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DETERMINATION OF A TIME-DEPENDENT COEFFICIENT IN THE

TIME-FRACTIONAL WAVE EQUATION WITH A NON-CLASSICAL

BOUNDARY CONDITION

I. TEKIN1, H. YANG2∗, §

Abstract. In this paper, an initial-boundary value problem for the time-fractional wave
equation is considered. Given an additional condition, a time-dependent coefficient is
determined and the existence and uniqueness theorem for small time is proved. An effi-
cient finite difference scheme for solving the inverse problem is also proposed.

Keywords: Fractional wave equation, inverse coefficient problem, existence and unique-
ness, non-classical boundary condition, finite difference method.

AMS Subject Classification: 34L25, 35L50, 35P25.

1. Introduction

Consider the following partial differential equation (PDE) with a fractional derivative
at time t

∂αt u(x, t) = uxx(x, t) + a(t)u(x, t) + f(x, t), (x, t) ∈ DT , (1)

where DT = {(x, t) : 0 < x < 1, 0 < t < T}, ∂αt is the left sided Caputo fractional deriva-
tive of order 1 < α < 2 which is defined on the interval (0, t) by

∂αt u(x, t) =
1

Γ(2− α)

∫ t

0

∂ssu(x, s)

(t− s)α−1
ds

provided that Γ(·) is the Gamma function. Note that the equation (1) is a classical
diffusion when α = 1, and it is a wave equation when α = 2. We consider equation (1)
with the following initial and boundary conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 ≤ x ≤ 1, (2)

u(0, t) = 0, ux(1, t) + duxx(1, t) = 0, 0 ≤ t ≤ T, d > 0. (3)

On the contrary of the common boundary conditions, the boundary condition (3) contains
the term of maximal order uxx(1, t) which is called the non-classical boundary condition.
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Many of the universal electromagnetic, acoustic, and mechanical responses can be modeled
accurately using the fractional wave (or diffusion-wave) equations, see [12, 13].

For a given function a(t), 0 ≤ t ≤ T, the problem (1)-(3) for the unknown func-
tion u(x, t) is called the direct (forward) problem. The direct problem for the fractional
diffusion-wave equation in a bounded domain has been investigated in [1, 10, 11]. If a(t),
with 0 ≤ t ≤ T , is unknown, finding the pair of solution {a(t), u(x, t)} from the problem
(1)-(3) with the additional condition

u(x0, t) = h(t), 0 ≤ t ≤ T, (4)

is called the coefficient inverse problem. Here 0 < x0 < 1 is the location of the measure-
ment, and equation (4) indicates that the measurement at a given point x0 is available for
any 0 ≤ t ≤ T .

In the literature, there is not much work on the inverse problem of determining the
time-dependent coefficient from the fractional wave equation. The inverse source Cauchy
problem for the time-fractional wave equation was investigated in [8]. Determination of
the time-dependent source function for the fractional wave equation with classical bound-
ary conditions and non-classical boundary conditions were studied in [2, 9, 15] and [16, 17],
respectively. In [5], the authors identified a space-dependent source term in a multidimen-
sional time-fractional diffusion-wave equation from a part of noisy boundary data. Finding
the initial displacement or initial velocity function from the initial-boundary value problem
for the fractional wave equation with classical boundary conditions in a bounded domain
was considered in [20]. In [21], the fractional order, initial flux speed and the Neumann
boundary data were simultaneously determined from the partial observation of the Cauchy
boundary data.

Some numerical aspects of the coefficient inverse problems were investigated in [3, 7,
19, 22, 23]. In particular, the authors in [3] converted the inverse problem into a non-
linear minimization problem, and then used the discretize-then-optimize approach to find
the diffusion coefficient. In [23], a conjugate gradient method were used to solve a one-
dimensional slab problem with two sensor locations. The authors in [7] proposed a high-
order direct numerical method to solve the inverse problem involving the heat equation.
In [19], central differences approximations have been used to solve the coefficient inverse
problem for the Klein-Gordon equation. In [22], a pseudo-spectral method was proposed
to solve an inverse problem for the linear Boussinesq-type equation.

