =

1

48
, Y (5) =

A

120
, Y (6) = − 1

1440
, Y (7) = − A

5040
.
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Using the inverse transformation rule (2), we obtain an approximate solution of equation
(11) in the form

y (t) =

∞∑
k=0

Y (k)tk =
1

2
+At− 1

4
t2 − A

6
t3 +

1

48
t4 +

A

120
t5 − 1

1440
t6 − A

5040
t7 + . . . (15)

In order to improve the accuracy of the differential transform solution (15), we implement
the modified DTM as follows:
Applying the Laplace transform [30] to the series solution (15) yields

L (y (t)) =
1

2

1

s
+
A

s2
− 1

2

1

s3
− A

s4
+

1

2

1

s5
+
A

s6
− 1

2

1

s7
− A

s8
+ . . . .

Letting s = 1
t gives

L (y (t)) =
1

2
t+At2 − 1

2
t3 −At4 +

1

2
t5 +At6 − 1

2
t7 −At8 + . . . .

The Padé approximants
[
4
4

]
gives [

4

4

]
=

2At2 + t

2t2 + 2

Recalling t = 1
s , we obtain

[
4
4

]
in terms of s[

4

4

]
=
s+ 2A

2s2 + 2

By using the inverse Laplace transform to the [4/4] Padé approximant, we obtain the
modified approximate solution

y =
1

2
cos (t) +Asin(t). (16)

Now, to find the value of constant A, we will back to the boundary condition

y
(π

3

)
=

1

2
,

and substitute in Eq.(16), to get A=
√
3
6 .

Thus, the modified solution will be

y (t) =
1

2
cos (t) +

√
3

6
sin (t) .

3.2. Problem 2. Consider the following third order linear differential equation with
boundary conditions at three points [14]

y
′′′ − k2y′ + a = 0, (17)

y
′
(0) = y

′
(1) = 0, y(0.5) = 0 (18)

Here, the physical constants are k = 5 and a = 1.
The function y (t) shows the shear deformation of sandwich beams. The analytic solution
of this problem is given by

y (t) =
a

k3

(
sinh

(
k

2

)
− sinh (kt)}

)
+
a

k2

(
t− 1

2

)
+
a

k3

(
cosh (kt)− cosh

(
k

2

)
}
)
tanh

(
k

2

)
.

Transforming Eq. (17) with the boundary conditions Eq. (18), we obtain

Y (k + 3) =
k!

(k + 3)!
[25 (k + 1)Y (k + 1)− δ(k)] . (19)
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Y (0) = A, Y (1) = 0, Y (2) =
B

2!
. (20)

Substituting Eq. (20) in Eq. (19), yields the following:

Y (3) = −1

6
, Y (4) =

25

24
B, Y (5) = − 5

24
, Y (6) =

125

144
B, Y (7) = − 125

1008
.

Using the inverse transformation rule (2), we obtain an approximate solution of equation
(17) in the form

y (t) =

∞∑
k=0

Y (k)tk = A+
B

2
t2 − 1

6
t3 +

25

24
Bt4 − 5

24
t5 +

125

144
Bt6 − 125

1008
t7 + . . . . (21)

In order to improve the accuracy of the differential transform solution (21), we implement
the modified DTM as follows:
Applying the Laplace transform to the series solution (21), yields

L (y (t)) =
A

s
+
B

s3
− 1

s4
+

25B

s5
− 25

s6
+

625B

s7
− 625

s8
+ . . . .

For simplicity, let s = 1
t ; then

L (y (t)) = At+Bt3 − t4 + 25Bt5 − 25t6 + 625Bt7 − 625t8 + . . . .

The Padé approximants
[
4
4

]
gives[

4

4

]
=
−At+ (25A−B) t3 + t4

25t2 − 1

Recalling t = 1
s , we obtain

[
4
4

]
in terms of s[

4

4

]
=
−As3 + (25A−B) s+ 1

−s4 + 25s2

By using the inverse Laplace transform to the [4/4] Padé approximant, we obtain the
modified approximate solution

y (t) = A− B

25
+

1

25
t+

(
1

50
B +

1

250

)
e−5t +

(
1

50
B − 1

250

)
e5t (22)

Now, to find the values of constants of A and B, we will back to the boundary conditions

y
′
(1) = 0, y (0.5) = 0,

and substitute in Eq.(22), to get

A= −0.0121070856147, B= 0.19732285963.

Thus, the modified approximate solution will be

y (t) = − 1

50
+

1

25
t+

19435

2445744
e−5t − 0.0000535428074e5t.

