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ON SOLUTION OF BG−VOLTERRA INTEGRAL EQUATIONS

N. GÜNGÖR1, §

Abstract. In this study, we center upon obtaining the solution of linear bigeometric
Volterra integral equations of the second kind in the sense of bigeometric calculus. The
method of successive substitutions and resolvent kernel method are applied for solving
the linear bigeometric Volterra integral equations of the second kind by using the concept
of bigeometric integral. The necessary conditions for the bigeometric continuity and the
uniqueness of the solution of linear bigeometric Volterra integral equations of the sec-
ond kind are given in these methods. Finally, some numerical examples are presented
to explain the procedure of the method of successive substitutions and resolvent kernel
method.

Keywords: Bigeometric calculus, bigeometric Volterra integral equations, method of suc-
cessive substitutions, BG−resvolvent kernel.

AMS Subject Classification: 45A05, 45D99

1. Introduction

Grossman and Katz [13] introduced the non-Newtonian calculus comprising of the
branches of geometric, harmonic, quadratic, bigeometric, biharmonic and biquadratic cal-
culus, as an alternative to classical calculus. Non-Newtonian calculus provides a wide
application areas in science, engineering and mathematics. Bigeometric calculus which is
one of the most popular non-Newtonian calculus is worked by many researchers. Rybaczuk
and Stopel [19] investigated the fractal growth in material science by using bigeometric cal-
culus. Aniszewska and Rybaczuk [1] used bigeometric calculus on a multiplicative Lorenz
System. Córdova-Lepe [5] studied on measure of elasticity in economics by aid of bige-
ometric calculus. Boruah and Hazarika [2, 3] named bigeometric calculus as G-calculus
and investigated basic properties of derivative and integral in the sense of bigeometric
calculus and also applications in numerical analysis. Boruah et al. [4] researched solv-
ability of bigeometric differential equations by using numerical methods. Güngör [12]
defined Volterra integral equations in the sense of bigeometric calculus and investigated
its relationship with bigeometric differential equations. Further details can be found in
[6, 7, 8, 9, 11, 14, 20, 21].
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Integral equations have a significant role in engineering, pure and applied mathematics
and mathematical physics. Many researchers reformulated and applied different types
of methods and techniques for getting the solutions of integral equations. One can find
relevant terminology related to integral equations in [15, 16, 17, 18].

A complete ordered field is a system consisting of a set A, four binary operations

+̇, −̇, ×̇, /̇ for A and an ordering relation <̇ for A, all of which behave with respect to A
exactly as +,−,×, /,< behave with respect to the set R of real numbers. We call A the
realm of complete ordered field. A complete ordered field is called arithmetic if its realm
is a subset of R. A generator is one-to-one function whose domain is R, the set of all
real numbers and whose range is a subset of R. The range of generator α which is called
non-Newtonian real line denoted by Rα = {α (x) : x ∈ R} . α− arithmetic operations are
described as below:

α− addition x+̇y = α
{
α−1 (x) + α−1 (y)

}
α− subtraction x−̇y = α

{
α−1 (x)− α−1 (y)

}
α−multiplication x×̇y = α

{
α−1 (x) · α−1 (y)

}
α− division x/̇y = α

{
α−1 (x)÷ α−1 (y)

}
α− order x<̇y ⇔ α−1 (x) < α−1 (y)

for x, y ∈ Rα.
(
Rα, +̇, ×̇

)
is a complete field. We say that α generates α-arithmetic.

In particular, the identity function I generates classical arithmetic and the exponential
function generates geometric arithmetic [13].

Grosmann and Katz described the ∗-calculus with the help of two arbitrarily selected
generators. Let α and β be arbitrarily selected generators and ∗ is the ordered pair of
arithmetic ( α-arithmetic, β-arithmetic). The following notions are used:

α− arithmetic β − arithmetic
Realm A B
Summation +̇ +̈
Subtraction −̇ −̈
Multiplication ×̇ ×̈
Division /̇(or −α) /̈(or −β)
Order <̇ <̈ .

If the generators α and β are chosen as one of I and exp, the following special calculi
are obtained:

Calculus α β
Classical I I
Geometric I exp
Anageometric exp I
Bigeometric exp exp.