In this paper, we consider an initial-boundary value problem for the fractional wave
equation with a non-classical boundary condition. Given an additional condition, we
determine the time-dependent coefficient and prove the existence and uniqueness theorem
for small T by means of the contraction principle. In addition, we propose an efficient
direct numerical method for solving the coefficient inverse problem.

The article is organized as following: In Section 2, we present the preliminaries and
the auxiliary spectral problem of the problem (1)-(3) and its properties. In Section 3,
the series expansion method in terms of eigenfunctions converts the inverse problem to a
fixed point problem in a suitable Banach space. Under some consistency and regularity
conditions on the initial and boundary data, the existence and uniqueness of the inverse
problem is shown by the way that the fixed point problem has unique solution for small T .
In Section 4, the detailed description of our numerical method is presented. Two numerical
experiments involving smooth and non-smooth exact solutions are shown to demonstrate
the efficiency of our methods.
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2. Preliminaries and auxiliary spectral problem

Throughout this paper, we use the following definition and lemma:

Definition 2.1 ([6, 14]). The generalized Mittag-Leffler function is defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, z ∈ C,

where α > 0, β ∈ R.

Lemma 2.1 ([14]). Let 0 < α < 2, and β ∈ R be arbitrary. We suppose that µ is such
that πα

2 < µ < min {π, πα}. Then there exists a constant Cα,β such that

|Eα,β(z)| ≤
Cα,β

1 + |z|
, µ ≤ |arg(z)| ≤ π.

Consider the spectral problem which is corresponding to the problem (1)-(3) X ′′(x)− λX(x) = 0, 0 ≤ x ≤ 1,

X(0) = 0, X ′(1)− dX(1) = 0, d > 0.
(5)

This spectral problem has the eigenfunctions Xn(x) =
√

2 sin(
√
λnx), n = 0, 1, ... with

positive eigenvalues λn which are determined from the equation cot(
√
λ) = d

√
λ. We

assign the zero index to an arbitrary eigenfunction and the remaining eigenfunctions in
increasing order of eigenvalues. Let λ0 be an arbitrary root of the equation cot(

√
λ) = d

√
λ.

Consider the spectral problem
X ′′(x)− λX(x) = 0, 0 ≤ x ≤ 1,

X(0) = 0,

X(1) + 1
d sin(

√
λ0)

∫ 1
0 X(x) sin(

√
λ0x)dx = 0

(6)

This spectral problem is equivalent to the spectral problem (5) without the eigenfunction
corresponding to the eigenvalue λ0 and has the eigenfunctions Xn(x) =

√
2 sin(

√
λnx),

n = 1, 2, ... with positive increasing eigenvalues λn determined from cot(
√
λ) = d

√
λ (see

[4]).
The system Xn(x) =

√
2 sin(

√
λnx), n = 1, 2, ... is bi-orthogonal to the system

Yn(x) =
√

2
1+d sin2(

√
λn)

[
sin(
√
λnx)− sin(

√
λn)

sin(
√
λ0)

sin(
√
λ0x)

]
, n = 1, 2, ...

and the system Xn(x), n = 1, 2, ... forms a Riesz basis in L2[0, 1]. Also, the system Yn(x),
n = 1, 2, ... is a Riesz basis in L2[0, 1] and is complete.

3. Solution of the inverse problem

In this section, we will examine the existence and uniqueness of the solution of the in-
verse initial-boundary value problem for the equation (1) with time-dependent coefficient.

Definition 3.1. A solution of the inverse problem (1)-(4), which we called the classical so-
lution, is a pair of functions {a(t), u(x, t)} satisfying a(t) ∈ C[0, T ], u(x, t) ∈ C2([0, 1],R),
and ∂αt u(x, t) ∈ C([0, T ],R).

