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REGULARIZED TRACE ON SEPARABLE BANACH SPACES

E. GÜL1∗, T. L. GILL2, §

Abstract. If H is a separable Hilbert space, Gül (2008) has shown that a regularized
trace formula can be computed on L2(H, [0, π]) for a second order differential operator
with bounded operator-valued coefficients, where H is a separable Hilbert space. Kuelbs
(1970) has shown that every separable Banach space can be continuously and densely
embedded into a separable Hilbert space, while Gill (2016) has used Kuelbs result to
show that the dual of a Banach space does not have a unique representation. In this
paper, we use the results of Kuelbs and Gill to study the regularized trace formula on
L2(B, [0, π]), where B is an arbitrary separable Banach space.
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1. Introduction

Let H be a separable Hilbert space and let S1[H] be the trace class operators on H. Let
H1 = L2(H; [0, π]) and define an inner product on H1 by:

(f, g)H1
=

∫ π

0
(f(t), g(t))Hdt

for all f, g ∈ H1. It is easy to see that, with this inner product H1 is a separable Hilbert
space. In [3], we defined operators L0 and L on H1 by:,

L0(y) = −y′′(t) and L(y) = −y′′(t) +Q(t)y(t)

with the same boundary conditions y′(0) = y(π) = 0. We assumed that the operator
valued function Q(t) has the following properties:

(1) Q(t) has a weak second-order derivative in [0, π] and for t ∈ [0, π], Q(i)(t) (i =
0, 1, 2) is a self adjoint trace class operator on H.

(2) ‖Q‖H1
< 1.

(3) H1 has an o.n.b. (orthonormal basis) {ϕn}∞n=1 such that
∑∞

n=1 ‖Qϕn‖H1
<∞.
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(4)
∥∥Qi(t)∥∥

S1[H]
(i = 0, 1, 2) is a bounded measurable function on [0, π].

1.1. Purpose. The purpose of this paper is to study the above problem, with H replaced
by a arbitrary separable Banach space B, under the following conditions:

(1) Q(t) has a weak second-order derivative in [0, π] and for t ∈ [0, π], Q(i)(t) (i =
0, 1, 2) is a self adjoint trace class operator on B.

(2) ‖Q‖H1
< 1.

(3) H1 has an o.n.b. {ϕn}∞n=1 such that
∑∞

n=1 ‖Qϕn‖H1
<∞.

(4)
∥∥Qi(t)∥∥

S1[B]
(i = 0, 1, 2) is a bounded measurable function on [0, π].

It is clear from (4), that this is a nontrivial problem since, among other things, in the
standard approach, there are a number of possible definitions of S1[B] (see [2] and Pietsch
[8]).

1.2. Preliminaries. Let B be a separable Banach space with dual space B∗, let C[B] be
the closed densely defined linear operators and L[B] be the bounded linear operators on B.

In 1965, Gross [1] proved that every separable Banach space contains a separable Hilbert
space as a continuous dense embedding.Then, in 1970, Kuelbs [5] gave an extension of
Gross’ theorem. The following lemma is the important part of this extension due to
Kuelbs [5].

Lemma 1.1. (Kuelbs Lemma) Let B be a separable Banach space. Then, there exist a
separable Hilbert space H such that B ⊂ H as continuous dense embedding.

2. Operator Theory

If T is an operator, we let σ(T ) denote the spectrum of T and σp(T ) ⊂ σ(T ) denote the
point spectrum of T . The following theorem is due to Lax [6].

Theorem 2.1. (Lax’s Theorem) Let B be a separable Banach space that is continuously
and densely embedded in a Hilbert space H, and let T be a bounded linear operator on B
that is symmetric with respect to the inner product of H (i.e., (Tu, v)H = (u, Tv)H for all
u, v ∈ B). Then,

(1) T is bounded with respect to the H norm, and

‖T ∗T‖H = ‖T‖2H 6 k ‖T‖
2
B ,

where k is a positive constant.
(2) σ(T ) relative to H is a subset of σ(T ) relative to B.
(3) σp(T ) relative to H is equal to σp(T ) relative to B.

