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SPECTRAL INCLUSION BETWEEN A REGULARIZED
QUASI-SEMIGROUPS AND THEIR GENERATORS

A. TAJMOUATI1∗, Y. ZAHOUAN2, §

Abstract. The notion of a regularized quasi-semigroups (or C-quasi-semigroups) of a
bounded linear operators, as a generalization of C0-quasi-semigroups of a bounded linear
operators, was introduced by M. Janfada in 2010. In this paper, we will show some
results concerning a regularized quasi-semigroups and we are going to show a spectral
inclusion of a different spectra of a C-quasi-semigroups of a bounded linear operators on
a Banach space and their infinitesimal generators.
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1. Introduction

We consider the time-independent abstract Cauchy problems :
x′(t) = Ax(t), t ≥ 0, (1)

in a Banach space X and A an operator defined on the dense domain D(A) ⊂ X. If
A is the generator of a C0 -semigroup of bounded linear operators of X, then the theory
of semigroups is a powerful tool for solving (1) (see [8] and [11]). In 1979, R. Derndinger
and R. Nagel [6] showed that if (T (t))t≥0 is a C0-semi-group and A its generator, then
etσ(A) ⊆ σ(T (t))\{0}, etσp(A) ⊆ σp(T (t))\{0} et etσr(A) ⊆ σr(T (t))\{0}, in 2001, A. El
Koutri and A. Taoudi in [7] proved that etσK(A) ⊆ σK(T (t))\{0} and Recently, in [13] and
[14], A. Tajmouati, F. Alhomaidi and H. Boua are studied different spectra of a C0-Semi-
group and its generator.

In 1953, Tosio Kato [10] considered the following evolution equation:
x′(t) = A(s+ t)x(t) + f(t), 0 ≤ t ≤ T, x(0) = x0 (2)
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and the associated homogeneous equation
x′(t) = A(s+ t)x(t), 0 ≤ t ≤ T, x(0) = x0 (3)

with x(.) is an unknown function of the real interval [0, T ] into a Banach space X, and
A(s) is a closed operator given on X of domain D(A(s)) = D independent of s and dense
in X. The solution of (2) is formally given by x(t) = R(s; t)x0. A two parameter family
{R(t; s)}t;s≥0 on X is called a C0-quasi-semigroup and A(s) its generator.

In [15], [16] and [17] we obtained a spectral inclusion between a C0-Quasi-semigroup
and its generator for different party of ordinary spectrum.

Now, we consider the time-dependent abstract Cauchy problems
x′(t) = A(s+ t)x(t), t, s ≥ 0, x(0) = Cx0 (4)

Here x(.) is an unknown function from the real interval [0, T ] into a Banach spaceX, C is
an injective bounded linear operator on a Banach space X and A(s) is a given, closed, linear
operator in X with domain D(A(s)) = D, independent of s and dense in X. The solution
of (4) is formally given by x(t) = K(s, t)x0, a two parameter family {K(s, t)}s,t≥0 on X
is called a C-quasi-semigroups. Then, we have the existence of a solution for the Cauchy
problem without any qualitative information on it. A classical approach to information on
the solution x(t) consists in directly studying the spectrum of the quasi-semigroup K(s, t).
In many applications, we only have the explicit expression of the generator A(s). Hence,
the need to have a relation betwen the spectrum of the quasi-semigroup K(s, t) and the
spectrum of its generator A(s).

2. Preliminaries

Throughout this paper, B(X) denotes the algebra of all bounded linear operators on
a Banach space X and T will be a closed linear operator on X with domain D(T ). We
denote by Rg(T ), Rg∞(T ) :=

⋂
n≥1

Rg(Tn), N(T ), ρ(T ) and σ(T ) respectively the range,

the hyper range, the kernel, the resolvent and the spectrum of T , where

σ(T ) = C\ρ(T ) = {λ ∈ C : λI − T is not bijective}.

The function resolvent of T is defined for all λ ∈ ρ(T ) by R(λ, T ) = (λI − T )−1.
For a closed operator T we define the point spectrum, the approximate point spectrum
and the residual spectrum by

• σp(T ) = {λ ∈ C : λI − T is not injective }.
• σap(T ) = {λ ∈ C : λI − T is not injective or Rg(λI − T ) is not closed in X}.
• σr(T ) = {λ ∈ C : Rg(λI − T ) is not dense in X}.

From [1, p.79], we have λ ∈ σap(T ) if and only if there exists a sequence (xn)n∈N ⊂ D(T ),
such that ‖xn‖ = 1 and lim

n→∞
‖(T − λI)xn‖ = 0.