From this definition, the consistency conditions
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A0:


u0(0) = u′0(1) + du′′0(1) = 0,

u1(0) = u′1(1) + du′′1(1) = 0,

h(0) = u0(x0), h′(0) = u1(x0),

holds for the data u0(x), u1(x) ∈ C2[0, 1] and h(t) ∈ C[0, T ] with h(t) 6= 0, ∀t ∈ [0, T ].
Since the coefficient a only depends on time and the boundary conditions are homogeneous,
the Fourier method is suitable for the problem (1)-(3). That is, we can express u(x, t) as

u(x, t) =

∞∑
n=1

un(t)Xn(x), (7)

where un(t) =
∫ 1

0 u(x, t)Yn(x)dx, n = 1, 2, ....
Applying the Fourier method, we can obtain (from the equation (1) and initial condi-

tions (2))  ∂αt un(t) + λnun(t) = Fn(t;u, a), 0 ≤ t ≤ T,

un(0) = u0,n, u
′
n(0) = u1,n, n = 1, 2, ...,

(8)

where Fn(t;u, a) = a(t)un(t) + fn(t), fn(t) =
∫ 1

0 f(x, t)Yn(x)dx, u0,n =
∫ 1

0 u0(x)Yn(x)dx,

and u1,n =
∫ 1

0 u1(x)Yn(x)dx, n = 1, 2, ....
The Laplace transform of both sides of (8) yields

Un(s) =
Fn(s;u, a)

sα + λn
+
sα−1u0,n

sα + λn
+
sα−2u1,n

sα + λn
.

By using the inverse Laplace transform, we obtain the solutions of the Cauchy problems
(8) given by

un(t) = u0,nEα,1(−λntα) + u1,ntEα,2(−λntα)

+
∫ t

0 (t− s)α−1Eα,α(−λn (t− s)α)Fn(s;u, a)ds.
(9)

Considering (9) into (7) we obtain that

u(x, t) =
∑∞

n=1 [u0,nEα,1(−λntα) + u1,ntEα,2(−λntα)

+
∫ t

0 (t− s)α−1Eα,α(−λn (t− s)α)Fn(s;u, a)ds
]
Xn(x).

(10)

For the determination of a(t), one can derive that

a(t) =
1

h(t)
[∂αt h(t)− f(x0, t)− uxx(x0, t)]

from equation (1) with the additional data (4). Considering the equation (10) in the
equation of a(t), we get

a(t) =
1

h(t)

[
∂αt h(t)− f(x0, t)−

∞∑
n=1

λnun(t)Xn(x0)

]
. (11)
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Alternatively, we can rewrite the equation above as

a(t) = 1
h(t) [∂αt h(t)− f(x0, t)

−
∞∑
n=1

λn (u0,nEα,1(−λntα) + u1,ntEα,2(−λntα)

+
∫ t

0 (t− s)α−1Eα,α(−λn (t− s)α)Fn(s;u, a)ds
)
Xn(x0)

]
.

(12)

Thus we have reduced the problem (1)-(4) to the system (10)-(11) with respect to the
unknown functions a(t) and u(x, t).

Now let us denote z = [a(t), u(x, t)]T and rewrite the system of equations (10)-(11) in
the operator form

z = Φ(z), (13)

where Φ = [φ0, φ1]T and φ1 and φ0 are equal to the right hand side of (11) and (10),
respectively as

φ0(z) =
1

h(t)

[
∂αt h(t)− f(x0, t)−

∞∑
n=1

λnun(t)Xn(x0)

]
, (14)

φ1(z) =
∞∑
n=1

un(t)Xn(x), (15)

where

un(t) = u0,nEα,1(−λntα)+u1,ntEα,2(−λntα)+

∫ t

0
(t−s)α−1Eα,α(−λn (t− s)α)Fn(s;u, a)ds.