Let J be the (conjugate) isometric isomorphism of H → H∗, and let JB = J|B (re-
striction). Since B is a continuous dense embedding in H, JB is a (conjugate) isometric
isomorphism of B onto JB(B) ⊂ H∗ as a continuous dense embedding.

Definition 2.2. Let u ∈ B. We define u∗h = JB(u) and B∗h = {u∗h ∈ B∗ : u ∈ B}, so that

〈u, uh〉 = (u, u)H = ‖u‖2H. We call B∗h the canonical Hilbert representation for B in B∗.

A proof of the next two results can be found in [2].

Theorem 2.3. If A ∈ C[B], then there is a unique operator A∗ ∈ C[B] that satisfies the
following:

(1) (aA)∗ = āA∗;
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(2) A∗∗ = A;
(3) (A+B)∗ = A∗ +B∗;
(4) (AB)∗ = B∗A∗ on D(A∗)

⋂
D(B∗);

(5) if A ∈ L[B], then ‖A∗A‖B ≤ M ‖A‖2B, for some constant M and it has a bounded
extension to L[H].

Theorem 2.4. For every φ ∈ B, there exists a ϕ∗ ∈ B∗ and a constant cφ > 0 depending

on φ such that (f, φ)H = c−1
φ 〈f, ϕ

∗〉B∗ for all f ∈ B.

Let S∞[B] be the set of compact operators on B. If A = U [A∗A]1/2 ∈ S∞[B], let

Ā = Ū [Ā∗Ā]1/2 be its extension to H. For each compact operator Ā, an orthonormal
family {φn |n > 1} exists such that

Ā =

∞∑
n=1

sn(Ā) (· , φn)H Ūφn. (2.1)

Here, the sn(Ā) are the eigenvalues of [Ā∗Ā]1/2 =
∣∣Ā∣∣, counted by multiplicity and in de-

creasing order (s-numbers). Without loss of generality, we can assume that {φn |n > 1} ⊂
B. From Theorem 2.4 and the fact that sn(Ā) = sn(A) by Lax’s theorem, we can write A
as follows:

A =
∞∑
n=1

sn(A)c−1
n 〈·, ϕ∗n〉B∗Uφn. (2.2)

If Ā ∈ Sp[H] (the Schatten class of order p in L[H]), its norm can be represented as follows:

∥∥Ā∥∥H
p

=
{
Tr
[
Ā∗Ā

]p/2}1/p
=

{ ∞∑
n=1

(
Ā∗Āφn, φn

)p/2
H

}1/p

=

{ ∞∑
n=1

∣∣sn (Ā)∣∣p}1/p

.

Definition 2.5. We define Sp[B], the Schatten class of order p in L[B], as follows:

Sp[B] =

A ∈ S∞[B] : ‖A‖B
p

=

{ ∞∑
n=1

|sn (A)|p
}1/p

<∞

 .

Since sn(A) = sn(Ā), we have the following:

Corollary 2.6. If A ∈ Sp[B], then Ā ∈ Sp[H] and ‖A‖B
p

=
∥∥Ā∥∥H

p
.

Note that more detailed explanations and results on the subject can be found in [4].

3. Regularized Trace on B

In this section, we assume that B is a continuous dense embedding in a separable Hilbert
space H and for each f, g ∈ B, (f, g)h = (f, g)H is the canonical Hilbert functional on B.

Recall that S∞[B] is the set of compact operators on B. If A ∈ S∞[B] then, by the polar

representation theorem, A∗A is a non-negative self-adjoint operator and |A| = [A∗A]1/2 ∈
S∞[B] where A∗ is the adjoint of A. Let s1(A) ≥ s2(A) ≥ ... ≥ sk(A) (1 ≤ k ≤ ∞)
be the non-zero eigenvalues of |A| with each eigenvalue is repeated as many times as its
multiplicity (s-numbers). When k <∞, we assume that sj(A) = 0 for j = k+ 1, k+ 2, ....
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If A ∈ Sp[B], 1 ≤ p < ∞, then by Corollary 2.6, A extends to Ā ∈ Sp[H] with ‖A‖B
p

=∥∥Ā∥∥H
p

. If A ∈ S1[B], we called it a trace class (or nuclear) operator on B.