The ι (iota) which is an isomorphism from α−arithmetic to β−arithmetic uniquely
satisfying the following three properties:

(1) ι is one to one,
(2) ι is on A and onto B,
(3) For any numbers x and y in A,

ι
(
x+̇y

)
= ι (x) +̈ι (y)

ι
(
x−̇y

)
= ι (x) −̈ι (y)

ι
(
x×̇y

)
= ι (x) ×̈ι (y)
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ι
(
x/̇y

)
= ι (x) /̈ι (y)

x<̇y ⇔ ι (x) <̈ι (y).

It turns out that ι (x) = β
{
α−1 (x)

}
for every x in A and ι (ṅ) = n̈ for every integer n

[13].
Throughout this study, we will deal with bigeometric calculus which is the ∗-calculus

for which α = β = exp as specified above. In other words, one uses geometric arithmetic
on function arguments and values in the bigeometric calculus. Thereby, we will start by
giving the geometric aritmetic and its necessary properties.

If the function exp from R to R+ which gives α−1 (x) = lnx is selected as a generator,
that is to say that α-arithmetic turns into geometric arithmetic. The range of generator
exp is denoted by Rexp = {ex : x ∈ R}. The following notions are used:

geometric addition x⊕ y = x.y
geometric subtraction x	 y = x/y, y 6= 0
geometric multiplication x� y = xln y

geometric division x� y = x
1

ln y , y 6= 1

geometric order x
exp
< y ⇔ lnx < ln y.

(Rexp,⊕,�) is a complete field with geometric zero 1 and geometric identity e. The
geometric positive real numbers and geometric negative real numbers are defined by R+

exp ={
x ∈ Rexp : x

exp
> 1

}
and R−exp =

{
x ∈ Rexp : x

exp
< 1

}
, respectively [2, 3, 14].

The exp-absolute value of x ∈ Rexp determined by

|x|exp =


x, x

exp
> 1

1, x = 1

1/x, x
exp
< 1

and thus |x|exp
exp
≥ 1. For x, y ∈ Rexp, the following relations hold:

x2exp = x� x = xlnx x−1exp = e
1

ln x xpexp = xln
p−1 x

√
x
exp

= e(lnx)
1
2

√
x2exp

exp
= |x|exp en � x = xn

x⊕ 1 = x x� e = x 1	 e� (x	 y) = y 	 x
|ex|exp = e|x| |x⊕ y|exp

exp
≤ |x|exp ⊕ |y|exp |x	 y|exp

exp
≥ |x|exp 	 |y|exp

|x� y|exp = |x|exp � |y|exp |x� y|exp = |x|exp � |y|exp
The geometric fractional notation !exp denoted by n!exp = en�en−1�· · ·�e = en! [2, 3, 14].

Definition 1.1. Let (xn) be sequence and x be a point of metric space
(
Rexp, |.|exp

)
. If

for every ε
exp
> 1, there exists n0 = n0 (ε) ∈ N such that |xn 	 x|exp

exp
< ε for all n > n0,

then it is said that the sequence (xn) is exp-convergent and denoted by exp lim
n→∞

xn = x

[21].

Definition 1.2. Let f : A ⊂ Rexp → Rexp be a function and a ∈ A′exp, b ∈ Rexp. If for

every ε
exp
> 1 there exists a number δ = δ (ε)

exp
> 1 such that |f (x)	 b|exp

exp
< ε for all

x ∈ A whenever |x	 a|exp
exp
< δ, then it is said that the BG−limit of the function f at the

point a is b and is denoted by BG lim
x→a

f (x) = b [2, 20].
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Definition 1.3. Let a ∈ A and f : A ⊂ Rexp → Rexp be a function. If for every

ε
exp
> 1 there exists a number δ = δ (ε)

exp
> 1 such that |f (x)	 f (a)|exp

exp
< ε for all x ∈ A

whenever |x	 a|exp
exp
< δ, then it is said that f is BG−continuous at the point a ∈ A [2].

Definition 1.4. Let f : (r, s) ⊂ Rexp → Rexp and a ∈ (r, s). If BG lim
x→a

f(x)	f(a)
x	a exp =

lim
x→a

[
f(x)
f(a)

] 1
ln x−ln a

exits, it is denoted by fBG (a) and called the BG−derivative of f at a

and said that f is BG−differentiable at a [2, 13, 14].