Let us introduce the functional space

B
3/2
2,T =

{
u(x, t) =

∞∑
n=1

un(t)Xn(x) : un(t) ∈ C[0, T ],

JT (u) =

[ ∞∑
n=1

(
λ3/2
n ‖un(t)‖C[0,T ]

)2
]1/2

< +∞


with the norm ‖u(x, t)‖

B
3/2
2,T

≡ JT (u) which relates the Fourier coefficients of the function

u(x, t) by the eigenfunctions Xn(x), n = 1, 2, .... It is shown in Appendix that B
3/2
2,T is

Banach space. Obviously, E
3/2
T = B

3/2
2,T ×C[0, T ] with the norm ‖z‖

E
3/2
T

= ‖u(x, t)‖
B

3/2
2,T

+

‖a(t)‖C[0,T ] is also a Banach space for z = [a(t), u(x, t)]T .

Let us show that Φ maps E
3/2
T onto itself continuously. In other words, we need to show

that φ0(z) ∈ C[0, T ] and φ1(z) ∈ B3/2
2,T for arbitrary z = [a(t), u(x, t)]T with a(t) ∈ C[0, T ]

and u(x, t) ∈ B3/2
2,T .

We will use the following assumptions on the data of problem (1)-(4):

(A1):


u0(x) ∈ C2[0, 1],

u0(1) + 1
d sin(

√
λ0)

∫ 1
0 u0(x) sin

(√
λ0x

)
dx = 0,
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(A2):


u1(x) ∈ C2[0, 1],

u1(1) + 1
d sin(

√
λ0)

∫ 1
0 u1(x) sin

(√
λ0x

)
dx = 0,

(A3):



f(x, t) ∈ C(DT ),

fx, fxx, fxxx ∈ C[0, 1],∀t ∈ [0, T ],

f(0, t) = fxx(0, t) = fx(1, t) + dfxx(1, t) = 0,

f(1, t) + 1
d sin(

√
λ0)

∫ 1
0 f(x, t) sin

(√
λ0x

)
dx = 0.

By using integration by parts under the assumptions (A0)− (A3), it is easy to see that

u0,n =
1√
λn
ηn, u1,n =

1√
λn
ξn, fn(t) =

1

λ
3/2
n

γn(t),

where ηn =
√

2
1+d sin2(

√
λn)

∫ 1
0 u0(x) cos

(√
λnx

)
dx, ξn =

√
2

1+d sin2(
√
λn)

∫ 1
0 u1(x) cos

(√
λnx

)
dx

and γn(t) = −
√

2
1+d sin2(

√
λn)

∫ 1
0 fxxx(x, t) cos

(√
λnx

)
dx.

First, let us show that φ0(z) ∈ C[0, T ]. Under the assumptions (A0)-(A3) and using
Cauchy-Schwartz inequality and Bessel inequality, we obtain from (14) that

max
0≤t≤T

|φ0(t)| ≤ 1

min
0≤t≤T

|h(t)|

[
max

0≤t≤T
|∂αt h(t)| − max

0≤t≤T
|f(x0t)|+ d1

C̃α,1
( ∞∑
n=1

|ηn|2
)1/2

+TC̃α,2

( ∞∑
n=1

|ξn|2
)1/2

+
TCα,α
α

( ∞∑
n=1

(
max

0≤t≤T
|γn(t)|

)2
)1/2


+
TCα,α
α

max
0≤t≤T

|a(t)| d2

( ∞∑
n=1

(
λ3/2
n max

0≤t≤T
|un(t)|

)2
)1/2

 , (16)

where d1 =
(∑∞

n=1
1
λn

)1/2
, d2 =

(∑∞
n=1

1
λ3
n

)1/2
and C̃α,i =

Cα,i
kα with i = 1, 2 for 0 < k ≤

t ≤ T . Therefore, the right hand side of (16) is bounded for φ0(z) ∈ C[0, T ].