The ascent and descent of an operator T are defined respectively by,
a(T ) = inf{k ∈ N : N(T k) = N(T k+1)} ; d(T ) = inf{k ∈ N : Rg(T k) = Rg(T k+1)}.

with the convention inf(∅) =∞.
The ascent spectrum and descent spectrum are defined respectively by,

σa(T ) = {λ ∈ C : a(λI − T ) =∞}, σd(T ) = {λ ∈ C : d(λI − T ) =∞}.

A closed operator T is called Fredholm if α(T ) = dimN(T ) and β(T ) = codimRg(T )
are finite. The essential spectrum is defined by,

σe(T ) = {λ ∈ C : λ− T is not Fredholm}.
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Similarly, we can define the spectra σ(C, T ), σp(C, T ), σap(C, T ), σe(C, T ), σr(C, T ),
σa(C, T ) and σd(C, T ), replacing the identity operator I by an injective operator C ∈ B(X).

Let C ∈ B(X) be injective. The family (S(t))t≥0 ⊆ B(X) is a C-semigroup [5] if it has
the following properties:

(1) S(0)=C,
(2) S(t)S(s)=CS(t+s),
(3) The map t→ S(t)x from [0,+∞[ into X is continuous for all x ∈ X.

In this case, its generator A is defined by

D(A) = {x ∈ X : lim
t→0+

S(t)x− Cx
t

exists and it’s in Rg(C)},

with
Ax = C−1

[
lim
t→0+

S(t)x− Cx
t

]
, for all x ∈ D(A).

In particular, the C0−semigroups are the I-semigroups where I is the identity operator.

The theory of quasi-semigroups of bounded linear operators, as a generalization of semi-
groups of operators, was introduced by H. Leiva and D. Barcenas [2], [3], [4] and recently
Sutrima et al. [12], have shown some relations between a C0-quasi-semigroup and its gen-
erator related to the time-dependent evolution equation.
A two parameter commutative family {R(t, s)}t,s≥0 ⊆ B(X) is called a strongly continuous
quasi-semigroup (or C0-quasi-semigroup) of operators [2] if for every t, s, r ≥ 0 and x ∈ X,
we have

(1) R(t, 0) = I, the identity operator on X,
(2) R(t, s+ r) = R(t+ r, s)R(t, r),
(3) lim

(t,s)−→(t0,s0)
||R(t, s)x−R(t0, s0)x|| = 0, x ∈ X,

(4) there exists a continuous increasing mapping M : [0,+∞[−→ [1,+∞[ such that,
||R(t, s)|| ≤M(t+ s).

For a C0-quasi-semigroup {R(t, s)}t,s≥0 on a Banach space X, let D be the set of all x ∈ X
for which the following limits exist,

lim
s→0+

R(0, s)x− x
s

and lim
s→0+

R(t, s)x− x
s

= lim
s→0+

R(t− s, s)x− x
s

, t > 0.

In this case, for t ≥ 0, we define an operator A(t) on D as

A(t)x = lim
s→0+

R(t, s)x− x
s

.

The family {A(t)}t≥0 is called the infinitesimal generator of the C0-quasi-semigroups
{R(t, s)}t,s≥0. The generator A(t) of a C0-quasi-semigroup is not necessary closed or
densely defined [12, Examples 2.3 and 3.3].

In [9] M. Janfada introduced the notion of regularized quasi-semigroup of a bounded
linear operators on a Banach spaces, as a generalization of regularized semigroups of op-
erators.
Definition 2.1. [9, Definition 2.1]

Suppose that C is an injective bounded linear operator on a Banach space X. A commu-
tative two parameter family {K(t, s)}t,s≥0 ⊆ B(X) is called a regularized quasi-semigroups
(or C-quasi-semigroups) if for every t, s, r ≥ 0 and x ∈ X, we have
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(1) K(t, 0) = C;
(2) CK(t, s+ r) = K(t+ r, s)K(t, r);
(3) {K(t, s)}t,s≥0 is strongly continuous, that is,

lim
(t,s)−→(t0,s0)

||K(t, s)x−K(t0, s0)x|| = 0, x ∈ X;

(4) there exists a continuous and increasing mapping M : [0,+∞[−→ [0,+∞[ such
that, for any t, s > 0, ||K(t, s)|| ≤M(t+ s).

For a C-quasi-semigroup {K(t, s)}t,s≥0 on a Banach space X, let D be the set of all
x ∈ X for which the following limits exist in the range of C:

lim
s→0+

K(0, s)x− Cx
s

and lim
s→0+

K(t, s)x− Cx
s

= lim
s→0+

K(t− s, s)x− Cx
s

, t > 0.