Definition 1.5. The BG−average of a BG−continuous positive function f on [r, s] ⊂

Rexp is denoted by
BG
M s
r f and defined as exp−limit of the exp−convergent sequence

whose nth term is geometric average of f (a1) , f (a2) , ..., f (an) where a1, a2, ..., an is the
n−fold exp−partition of [r, s]. The BG−integral of a BG−continuous function f on [r, s]

is indicated by BG
s∫
r
f (x) dxBG that is the number

(
BG
M s
r f

)(ln s−ln r)
[3, 13, 14].

Remark 1.1. If f is BG−continuous on [r, s] ⊂ Rexp, then BG
s∫
r
f (x) dxBG = e

s∫
r

ln f(x)
x

dx
[3,

13, 14].

Theorem 1.1. Let f and g be BG−continuous positive functions on [r, s] ⊂ Rexp. Then,
the following statements hold:

(1) BG
s∫
r

[λ� f (x)⊕ µ� g (x)] dxBG = λ� BG
s∫
r
f (x) dxBG ⊕ µ� BG

s∫
r
g (x) dxBG for

all λ, µ ∈ Rexp.

(2) BG
s∫
r
f (x) dxBG = BG

t∫
r
f (x) dxBG ⊕ BG

s∫
t

f (x) dxBG where r
exp
< t

exp
< s.

(3) If f (x)
exp
≤ g (x) for all x ∈ [r, s] ⊂ Rexp, then BG

s∫
r
f (x) dxBG

exp
≤ BG

s∫
r
g (x) dxBG

(4) The function f is exp−bounded on [r, s] ⊂ Rexp.

(5)

∣∣∣∣BG s∫
r
f (x) dxBG

∣∣∣∣
exp

exp
≤ BG

s∫
r
|f (x)|exp dxBG [3, 10, 13].

Definition 1.6. Let n ∈ N and A be a nonempty subset of Rexp. The sequence (fn) =
(f1, f2, . . . , fn, . . .) is called BG−function sequence for functions fn : A ⊂ Rexp → Rexp.
Here all functions defined on same set. The sequence (fn (x0)) is exp-sequence in Rexp for
each x0 ∈ A [20].

Definition 1.7. Let us take the BG−function sequence (fn) where fn : A ⊆ Rexp →
Rexp. If the sequence (fn (x0)) is exp-convergent for each x0 ∈ A, then the BG−function
sequence (fn) is called BG−convergent. The BG−function sequence (fn), BG−pointwise

converges or BG−converges to the function f , if for any given ε
exp
> 1, there exists a

naturel number n0 = n0 (x, ε) such that |fn (x)	 f (x)|exp
exp
< ε for all n > n0 and for

each x ∈ A. We denote BG−convergence by BG lim
n→∞

fn = f (BG−pointwise) or fn
BG→ f

(BG−pointwise) [20].

Definition 1.8. Let us take the BG−function sequence (fn) where fn : A ⊆ Rexp → Rexp.
The BG−function sequence (fn), BG−uniform converges to the function f on the set A, if
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for any given ε
exp
> 1, there exists a naturel number n0 depends on number ε but not depend

on variable x such that |fn (x)	 f (x)|exp
exp
< ε for all n > n0 and each x ∈ A. We denote

BG−uniform convergence by BG lim
n→∞

fn = f (BG−uniform) or fn
BG→ f (BG−uniform)

[20].

Definition 1.9. Let us take BG−function sequence (fn) with fn : A ⊆ Rexp → Rexp. The

infinite exp-sum exp

∞∑
n=1

fn = f1 ⊕ f2 ⊕ · · · ⊕ fn ⊕ · · · is called BG−function series. The

exp-sum Sn = exp

n∑
k=1

fk is called nth partial exp-sum of the series exp

∞∑
n=1

fn for n ∈ N [20].