Since Sp[H] is a two sided ∗ideal, it follows that the same is true for Sp[B]. Thus, for
1 ≤ p <∞, A ∈ Sp[B] and B ∈ L[B] then AB,BA ∈ Sp[B] and

‖AB‖Sp[B] ≤ ‖B‖L[B] ‖A‖Sp[B]

‖BA‖Sp[B] ≤ ‖B‖L[B] ‖A‖Sp[B]

We can now return to the main problem of interest. Recall that our problem is now
posed on H1 = L2(B; [0, π]) and the inner product on H1 is defined using our canonical
h-representation of B in B∗ by:

(f, g)H1
=

∫ π

0
(f(t), g(t))hdt

for all f, g ∈ H1. Moreover, L0 and L are differential operators satisfying:

L0(y) = −y′′(t) and L(y) = −y′′(t) +Q(t)y(t)

with the same boundary conditions y′(0) = y(π) = 0. Where we assume that Q(t) is an
operator valued function with the following properties:

(1) Q(t) has a weak second-order derivative in [0, π] and for t ∈ [0, π], Q(i)(t) (i =
0, 1, 2) is a self adjoint trace class operator on B.

(2) ‖Q‖H1
< 1 .

(3) H1 has an o.n.b. {ϕn}∞n=1 such that
∑∞

n=1 ‖Qϕn‖H1
<∞.

(4)
∥∥Qi(t)∥∥

S1[B]
(i = 0, 1, 2) is a bounded measurable function on [0, π].

As in [3], the spectrum of L0, σ(L0) is the set {(m+ 1/2)2}∞m=0 and each λ ∈ σ(L0) is an
eigenvalue with infinite multiplicity. The corresponding orthonormal eigenfunctions are of
the form

ψ◦mn(t) =
√

2/πϕncos(m+ 1/2)t (m = 0, 1, 2, . . . ;n = 1, 2, . . . ) (3.1)

Let R0(λ) and R(λ) be resolvents of L0 and L , respectively.

Lemma 3.1. If λ /∈ σ(L0) then QR0(λ) ∈ S1[H1]

Proof. Put µm = (m+ 1/2)2. For the orthonormal basis ψ◦mn of H1 we get:
∞∑
m=0

∞∑
n=1

‖QR0(λ)ψ◦mn‖H1
=
∞∑
m=0

∞∑
n=1

|µm − λ|−1 ‖Qψ◦mn‖H1

=
∞∑
m=0

∞∑
n=1

|µm − λ|−1

[
2/π

∫ π

0
cos2(m+ 1/2)t ‖Q(t)ϕn‖2h dt

]1/2

≤
∞∑
m=0

∞∑
n=1

|µm − λ|−1

[∫ π

0
‖Q(t)ϕn‖2h dt

]1/2

=
∞∑
m=0

|µm − λ|−1
∞∑
n=1

‖Qϕn‖H1
<∞

Thus, the lemma follows. �

Using this lemma along with conditions (2) and (3) on Q(t), it follows that the spectrum
of L, σ(L), is a subset of the union of pairwise disjoint intervals Fm = [µm−‖Q‖H1

, µm +
‖Q‖H1

] (m = 0, 1, 2, ...). Note, each point of σ(L) which is different from µm is an isolated
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eigenvalue of finite multiplicity. However, µm itself can be an eigenvalue of L with either
finite or infinite multiplicity. Moreover,

lim
n→∞

λmn = µm

where {λmn}∞n=1 are the eigenvalues of L in the interval Fm.

Lemma 3.2. The operator valued function R(λ)−R0(λ) is analytic in ρ(L), the resolvent
set of L, with respect to the S1[H1] norm.