In this case, for t ≥ 0, we define an operator A(t) on D as

A(t)x = C−1 lim
s→0+

K(t, s)x− Cx
s

.

The family {A(t)}t≥0 is called the infinitesimal generator of the regularized quasi-semigroup
{K(t, s)}t,s≥0.
In particular, the C0-quasi-semigroups are the I-quasi-semigroups where I is the identity
operator.

Example 2.1. [9, Examples 2.2, 2.4 and 2.5 ]
(1) Let {S(t)}t≥0 be a strongly continuous exponentially bounded C-semigroup of

operators on a Banach space X, with the generator A.
For t, s ≥ 0, define K(t, s) = S(s), then {K(t, s)}t,s≥0 is a C-quasi-semigroup with
D = D(A) and its generator is A(t) = A for all t ≥ 0.

(2) Let {T (t)}t≥0 be a strongly continuous semigroup of operators on a Banach space
X, with the generator A. If C ∈ B(X) is injective and commutes with T (t), t ≥ 0,
then K(t, s) = CeT (s+t)−T (t), for t, s ≥ 0 is a C-quasi-semigroup with D = D(A)
and its generator is A(t) = AT (t) for all t ≥ 0.

(3) Let {S(t)}t≥0 be a strongly continuous exponentially bounded C-semigroup of
operators on a Banach space X, with the generator A.
For t, s ≥ 0, define K(t, s) = T (g(t + s) − g(t)). where g(t) =

∫ t
0 a(u)du and

a ∈ C([0,+∞[) with a(t) > 0. Then {K(t, s)}t,s≥0 is a C-quasi-semigroup with
D = D(A) and its generator for all t ≥ 0

A(t) = a(t)A.

Theorem 2.1. [9, Theorems 2.6] Let {K(t, s)}t,s≥0 be a C-quasi-semigroup on a Banach
space X with generator (A(t))t≥0. Then we have

(1) If x ∈ D, t ≥ 0 and t0, s0 ≥ 0, then K(t0, s0)x ∈ D and

K(t0, s0)A(t)x = A(t)K(t0, s0)x.

(2) For each x0 ∈ D,
∂

∂s
K(t, s)Cx0 = A(t+ s)K(t, s)Cx0 = K(t, s)A(t+ s)Cx0.

(3) If A(.) is locally integrable, then for each x0 ∈ D and s ≥ 0,

K(t, s)x0 = Cx0 +

∫ s

0
A(t+ h)K(t, h)x0dh, t ≥ 0
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(4) If f : [0,+∞[−→ X is a continuous function, then for every s ∈ [0,+∞[,

limr→0+
∫ s+r
s K(t, h)f(h)dh = K(t, s)f(s).

(5) Let C ′ ∈ B(X) be injective and for any t, s ≥ 0, C ′K(t, s) = K(t, s)C
′.Then

U(t, s) = C
′
K(t, s) is a CC ′-quasi-semigroup with the generator (A(t))t≥0.

(6) Suppose that {R(t, s)}t,s≥0 be a C0-quasi-semigroup of operators on a Banach space
X with the generator (A(t))t≥0 and C ∈ B(X) commutes with every R(t, s), t, s ≥
0. Then K(t, s) = CR(t, s) is a C-quasi-semigroup of operators on X with the
generator (A(t))t≥0.

3. Main results

Inspired by the spectral studies of C0-semigroups in the works [7],[8], [11], [13] and [14]
and the inclusion spectrum for C0-quasi-semigroups in papers [15], [16] and [17] and also
the spectral mapping theorems for C-semigroups did by Song Xiaoqiu in [18]. We show a
spectral inclusion of different spectra for C-quasi-semigroups and their generators.

We start by the important result.

Theorem 3.1. Let A(t) be the generator of the C-quasi-semigroup {K(t, s)}t,s≥0 such that
A(t) is closed and densely defined, and let C ∈ B(X) be injective. Then for all t ≥ s ≥ 0
and all λ ∈ C, we have

(1) For all x ∈ D,

Dλ(t, s)(λI −A(t))x = [eλsC −K(t− s, s)]x.

(2) For all x ∈ X, we have Dλ(t, s)x ∈ D and

(λI −A(t))Dλ(t, s)x = [eλsC −K(t− s, s)]x.

where Dλ(t, s)x =

∫ s

0
eλ(s−h)K(t− h, h)xdh is a bounded and linear operator.