Definition 1.10. Let the BG−function series exp

∞∑
n=1

fn with fn : A ⊆ Rexp → Rexp and

the function f : A ⊆ Rexp → Rexp be specified. If the exp−partial sums sequence (Sn),

where Sn = exp

n∑
k=1

fk is BG−uniform convergent to the function f , then exp

∞∑
n=1

fn is called

BG−uniform convergent to the function f on the set A and exp

∞∑
n=1

fn = f (BG−uniform)

is written [20].

Theorem 1.2 (BG−Weierstrass M-criterion). If there exist geometric numbers Mn such

that |fn (x)|exp
exp
< Mn for all x ∈ A where fn : A→ Rexp and if the series exp

∞∑
n=1

Mn is

exp−convergent, then the series exp

∞∑
n=1

fn is BG−uniform convergent and exp-absolutely

convergent [20].

Theorem 1.3. If the functions fn : [r, s] ⊂ Rexp → Rexp are BG−continuous on [r, s] ⊂

Rexp for all n ∈ N and exp

∞∑
n=1

fn = f (BG−uniform), then the function f is BG−continuous

on [r, s] and exp

∞∑
n=1

(
BG

s∫
r
fn (x) dxBG

)
= BG

s∫
r
f (x) dxBG [20].

2. Solving BG−Volterra Integral Equations

An equation of the unknown function u (x) with Rexp−valued, is generated the following
form

u (x) = f (x)⊕ λ� BG

x∫
a

K (x, s)� u (s) dsBG (1)

is called linearBG−Volterra integral equation of the second kind where λ is a Rexp−parameter.
If the unkown function u (x) is only under the BG−integral sign in form as

f (x) = λ� BG

x∫
a

K (x, s)� u (s) dsBG,

the equation is called linear BG−Volterra integral equation of the the first kind. If f (x) =
1, the equation is called homogeneous. The functions f (x) and K (x, s) are specified
Rexp−valued functions. The function K (x, s) is called the kernel of the BG−Volterra
integral equation [12].



26 TWMS J. APP. AND ENG. MATH. V.13, N.1, 2023

2.1. Solving by Using the Method of Successive Substitutions. This method in-
troduces the solution of the integral equation in a series form through evaluating single
integral and multiple integrals as well. In this method, we substitute successively for u (x)
its value as given by equation (1). We obtain that

u (x) = f (x)⊕ λ� BG

x∫
a

K (x, s)�

f (s)⊕ λ� BG

s∫
a

K (s, s1)� u (s1) ds
BG
1

 dsBG

= f (x)⊕ λ� BG

x∫
a

K (x, s)� f (s) dsBG

⊕λ2exp � BG

x∫
a

K (x, s)� BG

s∫
a

K (s, s1)� u (s1) ds
BG
1 dsBG. (2)

Again we substitute for u (s1) its value as given by (1) into the right side of (2), we get

u (x) = f (x)⊕ λ� BG

x∫
a

K (x, s)� f (s) dsBG ⊕ λ2exp �

 BG

x∫
a

K (x, s)

� BG

s∫
a

K (s, s1)�

f (s1)⊕ λ� BG

s1∫
a

K (s1, s2)� u (s2) ds
BG
2

 dsBG1 dsBG


= f (x)⊕ λ� BG

x∫
a

K (x, s)� f (s) dsBG

⊕λ2exp � BG

x∫
a

K (x, s)� BG

s∫
a

K (s, s1)� f (s1) ds
BG
1 dsBG

⊕λ3exp � BG

x∫
a

K (x, s)� BG

s∫
a

K (s, s1)� BG

s1∫
a

K (s1, s2)� u (s2) ds
BG
2 dsBG1 dsBG.

Proceeding in the same manner, we obtain

u (x) = f (x)⊕ λ� BG

x∫
a

K (x, s)� f (s) dsBG ⊕ λ2exp � BG

x∫
a

K (x, s)

� BG

s∫
a

K (s, s1)� f (s1) ds
BG
1 dsBG ⊕ · · · ⊕ λnexp �

 BG

x∫
a

K (x, s)� BG

s∫
a

K (s, s1)

� BG

s1∫
a

K (s1, s2)� · · · � BG

sn−2∫
a

K (sn−2, sn−1)� f (sn−1) ds
BG
n−1 · · · dsBG1 dsBG

⊕Rn+1 (x)
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where

Rn+1 = λ(n+1)exp � BG

x∫
a

K (x, s)� BG

s∫
a

K (s, s1)� BG

s1∫
a

K (s1, s2)