Next, let us show that φ1(z) ∈ B3/2
2,T . That is, we only need to show that

JT (φ1) =

[ ∞∑
n=1

(
λ3/2
n max

0≤t≤T
|φ1n(t)|

)2
]1/2

< +∞,

where φ1n(t) is equal to the right hand side of un(t) as in (9). After some manipulations
on the last equality under the assumptions (A0)-(A3), we get

∞∑
n=1

(
λ3/2
n max

0≤t≤T
|φ1n(t)|

)2

≤ 2
(
C̃α,1

)2
∞∑
n=1

|ηn|2 + 2T 2
(
C̃α,2

)2
∞∑
n=1

|ξn|2 (17)

+

(
TCα,α
α

)2
[ ∞∑
n=1

(
max

0≤t≤T
|γn(t)|

)2

+

(
max

0≤t≤T
|a(t)|

)2 ∞∑
n=1

(
λ3/2
n max

0≤t≤T
|un(t)|

)2
]
.
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From the Bessel inequality and

[∑∞
n=1

(
λ

3/2
n ‖un(t)‖C[0,T ]

)2
]1/2

< +∞, the series on the

right side of the last inequality is convergent. Thus JT (φ1) < +∞ and φ1(z) belongs to

the space B
3/2
2,T .

We now show that Φ is a contraction mapping on E
3/2
T . Let zi =

[
ai(t), ui(x, t)

]T
with

i = 1, 2 be any two elements in E
3/2
T . We know that ‖Φ(z1)− Φ(z2)‖

E
3/2
T

= ‖φ0(z1)− φ0(z2)‖C[0,T ]+

‖φ1(z1)− φ1(z2)‖
B

3/2
2,T

. Under the assumptions (A0) − (A3) and the equations (16)-(17),

we can obtain that

‖Φ(z1)− Φ(z2)‖
E

3/2
T

≤ A(T )C(a1, u2) ‖z1 − z2‖E3/2
T

,

where A(T ) =
TCα,α
α

(
1 + d2

min
0≤t≤T

|h(t)|

)
and C(a1, u2) is the constant that depends on the

norm of
∥∥a1(t)

∥∥
C[0,T ]

and
∥∥u2(x, t)

∥∥
B

3/2
2,T

. Since A(T ) has limit zero as T tends to zero, it

means that for sufficient small T , the operator Φ is a contraction mapping which maps

E
3/2
T onto itself continuously. Thus, according to the Banach fixed point theorem, there

exists a unique solution of (13). To summarize, we have proved the following theorem:

Theorem 3.1 (Existence and uniqueness). Suppose the assumptions (A0) − (A3) are
satisfied. Then the inverse problem (1)-(4) has a unique solution for small T .

4. Numerical Solution

In this section, we will present our proposed numerical method for solving the inverse
problem (1)-(4), and demonstrate its numerical performance on two cases with smooth
and non-smooth a(t), respectively.

We consider the inverse problem defined on DT = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T} for a
given final time T . We partition the temporal domain into N elements, and let tn := n∆t
for n = 0, 1, . . . , N , where ∆t = T/N is the uniform time step size. Similarly, we divide
the spatial domain into M elements using the grid points xk := k∆x for k = 1, 2, . . . ,M
with ∆x = 1/M . To avoid confusion with the notation x0 in equation (4), in this section
we use x? as the location of the measurement, and x0 as one of the spatial grid points.

We then discretize the inverse problem using finite difference approximations. At
(x, t) = (xk, tn), ∂αt u can be approximated by

∂αt u|(xk,tn) ≈
(∆t)−α

Γ(3− α)

n−1∑
i=0

dn,i(U
i+2
k − 2U i+1

k + U ik). (18)

Here dn,i := (n− i)2−α − (n− i− 1)2−α, and U ik represents the numerical approximation
of u at (x, t) = (xk, ti). It was proved that the approximation in (18) is of first-order
accuracy [18]. We use the standard second-order central difference approximation for the
term uxx in (1). To deal with the non-classical boundary condition in (3), we introduce
a ghost-cell with the left endpoint to be xM = 1 and the right endpoint to be xM+1 :=
1 + 1/M , and use second-order approximations for both ux and uxx. That is,