Proof. (1) First we note that from 2) of the definition of a C-quasi-semigroup {K(t, s)}t,s≥0
with r = 0, we have CK(t, s) = K(t, s)C.
By Theorem 3.1 in [9] and theorem 2.1, K(s, t)Cx0 is a unique solution of the
problem x′(t) = A(s + t)x(t), t, s ≥ 0, x(0) = C2x0, moreover, for all t > h > 0
and for all x ∈ D, ∂

∂hK(t− h, h)Cx = A(t)K(t− h, h)Cx = K(t− h, h)A(t)Cx.

So,
∂

∂h
(CK(t− h, h))x = CA(t)K(t− h, h)x = CK(t− h, h)A(t)x.

Therefore, we conclude that

Dλ(t, s)[A(t)x] =

∫ s

0

eλ(s−h)K(t− h, h)[A(t)x]dh

=

∫ s

0

eλ(s−h)C−1CK(t− h, h)[A(t)x]dh

=

∫ s

0

eλ(s−h)C−1
[ ∂
∂h

(CK(t− h, h))
]
xdh

=
[
eλ(s−h)C−1CK(t− h, h)x

]s
0

+ λ

∫ s

0

eλ(s−h)C−1CK(t− h, h)xdh

=
[
eλ(s−h)K(t− h, h)x

]s
0

+ λ

∫ s

0

eλ(s−h)K(t− h, h)xdh

= K(t− s, s)x− eλsCx+ λDλ(t, s)x. (5)
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Finally, we obtain for all x ∈ D
Dλ(t, s)(λI −A(t))x = [eλsC −K(t− s, s)]x.

(2) Let µ ∈ ρ(A(t)). From [12, Theorem 3.4] and the commutativity of {K(t, s)}t,s≥0,
we have for all x ∈ X, R(µ,A(t))K(t, s)x = K(t, s)R(µ,A(t))x, such that the
resolvent R(λ,A(t)) = (λI −A(t))−1 Hence, for all x ∈ X we conclude

R(µ,A(t))Dλ(t, s)x = R(µ,A(t))

∫ s

0

eλ(s−h)K(t− h, h)xdh

=

∫ s

0

eλ(s−h)R(µ,A(t))K(t− h, h)xdh

=

∫ s

0

eλ(s−h)K(t− h, h)R(µ,A(t))xdh

= Dλ(t, s)R(µ,A(t))x.

Therefore, we obtain for all x ∈ X,

Dλ(t, s)x =

∫ s

0

eλ(s−h)K(t− h, h)xdh

=

∫ s

0

eλ(s−h)K(t− h, h)(µ−A(t))R(µ,A(t))xdh

= µ

∫ s

0

eλ(s−h)K(t− h, h)R(µ,A(t))xdh−
∫ s

0

eλ(s−h)K(t− h, h)A(t)R(µ,A(t))xdh

= µ

∫ s

0

eλ(s−h)R(µ,A(t))K(t− h, h)xdh−
∫ s

0

eλ(s−h)K(t− h, h)A(t)R(µ,A(t))xdh

= µR(µ,A(t))

∫ s

0

eλ(s−h)K(t− h, h)xdh−
∫ s

0

eλ(s−h)K(t− h, h)[A(t)R(µ,A(t))x]dh

= µR(µ,A(t))Dλ(t, s)x−Dλ(t, s)[A(t)R(µ,A(t))x]

and according to (5) we obtained,

Dλ(t, s)x = µR(µ,A(t))Dλ(t, s)x−
[
K(t− s, s)R(µ,A(t))x− eλsCR(µ,A(t))x

+ λDλ(t, s)R(µ,A(t))x
]

= µR(µ,A(t))Dλ(t, s)x−R(µ,A(t))K(t− s, s)x+ eλsCR(µ,A(t))x

− λR(µ,A(t))Dλ(t, s)x

= R(µ,A(t))
[
µDλ(t, s)x−K(t− s, s)x+ eλsCx− λDλ(t, s)x

]
.

Therefore, for all x ∈ X we deduce Dλ(t, s)x ∈ D and we have

(µI −A(t))Dλ(t, s)x = µDλ(t, s)x−K(t− s, s)x+ eλsCx− λDλ(t, s)x.