� · · · � BG

sn−1∫
a

K (sn−1, sn)� u (sn) dsBGn · · · dsBG1 dsBG (3)

is the remainder after n terms. This leads us to the consideration of the following infinite
exp−series:

f (x)⊕ λ� BG

x∫
a

K (x, s)� f (s) dsBG ⊕ λ2exp � BG

x∫
a

K (x, s)� BG

s∫
a

K (s, s1)� f (s1) ds
BG
1 dsBG

⊕λ3exp � BG

x∫
a

K (x, s)� BG

s∫
a

K (s, s1)� BG

s1∫
a

K (s1, s2)� f (s2) ds
BG
2 dsBG1 dsBG ⊕ · · · . (4)

Theorem 2.1. Consider the BG−Volterra integral equation (1). If the following condi-
tions hold

i) K (x, s) is a BG−continuous function in the rectangle for which a
exp
≤ x

exp
≤ b,

a
exp
≤ s

exp
≤ b and K (x, s) 6= 1,

ii) f (x) is a BG−continuous function on a
exp
≤ x

exp
≤ b and f (x) 6= 1,

iii) λ is a constant in Rexp,

then the equation (1) has one and only one BG−continuous solution in [a, b] ⊂ Rexp

and this solution is given by the exp−absolutely and BG−uniformly convergent series (4).

Proof. Since K (x, s) is BG−continuous on a
exp
≤ x, s

exp
≤ b, there is M

exp
≥ 1 such that

|K (x, s)|exp
exp
≤ M (5)

on the interval a
exp
≤ x, s

exp
≤ b. Because f (x) is a BG−continuous function on a

exp
≤ x

exp
≤ b,

there is m
exp
≥ 1 such that

|f (x)|exp
exp
≤ m. (6)

Let us take the general term An (x) of the series (4), we can write

An (x) = λnexp � BG

x∫
a

K (x, s)� BG

s∫
a

K (s, s1)� BG

s1∫
a

K (s1, s2)�

· · · � BG

sn−2∫
a

K (sn−2, sn−1)� f (sn−1) ds
BG
n−1 · · · dsBG1 dsBG.
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From (5) and (6), we have

|An (x)|exp =

∣∣∣∣∣∣λnexp � BG

x∫
a

K (x, s)� BG

s∫
a

K (s, s1)� BG

s1∫
a

K (s1, s2)�

· · · � BG

sn−2∫
a

K (sn−2, sn−1)� f (sn−1) ds
BG
n−1 · · · dsBG1 dsBG

∣∣∣∣∣∣
exp

exp
≤ |λ|nexp

exp �m�M
nexp � (x	 a)nexp

n!exp
exp ,

(
a

exp
≤ x

exp
≤ b

)
exp
≤ |λ|nexp

exp �m�M
nexp � (b	 a)nexp

n!exp
exp .

Since

exp lim
n→∞

∣∣∣∣∣∣
|λ|(n+1)exp

exp �m�M (n+1)exp � (b	a)(n+1)exp

(n+1)!exp
exp

|λ|nexp
exp �m�Mnexp � (b	a)nexp

n!exp
exp

exp

∣∣∣∣∣∣
exp

= exp lim
n→∞

∣∣∣∣ |λ|exp �M � (b	 a)

en+1
exp

∣∣∣∣
exp

= lim
n→∞

e

∣∣∣∣∣∣ ln(
b
a)

lnM.|lnλ|

n+1

∣∣∣∣∣∣
= 1

exp
< e

the series exp

∞∑
n=1
|λ|nexp

exp � m � Mnexp � (b	a)nexp
n!exp

exp is exp−convergent for all values

m,λ,M, (b	 a) from exp−ratio test. Therefore the series (4) is BG−uniformly and
exp−absolutely convergent by BG−Weierstrass M−criterion. If (1) has continuous solu-
tion, it must be expressed by (4). If u (x) is continuous on a ≤exp x ≤exp b, there exits a
constant N in Rexp such that exp max |u (x)|exp = N . Consequently, from the equation (3)
we find

|Rn+1 (x)|exp
exp
≤ |λ|(n+1)exp

exp �N �M (n+1)exp � (x	 a)(n+1)exp

(n+ 1)!exp
exp ,

(
a

exp
≤ x

exp
≤ b

)
exp
≤ |λ|(n+1)exp

exp �N �M (n+1)exp � (b	 a)(n+1)exp

(n+ 1)!exp
exp .