0 = ux(1, tn) + duxx(1, tn) ≈
UnM+1 − UnM−1

2∆x
+ d

UnM+1 − 2UnM + UnM−1

(∆x)2
.
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The equation above leads to

UnM+1 =
2d

d+ ∆x
2

UnM −
d− ∆x

2

d+ ∆x
2

UnM−1. (19)

We further substitute the numerical solution UnM+1 given by (19) into the second-order
central difference approximation for uxx(xM , tn), and obtain

uxx(xM , tn) ≈
UnM+1 − 2UnM + UnM−1

(∆x)2
=
UnM−1 − UnM
(d+ ∆x

2 )∆x
. (20)

The left boundary condition u(0, t) = 0 gives Un0 = 0 for all n, and thus we have

uxx(x1, tn) ≈ Un2 − 2Un1
(∆x)2

. (21)

To impose the condition u(x?, t) = h(t), we can use the interpolation of the numerical
solutions at the grid points to approximate u(x?, t). For example, given the spatial grid
points {xi}Mi=0, suppose x? ∈ (xk, xk+1), then we have

h(tn) = u(x?, tn) ≈ xk+1 − x?

∆x
Unk +

x? − xk
∆x

Unk+1.

Alternatively, we can define the mesh in such a way that the point x? coincides with one
of the grid points. Let us suppose x? = xk? for some k?, then h(tn) ≈ Unk? . Based on the
discussion above, (1)-(4) can be approximated by the following equations:

(∆t)−α

Γ(3−α)

n−1∑
i=0

dn,i(U
i+2
k − 2U i+1

k + U ik) =
Unk+1 − 2Unk + Unk−1

(∆x)2
+ anUnk + fnk ,

(∆t)−α

Γ(3−α)

n−1∑
i=0

dn,i(U
i+2
1 − 2U i+1

1 + U i1) =
Un2 − 2Un1

(∆x)2
+ anUn1 + fn1 ,

(∆t)−α

Γ(3−α)

n−1∑
i=0

dn,i(U
i+2
M − 2U i+1

M + U iM ) =
UnM−1 − UnM
(d+ ∆x

2 )∆x
+ anUnM + fnM ,

U0
j = u0(xj), U1

j = U0
j + ∆tu1(xj), Un0 = 0,

Unk? = h(tn),

(22)

for k = 2, 3, . . . ,M − 1, j = 1, 2, . . . ,M and n = 1, 2, . . . , N . Here an := a(tn) and
fnk := f(xk, tn). Note that we have already applied (20) and (21) to the approximation of
the time fractional wave equation (1).

We now describe our proposed numerical scheme for solving the inverse problem (1)-(4)
based on equations in (22). We first compute a0 using

a0 =
∂αt h(t)|t=0 − u′′0(x?)− f(x?, 0)

h(0)
, (23)

where x? is the location of the measurement, i.e., u(x?, t) = h(t). Since we have assumed
that h(t) 6= 0, ∀t ∈ [0, T ] in the consistency conditions A0, equation (23) is well-defined.
We then initialize U0

k and U1
k for k = 0, 1, . . . ,M using

U0
k = u0(xk) and U1

k = U0
k + ∆tu1(xk). (24)
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At general t = tn, we update an and Unk in alternating order. For n = 1, 2, . . . , N , we
compute an using

an =

[
(∆t)−α

Γ(3− α)

n−1∑
i=0

dn,i
(
hi+2 − 2hi+1 + hi

)
−
Unk?+1 − 2Unk? + Unk?−1

(∆x)2
− fnk?

]
1

hn
, (25)

where k? is the index such that k?∆x = x? and hi := h(i∆t). Note that Unk for k =
0, 1, . . . ,M have been computed in the previous steps.