Table 2 exhibits the approximate solution obtained by using the MDTM, DTM [14] and
ADM [14]. It is clear that the obtained results in a our method are more accurate than the
other method in literature and in a good agreement with the exact solution, this obviously
noted from the absolute error which leads to conclude that this technique is effective and
more reliable. In Fig. 1, we plot the approximate solution and the exact solution.
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Table 2. 1: Comparison of the exact solution and the MDTM solution
for Problem 1

x Exact MDTM Absolute DTM Absolute ADM Absolute
Value Solution Error Error [14] Error [14]

0.0 −0.012107085615 −0.012107085615 3.53× 10−14 5.21× 10−12 3.52× 10−11

0.2 −0.0092222062091 −0.0092222062091 2.64× 10−14 5.1× 10−12 3.59× 10−11

0.4 −0.003320194773 −0.003320194773 4.63× 10−14 9.04× 10−12 3.9× 10−11

0.6 0.003320194773 0.003320194773 1.16× 10−13 1.89× 10−11 4.89× 10−11

0.8 0.009222206209 0.009222206209 3.13× 10−13 4.69× 10−11 7.69× 10−11

1.0 0.012107085615 0.012107085614 8.49× 10−13 1.21× 10−10 1.51× 10−10

Figure 1. The graphs of approximated and exact solution y(t) for problem 3.2

3.3. Problem 3. Consider the fifth order nonlinear differential equation [4]

y(5) = e−ty2, 0 ≤ x ≤ 1. (23)

with boundary conditions

y(0) = y
′
(0) = y

′′
(0) = 1, y(1) = y

′
(1) = e. (24)

It is easy to see that the exact solution is y (t) = et.
Transforming Eq.(23) with the boundary conditions Eq. (24), we obtain

Y (k + 5) =
k!

(k + 5)!

k∑
i=0

(−1)i

i!
G(k − i). (25)

Where G(k) is the differential transform of g (y) =y2.

Y (0) = 1, Y (1) = 1, Y (2) =
1

2
, Y (3) =

A

3!
, Y (4) =

B

4!
. (26)

By theorem (2.2), the differential transform G (k) in equation (25) is

G (0) = (Y (0))3 = 1, (27)

G (k) =
k∑
r=1

(
3r − k
k

)
Y (r)G (k−r) , k≥1. (28)

Therefore,

G (1) = 2, G (2) = 2,
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then

Y (5) =
1

5!
, Y (6) =

1

6!
, Y (7) =

1

7!
.

Using the inverse transformation rule (2), we obtain an approximate solution of equation
(23) in the form

y (t) =
∞∑
k=0

Y (k)tk = 1 + t+
1

2
t2 +

A

3!
t3 +

B

4!
t4 +

1

5!
t5 +

1

6!
t6 +

1

7!
t7 + .. (29)

In order to improve the accuracy of the differential transform solution (29), we implement
the modified DTM as follows:
Applying the Laplace transform to the series solution (29), yields

L (y (t)) =
1

s
+

1

s2
+

1

s3
+
A

s4
+
B

s5
+

1

s6
+

1

s7
+

1

s8
+ . . . .

For simplicity, let s = 1
t ; then

L (y (t)) = t+ t2 + t3 +At4 +Bt5 + t6 + t7 + t8 + . . . , (30)

we can write (30) as

L (y (t)) =
(
t+ t3 +Bt5 + t7

)
+
(
t2 +At4 + t6 + t8

)
+ . . . , (31)

The Padé Approximants
[
3
3

]
gives[
3

3

]
= − t2

at2 − 1
+

(B − 1) t3 − t
Bt2 − 1

Recalling t = 1
s , we obtain

[
3
3

]
in terms of s[

3

3

]
=

1

s2 − a
+
s2 − (B − 1)

s3 −Bs
By using the inverse Laplace transform to the

[
3
3

]
Padé approximant, we obtain the

modified approximate solution

y =
1√
A
sinh(

(√
At
)

+
1

B
cosh

(√
Bt
)

+
B − 1

B
. (32)

Now, to find the values of constants A and B, we will back to the initial condition y(1) = e,
and substitute in Eq.(32), to get

1 + 1 +
1

2
+
A

6
+
B

24
+

N∑
n=5

1

n!
+RN+1(t) = e,

when N →∞, then

5

2
+
A

6
+
B

24
+

( ∞∑
n=0

1

n!
−

4∑
n=0

1

n!

)
= e,

that gives
5

2
+
A

6
+
B

24
+ e− (1 + 1 +

1

2
+

1

6
+

1

24
) = e,

then
4A+B = 5 (33)

Now,

y
′

= 1 + t+
A

2
t2 +

B

3!
t3 +

1

4!
t4 +

1

5!
t5 +

1

6!
t6 + . . . ,

and y
′
(1) = e, then
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1 + 1 +
A

2
+
B

6
+
∞∑
n=4

1

n!
= e,

thus
3A+B = 4 (34)

From (33) and (34), A = B = 1. Thus, the modified solution will be

y (t) = sinh (t) + cosh (t) = et.

4. Conclusions

In this paper, the MDTM is employed successfully for obtaining a new accurate ap-
proximate solution of a class of BVP’s. The applicability and efficiency of this technique
is tested throughout several examples. The results obtained are converge to the exact
solution and in most cases it gives as the exact solution. This rereads that the MDTM is
very strong technique and gives us more accurate results as compared by other methods.

Acknowledgement. The authors would like to express their sincere gratitude to the
anonymous referees for their useful and valuable comments.
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