Because of

exp lim
n→∞

|λ|(n+1)exp
exp �N �M (n+1)exp � (b	 a)(n+1)exp

(n+ 1)!exp
exp = 1

we have exp lim
n→∞

Rn+1 (x) = 1. Hence we see that u (x) satisfying (1), is the continuous

function given by the series (4). �

2.2. Solving by Using BG-Resolvent Kernel. Let the function f (x) beBG−continuous

on 1
exp
≤ x

exp
≤ a and the function K (x, s) be BG−continuous on 1

exp
≤ s

exp
≤ x and
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1
exp
≤ x

exp
≤ a. In this method, we will research the solution of the equation

u (x) = f (x)⊕ λ� BG

x∫
1

K (x, s)� u (s) dsBG (7)

in the form of an infinite BG−power series with respect to λ as

u (x) = u0 (x)⊕ λ� u1 (x)⊕ λ2exp � u2 (x)⊕ · · · ⊕ λnexp � un (x)⊕ · · · (8)

If the series is written instead of u (x) in (7), we obtain

u0 (x)⊕ λ� u1 (x)⊕ λ2exp � u2 (x)⊕ · · · ⊕ λnexp � un (x)⊕ · · ·

= f (x)⊕ λ� BG

x∫
1

K (x, s)� [u0 (s)⊕ λ� u1 (s)⊕ · · · ⊕ λnexp � un (s)⊕ · · · ] dsBG.

Comparing the coefficients of like powers of λ, we get

u0 (x) = f (x)

u1 (x) = BG

x∫
1

K (x, s)� u0 (s) dsBG

u2 (x) = BG

x∫
1

K (x, s)� u1 (s) dsBG

...

un (x) = BG

x∫
1

K (x, s)� un−1 (s) dsBG.

If substituting the first equality into second equality, we get

u1 (x) = BG

x∫
1

K (x, s)� f (s) dsBG.
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Since f (x) and K (x, s) are BG−continuous functions, we find u2 (x) as in the following
form

u2 (x) = BG

x∫
1

K (x, s)� u1 (s) dsBG

= BG

x∫
1

K (x, s)�

BG s∫
1

K (s, s1)� f (s1) ds
BG
1

 dsBG
= BG

x∫
1

K (x, s)� e
s∫
1

lnK(s,s1)
ln f(s1)

s1
ds1
dsBG

= e

x∫
1

lnK(x,s)
s

s∫
1

ln f(s1) lnK(s,s1)
s1

ds1ds

= e

x∫
1

ln f(s1)
s1

x∫
s1

lnK(x,s) lnK(s,s1)
s

dsds1

= e

x∫
1

ln f(s1)
s1

ln e

x∫
s1

lnK(x,s) lnK(s,s1)
s ds

ds1

= BG

x∫
1

f (s1)�

BG x∫
s1

K (x, s)�K (s, s1) ds
BG

 dsBG1

= BG

x∫
1

K(2) (x, s1)� f (s1) ds
BG
1

where K(2) (x, s1) = BG
x∫
s1

K (x, s)�K (s, s1) ds
BG. By proceeding similar method, we get

un (x) = BG

x∫
1

K(n) (x, s)� f (s) dsBG, n ≥ 1 (9)

where

K(1) (x, s) = K (x, s)

K(n+1) (x, s) = BG

x∫
s

K (x, z)�K(n) (z, s) dzBG, n ≥ 1 (10)

The K(n) are called the BG−iterated kernel. Benefiting from the expressions (9), the
equality (8) can be written as follow

u (x) = f (x)⊕ exp

∞∑
n=1

λnexp � BG

x∫
1

K(n) (x, s)� f (s) dsBG. (11)