Proof. Clearly, R(λ)−R0(λ) = −R(λ)QR0(λ) and note that ρ(L) ⊂ ρ(L0). By the Hilbert
identity R(λ)−R(µ) = (λ− µ)R(λ)R(µ) we have:

D(λ,∆λ) =
R(λ+ ∆λ)QR0(λ+ ∆λ)−R(λ)QR0(λ)

∆λ
−R2(λ)QR0(λ)−R(λ)QR2

0(λ)

= R(λ+ ∆λ)QR0(λ)
(
R0(λ+ ∆λ)−R0(λ)

)
+
(
R(λ+ ∆λ)−R(λ)

)
QR2

0(λ)

+
(
R(λ+ ∆λ)−R(λ)

)
R(λ)QR0(λ)

and thus

‖D(λ,∆λ)‖S1[H1] ≤ ‖R(λ+ ∆λ)‖H1
‖QR0(λ)‖S1[H1] ‖R0(λ+ ∆λ)−R0(λ)‖H1

+ ‖R(λ+ ∆λ)−R(λ)‖H1
‖QR0(λ)‖S1[H1]

[
‖R0(λ)‖H1

+ ‖R(λ)‖H1

]
Therefore, we conclude that

lim
∆λ→0

‖D(λ,∆λ)‖S1[H1] = 0

and the proof is done. �

Let {ψmn(t)}∞m,n=1 be orthonormal eigenfunctions corresponding to eigenvalues {λmn}∞m,n=1

of L. Since the spectra of the operators L0 and L only consist of their eigenvalues and
limit points, from [7], it is well known that

R0(λ) =
∞∑
m=0

∞∑
n=1

V ◦mn
µm − λ

; R(λ) =
∞∑
m=0

∞∑
n=1

Vmn
λmn − λ

(3.2)

where

V ◦mn = (., ψ◦mn)H1ψ
◦
mn; Vmn = (., ψmn)H1ψmn.

In view of Lemma 3.2 and by using the equalities (3.2) it can be seen that for each p (p =

0, 1, 2, ...), the series
∞∑
n=1

(λpn−µp) is absolutely convergent. Since R(λ)−R0(λ) ∈ S1[H1],

for every λ ∈ ρ(L):

tr(R(λ)−R0(λ)) =
∞∑
m=0

∞∑
n=1

( 1

λmn − λ
− 1

µm − λ
)
.

If multiply both sides of this last equality by λ2/2πi and integrate over the circle |λ| =
bp = µp + p (p = 1, 2, . . . ) we conclude that for a natural N

p∑
m=0

∞∑
n=1

(λmn − µm) =
N∑
j=1

Mpj +M (N)
p (3.3)

where

Mpj =
(−1)j

2πij

∫
|λ|=bp

λ tr
[
(QRj0(λ)

]
dλ (3.4)
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and

M (N)
p =

(−1)N

2πi

∫
|λ|=bp

λ tr
[
R(λ)(QRN+1

0 (λ))
]
dλ. (3.5)

Now, note that for j = 1 we have:

Mp1 =
−1

2πi

∫
|λ|=bp

p∑
m=0

∞∑
n=1

(QR0(λ)ψ◦mn, ψ
◦
mn)H1

dλ (3.6)

Lemma 3.3. The assumptions of the existence of the o.n.b. {ϕn}∞n=1 in H1 and the
integrability of the function ‖Q(t)‖S1[B] on [0, π] imply that

Mp1 =
p+ 1

π

∫ π

0
trQ(t)dt+

1

π

∞∑
m=0

∞∑
n=1

∫ π

0
(Q(t)ϕn, ϕn)h cos(2m+ 1)tdt

Proof. Easily, we observe that∣∣(QR0(λ)ψ◦mn, ψ
◦
mn)H1

∣∣ ≤ √π|µm − λ|−1

[∫ π

0
‖Q(t)ϕn‖2h dt

]1/2

=
√
π |µm − λ|−1 ‖Qϕn‖H1

This means that the series
∞∑
m=0

αm(λ) ; αm(λ) =
∞∑
n=1

(QR0(λ)ψ◦mn, ψ
◦
mn)H1

is absolutely and uniformly convergent with respect to λ on the circle |λ| = bp. So, by
(3.6) we get:

Mp1 =

p∑
m=0

∞∑
n=1

(QR0(λ)ψ◦mn, ψ
◦
mn)H1

1

2πi

∫
|λ|=bp

dλ

λ− µm
or

Mp1 =

p∑
m=0

∞∑
n=1

(QR0(λ)ψ◦mn, ψ
◦
mn)H1

=
2

π

p∑
m=0

∞∑
n=1

∫ π

0
(Q(t)ϕn, ϕn)h cos

2(m+ 1/2)tdt

=
1

π

p∑
m=0

∞∑
n=1

∫ π

0
(Q(t)ϕn, ϕn)h (1 + cos(2m+ 1))tdt

If we consider the equality
∞∑
n=1

∫ π

0
(Q(t)ϕn, ϕn)h dt =

∫ π

0
trQ(t)dt

then we obtain desired result for Mp1 �

By considering the equalities

QR0(λ)ψ◦mn =
Qψ◦mn
µm − λ

and

(QR0(λ))2ψ◦mn = (µm − λ)−1


∞∑
r=0

∞∑
q=1

(µr − λ)−1(Qψ◦mn, ψ
◦
rq)H1Qψ

◦
rq
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we can easily get:

Mp2 =

p∑
m=0

∞∑
n=1

∞∑
r=p+1

∞∑
q=1

(µm − µr)−1
∣∣(Qψ◦mn, ψ◦rq)H1

∣∣2 .
or

|Mp2| ≤
∞∑

r=p+1

(µr − µp)−1
∞∑
q=1

∥∥Qψ◦rq∥∥2

H1

By the fact

∞∑
q=1

∥∥Qψ◦rq∥∥2

H1
≤
∞∑
q=1

∫ π

0
‖Qϕq‖h dt =

∞∑
q=1

‖Qϕq‖2H1
< const.

and observation
∞∑

r=p+1

(µr − µp)−1 < 2p−1/2

it follows that

lim
p→∞

Mp2 = 0. (3.7)

Similar calculations show that

lim
p→∞

Mpj = 0 (j = 3, 4, ...) (3.8)

and

lim
p→∞

MN
p = 0 (N ≥ 4). (3.9)

All computations above give rise us an explicit formula called the regularized trace formula
for operator L on B as follow.

Theorem 3.4. The regularized trace formula for operator L on B with the conditions on
operator function Q(t) is given by

∞∑
m=0

[ ∞∑
n=1

(λmn − µm)− 1

π

∫ π

0
trQ(t)dt

]
=

1

4
[

∞∑
n=1

(Q(0)ϕn, ϕn)h −
∞∑
n=1

(Q(π)ϕn, ϕn)h]

Proof. By considering the relation (3.3) with Lemma 3.4, and the equations (3.7), (3.8)
and (3.9), we conclude:

∞∑
m=0

[ ∞∑
n=1

(λmn − µm)− 1

π

∫ π

0
trQ(t)dt

]
=

1

π

∞∑
m=0

∞∑
n=1

∫ π

0
(Q(t)ϕn, ϕn)hcos(2m+ 1)tdt

The right part of this equality easily can be written in terms that are the values at the
points 0 and π of the Fourier series of the Hilbert functional (Q(t)ϕn, ϕn)h, which have
continuous derivative of second order, with respect to {cosmt}∞m=0 in [0, π]. And hence
we obtain the required formula given in the hypothesis of the theorem. �
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4. Conclusions

Now, we have known that the continuous dense embedding of a separable Banach space
into a Hilbert space is a powerful tool for studying the structure of operators on Banach
spaces. This approach also offers some new insights into the structure of Banach spaces
themselves. This embedding shows that the representation of the dual of a Banach space
is not unique and also every closed densely defined linear operator A on B has a unique
adjoint A∗ defined on B. Moreover, knowing that L[B], the bounded linear operators
on B, are continuously embedded in L[H]. This result allowed us to define the Schatten
classes for L[B] as the restriction of a subset of the ones in L[H]. In this paper, we
have applied these results to the development of a regularized trace formula for a second
order differential operator on a separable Banach space, with a bounded operator valued
coefficient given on a finite interval, extending the work in [3].
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