Next, we update Un+1
k using the first three equations in (22). For k = 1, 2, . . . ,M − 1,

we update Un+1
k as follows:

Un+1
k = 2Unk − U

n−1
k + (∆t)α·Γ(3−α)

dn,n−1

[
Unk+1−2Unk +Unk−1

(∆x)2 + anUnk + fnk

]

− 1
dn,n−1

n−2∑
i=0

dn,i(U
i+2
k − 2U i+1

k + U ik).

(26)

For k = M , we update Un+1
M using

Un+1
M = 2UnM − U

n−1
M + (∆t)α·Γ(3−α)

dn,n−1

[
UnM−1−U

n
M

(d+ ∆x
2

)∆x
+ anUnM + fnM

]

− 1
dn,n−1

n−2∑
i=0

dn,i(U
i+2
M − 2U i+1

M + U iM ).

(27)

Due to the left boundary condition, Unk = 0 for k = 0. To summarize, we initialize the

numerical solution a0, U0
k and U1

k using (23) and (24), and then update an and Un+1
k for

n = 1, 2, . . . , N in alternating order using (25)-(27).

Example 1. In this example, we consider the inverse problem (1)-(4) with smooth a(t).
We choose the following values for the parameters α, d and x?: α = 1.5, d = 1 and
x? = 0.5. We use the following data:

f(x, t) = 2t2−α

Γ(3−α)(1− e−x) + (1 + t2)e−x − e−t(1 + t2)(1− e−x),

u0(x) = 1− e−x, u1(x) = 0, h(t) = (1− e−1/2)(1 + t2),

(28)

for 0 ≤ x, t ≤ 1. The exact solution to the inverse problem with data (28) is u(x, t) =
(1 + t2)(1− e−x) and a(t) = e−t. In our simulations, we choose ∆t = 10−4 and ∆x = 10−2

so that the error in space and time is at the same order of magnitude. The numerical
solution and the error of a(t) are shown in Figure 1, from which we can observe that our
numerical solution captures the feature of exponential decay in a(t) quite well. Numerical
results also show that the maximum absolute error of a(t) is 6.4914 × 10−4 which is at
the same order of magnitude as ∆t. The numerical and exact solutions of u at T = 1
are shown in Figure 2(A). We can see that the numerical solution coincides with the
exact solution. When we further compute its error (see also Figure 2(B)), we find that
the absolute value of error increases as x increases, and the maximum absolute error of
u at T = 1 is 3.406 × 10−4. The surface plots for the numerical solution of u and its
error are given in Figure 3. For x, t ∈ [0, 1], the absolute maximum error of u occurs at
x = t = 1. The results indicate that our numerical solution is in good agreement with the
exact solution.
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Figure 1. Numerical solution and error of a(t) for 0 ≤ t ≤ 1 in example
1.
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T = 1
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Figure 2. Numerical solution, exact solution and the error of u at T = 1
in example 1.

Example 2. We then consider the inverse problem (1)-(4) with non-smooth a(t). We
take α = 1.2, d = 1 and x? = 0.2, and use the following data:

f(x, t) = − t2−α

Γ(3−α)(4x− x2) + 2− t2 + 1[0.25,0.75)(t) · (1− t2/2)(4x− x2),

u0(x) = 4x− x2, u1(x) = 0, h(t) = 0.76(1− t2/2),

(29)

where 1[0.25,0.75)(t) is an indicator function. The exact solution to this inverse problem

is u(x, t) = (4x − x2)(1 − t2/2) and a(t) = −1[0.25,0.75)(t). Note that in this example,
the exact solution a(t) is a discontinuous step function. We use the same mesh size and
time step size as in Example 1, i.e., ∆t = 10−4 and ∆x = 10−2. As can be seen in
Figure 4, the numerical solution of a is an accurate approximation of the exact solution,
with the maximum absolute error being 6.8762× 10−4. This value is slightly larger than
the maximum absolute error of a in example 1, but they are both at the same order of
magnitude. We can also see the jumps of error at T = 0.25 and 0.75, which is due to the
discontinuity at these time. Similar to the results in example 1, the numerical solution of
u coincides with the exact solution at T = 1 and the absolute error of u increases as x
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(a) Numerical so-
lution of u(x, t)