The function R (x, s;λ) defined by

R (x, s;λ) = exp

∞∑
n=0

λnexp �K(n+1) (x, s) (12)
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is called BG−resolvent kernel for the BG−Volterra integral equation (7). Since K (x, s)

is BG−continuous on 1
exp
≤ s

exp
≤ x

exp
≤ a, there exists M

exp
≥ 1 such that |K (x, s)|exp

exp
≤ M

on 1
exp
≤ s

exp
≤ x

exp
≤ a. Hence, we can write the following statements∣∣K(1) (x, s)

∣∣
exp

= |K (x, s)|
exp

exp
≤ M

∣∣K(2) (x, s)
∣∣
exp

=

∣∣∣∣∣∣BG
x∫
s

K (x, z)�K(1) (z, s) dzBG

∣∣∣∣∣∣
exp

exp
≤ BG

x∫
s

|K (x, z)|exp � |K (z, s)|exp dz
BG

exp
≤ BG

x∫
s

M2expdzBG

= e

x∫
s

lnM lnM

z
dz

= e(lnM)2(ln x
s )

= M2exp � (x	 s)

∣∣K(3) (x, s)
∣∣
exp

=

∣∣∣∣∣∣BG
x∫
s

K (x, z)�K(2) (z, s) dzBG

∣∣∣∣∣∣
exp

exp
≤ BG

x∫
s

|K (x, z)|exp �
∣∣K(2) (z, s)

∣∣
exp

dzBG

exp
≤ BG

x∫
s

M3exp � (z 	 s) dzBG

= e

x∫
s

(lnM)3 ln( zs )
z

dz

= e(lnM)3 ln2 x
s

= M3exp � (x	 s)2exp

2!exp
exp

...

∣∣K(n+1) (x, s)
∣∣
exp

exp
≤ M (n+1)exp � [x	 s]nexp

n!exp
exp .

by the recursion formulas (10). Therefore the series (12) is exp−absolutely convergent

and BG−uniformly convergent on 1
exp
≤ s

exp
≤ x

exp
≤ a from BG−Weierstrass M-criterion.
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Theorem 2.2. If the function f (x) is BG−continuous on 1
exp
≤ x

exp
≤ a and K (x, s) is

BG−continuous on 1
exp
≤ s

exp
≤ x

exp
≤ a, then

f (x)⊕ λ� BG

x∫
1

R (x, s;λ)� f (s) dsBG

is unique continuous solution of (7).

Proof. Since the order of BG−integration and exp−summation is interchanged by Theo-
rem 1.3, we get

f (x)⊕ λ� BG

x∫
1

R (x, s;λ)� f (s) dsBG

= f (x)⊕ λ� exp

∞∑
n=0

λnexp � BG

x∫
1

K(n+1) (x, s)� f (s) dsBG


= f (x)⊕ exp

∞∑
n=0

λ(n+1)exp � BG

x∫
1

K(n+1) (x, s)� f (s) dsBG


= f (x)⊕ exp

∞∑
n=0

λ(n+1)exp � un+1 (x)

= u (x)

by expression (12). �

Theorem 2.3. Under the hypothesis of Theorem 2.2, the BG−resolvent kernel R (x, s;λ)
satisfies the following equation

R (x, s;λ) = K (x, s)⊕ λ� BG

x∫
s

K (x, z)�R (z, s;λ) dzBG.

Proof. We know that the BG−resolvent kernel is

R (x, s;λ) = exp

∞∑
n=0

λnexp �K(n+1) (x, s)

where iterated kernels are given by (10). Hence, we find

R (x, s;λ) = K(1) (x, s)⊕ exp

∞∑
n=1

λnexp �K(n+1) (x, s)

= K (x, s)⊕ exp

∞∑
n=1

λnexp �

BG

x∫
s

K (x, z)�K(n) (z, s) dzBG


= K (x, s)⊕ λ� exp

∞∑
n=1

λ(n−1)exp � BG

x∫
s

K (x, z)�K(n) (z, s) dzBG

= K (x, s)⊕ λ� exp

∞∑
n=0

λnexp � BG

x∫
s

K (x, z)�K(n+1) (z, s) dzBG.
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Changing the order of exp−summation and BG−integration, we have

R (x, s;λ) = K (x, s)⊕ λ� BG

x∫
s

K (x, z)�

(
exp

∞∑
n=0

λnexp �K(n+1) (z, s)

)
dzBG

= K (x, s)⊕ λ�BG
x∫
s

K (x, z)�R (z, s;λ) dzBG.

�

2.3. Numerical Examples.

Example 2.1. Solve the BG−Volterra integral equation u (x) = e⊕ BG
x∫
1

u (s) dsBG by

using successive substitutions method.
The solution of the BG−Volterra integral equation is obtained as

u (x) = e⊕ BG

x∫
1

e� edsBG ⊕ BG

x∫
1

e� BG

s∫
1

e� edsBG1 dsBG

⊕ BG

x∫
1

e� BG

s∫
1

e� BG

s1∫
1

e� edsBG2 dsBG1 dsBG ⊕ · · ·

= e⊕ BG

x∫
1

edsBG ⊕ BG

x∫
1

BG

s∫
a

edsBG1 dsBG ⊕ BG

x∫
1

BG

s∫
1

BG

s1∫
1

edsBG2 dsBG1 dsBG ⊕ · · ·

= e⊕ e

x∫
1

ln e
s
ds
⊕ BG

x∫
1

e s∫1 ln e
s1
ds1

 dsBG ⊕ BG

x∫
1

BG

s∫
1

es1∫1 ln e
s2
ds2

 dsBG1 dsBG ⊕ · · ·

= e⊕ elnx ⊕ e
x∫
1

ln s
s
ds
⊕ BG

x∫
1

e s∫1 ln s1
s1

ds1

⊕ · · ·
= e⊕ elnx ⊕ e

ln2 x
2! ⊕ e

ln3 x
3! ⊕ · · ·

= e⊕ x⊕ x2exp

2!exp
⊕ x3exp

3!exp
⊕ · · ·

= ex.

Example 2.2. With the help of the BG−resolvent kernel find the solution of BG−Volterra

integral equation u (x) = ex⊕ BG
x∫
1

ex	s � u (s) dsBG.

By definition of BG−iterated kernels, we find

K(1) (x, s) = K (x, s) = ex	s
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K(2) (x, s) = BG

x∫
s

K (x, z)�K(1) (z, s) dzBG

= BG

x∫
s

e(x	z) � e(z	s)dzBG

= BG

x∫
s

e(x	s)dzBG

= ex	s � (x	 s)

K(3) (x, s) = BG

x∫
s

K (x, z)�K(2) (z, s) dzBG

= BG

x∫
s

e(x	z) � e(z	s) � (z 	 s) dzBG

= e(x	s) � BG

x∫
s

(z 	 s) dzBG

= e(x	s) � e
x∫
s
( ln z−ln s

z )dz
= e(x	s) � e

(ln x−ln s)2

2

= ex	s � (x	 s)2exp

2!exp

and so on. In general, we have

Kn+1 (x, s) = ex	s � (x	 s)nexp

n!exp
, n ∈ N.

Hence, the BG−resolvent kernel is obtained by

R (x, s;λ) = exp

∞∑
n=0

λnexp � ex	s � (x	 s)nexp

n!exp
= ex	s �exp

∞∑
n=0

λnexp � (x	 s)nexp

n!exp
.

Therefore,

R (x, s;λ) = ex	s � eλ�(x	s).
The required solution of the given BG−integral equation is

u (x) = ex ⊕ BG

x∫
1

R (x, s; e)� esdsBG

= ex ⊕ BG

x∫
1

ex	s � ee�(x	s) � esdsBG

= ex ⊕ e
x∫
1

ln e
x2
s

s
ds

= ex ⊕ ex2 	 ex

= ex
2
.
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3. Conclusions

The method of successive substitutions is applied to solve bigeometric Volterra inte-
gral equations of the second kind by using the concept of bigeometric integral and also,
the necessary conditions for BG−continuous and uniqueness of this solution is given in
this method. The resolvent kernel method is applied to solve bigeometric Volterra inte-
gral equations of the second kind by aid of obtaining BG−iterated kernel in the sense
of bigeometric calculus and the necessary conditions are given for the solution to be
BG−continuous and uniquene in this method. Finally, some numerical examples are
presented to illustrate these methods.
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[12] Güngör, N., (2020), BG-Volterra integral equations and relationship with BG-differential equations,
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