(b) Error of
u(x, t)

Figure 3. Numerical solution and error of u(x, t) for 0 ≤ x, t ≤ 1 in
example 1.

increases (see Figure 5). The maximum absolute error of u at T = 1 is 7.6514×10−4, which
is also the maximum absolute error of u for all 0 ≤ x, t ≤ 1 (see Figure 6). This example
demonstrates that our numerical method also leads to accurate numerical solution for the
inverse problem with non-smooth exact solution a(t).
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Figure 4. Numerical solution and error of a(t) for 0 ≤ t ≤ 1 in example
2.

5. Conclusion

The paper considers the problem of determining the time-dependent coefficient in a
time-fractional wave equation with non-classical boundary condition from the additional
measurement. The consideration of the non-classical boundary conditions for the inverse
problem of the time-fractional wave equation is the novelty of this work. In addition, the
existence and uniqueness of the solution on a sufficiently small time interval is proved by
means of the contraction principle. The key step of the proof is to establish a fixed-point
system using the Fourier method, the Laplace transformation of the fractional derivative
and the generalized Mittag-Leffler function. Such a form of the system brings along
computations that are technically more simple than in the case of the usual variational
approach. We also propose an efficient finite-difference-based direct method to compute
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Figure 5. Numerical solution, exact solution and the error of u at T = 1
in example 2.
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Figure 6. Numerical solution and error of u(x, t) for 0 ≤ x, t ≤ 1 in
example 2.

the numerical solution of the inverse problem. Some numerical examples with smooth
and non-smooth coefficient are performed to demonstrate the accuracy of our proposed
numerical method.

6. Appendix

In this section, we show that the space B
3/2
2,T is a Banach space. Since a Banach space is

a complete normed space, we need to demonstrate that the normed space B
3/2
2,T is complete.

If every Cauchy sequence in B
3/2
2,T converges, the space B

3/2
2,T is said to be complete.

We consider any Cauchy sequence {um(x, t)} in B
3/2
2,T , writing

um(x, t) =
∞∑
n=1

u(m)
n (t)Xn(x).
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Since {um(x, t)} is a Cauchy sequence, for every ε > 0 there is an N such that for all
m, r > N

‖um(x, t)− ur(x, t)‖2
B

3/2
2,T

=
∞∑
n=1

(
λ3/2
n max

0≤t≤T

∣∣∣u(m)
n (t)− u(r)

n (t)
∣∣∣)2

< ε2.

It follows that for every n = 1, 2, ... we have

max
0≤t≤T

∣∣∣u(m)
n (t)− u(r)

n (t)
∣∣∣ < ε.

Since C[0, T ] is complete, u
(m)
n (t) → un(t) as m → ∞. Using these limits, we define

u(x, t) =
∑∞

n=1 un(t)Xn(x) and show that u(x, t) ∈ B3/2
2,T and um(x, t)→ u(x, t).

We have for all m, r > N

k∑
n=1

(
λ3/2
n max

0≤t≤T

∣∣∣u(m)
n (t)− u(r)

n (t)
∣∣∣)2

< ε2, (k = 1, 2, ...).

Letting r →∞, we obtain for all m > N

k∑
n=1

(
λ3/2
n max

0≤t≤T

∣∣∣u(m)
n (t)− un(t)

∣∣∣)2

< ε2, (k = 1, 2, ...).

We may let k →∞, then for all m > N
∞∑
n=0

(
λ3/2
n max

0≤t≤T

∣∣∣u(m)
n (t)− un(t)

∣∣∣)2

< ε2.

This implies that um(x, t)→ u(x, t) and um(x, t)−u(x, t) ∈ B3/2
2,T . Since um(x, t) ∈ B3/2

2,T ,

u(x, t) = um(x, t) + (u(x, t)− um(x, t)) ∈ B3/2
2,T . Thus B

3/2
2,T is complete normed space.
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