Finally, if µ→ λ, we obtain for all x ∈ X,

(λI −A(t))Dλ(t, s)x = [eλsC −K(t− s, s)]x.
�

For t ≥ 0, we fix D0 = D(A(t)0) = X, A(t)0 = I, and for n ∈ N we define by recurrence:

Dn = D(A(t)n) := {x ∈ D(A(t)n−1) : A(t)n−1x ∈ D(A(t))},

A(t)nx = A(t)A(t)n−1x pour x ∈ D(A(t)n),
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We introduce :

X = D(A(t)0) ⊇ D(A(t)) ⊇ D(A(t)2) ⊇ ... ⊇ D(A(t)n).

Corollary 3.1. Let A(t) be the generator of the C-quasi-semigroup {K(t, s)}t,s≥0 such that
A(t) is closed and densely defined, and let C ∈ B(X) be injective. Then for all t ≥ s ≥ 0,
λ ∈ C and n ∈ N\ {0}, we obtain

(1) For all x ∈ X,
(λI −A(t))n[Dλ(t, s)]nx = [eλsC −K(t− s, s)]nx.

(2) For all x ∈ Dn,
[Dλ(t, s)]n(λI − [A(t)]n)x = [eλsC −K(t− s, s)]nx.

(3) N [λI −A(t)] ⊆ N [eλsC −K(t− s, s)].
(4) Rg[eλsC −K(t− s, s)] ⊆ Rg[λI −A(t)].
(5) N [λI −A(t)]n ⊆ N [eλsC −K(t− s, s)]n.
(6) Rg[eλsC −K(t− s, s)]n ⊆ Rg[λI −A(t)]n.
(7) Rg∞[eλsC −K(t− s, s)] ⊆ Rg∞[λI −A(t)].

Proof. It’s automatic by Theorem 3.1. �

The following theorem characterizes the ordinary, point, approximate point, essential
and residual spectra of a C-quasi-semigroup.

Theorem 3.2. Let A(t) be the generator of the C-quasi-semigroup {K(t, s)}t,s≥0 such that
A(t) is closed and densely defined, and let C ∈ B(X) be injective. Then for all t ≥ s ≥ 0,
we get

(1) eσ(A(t))s ⊂ σ(C,K(t− s, s))\{0}
(2) eσp(A(t))s ⊂ σp(C,K(t− s, s))\{0}
(3) eσap(A(t))s ⊂ σap(C,K(t− s, s))\{0}
(4) eσe(A(t))s ⊂ σe(C,K(t− s, s))\{0}
(5) eσr(A(t))s ⊂ σr(C,K(t− s, s))\{0}.

Proof. it’s immediately by the Theorem 3.1 and Corollary 3.1 �

Remark 3.1. Note that the inclusion {eλs, λ ∈ σ∗(A(t))} ⊂ σ∗(C,K(t− s, s))\{0}, where
σ∗ = σ, σap, σe is strict as shown in the following example.

Example 3.1. Let {K(t, s)}t,s≥0 = T (s) where {T (s)}s≥0 is the translation group on the
space C2π(R) of all 2π periodic continuous functions on R and denote its generator by A
(see [8, Paragraph I.4.15]). From [8, Examples 2.6.iv] we have, σ(A(t)) = σ(A) = iZ, then
eσ(A(t))s is at most countable, therefore eσ∗(A(t))s are also.
The spectra of the operators T (s) are always contained in Γ = {z ∈ C : |z| = 1} and
contain the eigenvalues eiks for k ∈ Z. Since σ(T (s)) is closed, it follows from [8, Theorem
IV.3.16] that σ(T (s)) = Γ whenever s/2π /∈ Q, then σ(T (s)) is not countable,
so σ∗(I,K(t− s, s))\{0} are also.

To obtain the results concerning the ascent and descent spectra we need the following
theorem.

Theorem 3.3. Let A(t) be the generator of the C-quasi-semigroup {K(t, s)}t,s≥0 such that
A(t) is closed and densely defined, and let C ∈ B(X) be injective. Then for all t ≥ s > 0
and all λ ∈ C, we have
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(1) (λI−A(t))Lλ(t, s)+ϕλ(s)Dλ(t, s) = C, where Lλ(t, s) =
1

s

∫ s

0
e−λhDλ(t, h)dh and

ϕλ(s) = 1
se
−λs.

Moreover, the operators Lλ(t, s), Dλ(t, s) and (λI −A(t)) are mutually
commuting. Also, C is commute with each one Dλ(t, s) and Lλ(t, s)

(2) For all n ∈ N\ {0} , there exists an operator Fλ,n(t, s) ∈ B(X), such that
(λI −A(t))n[Lλ(t, s)]n + Fλ,n(t, s)Dλ(t, s) = Cn.

Moreover, the operator Fλ,n(t, s) is commute with each one of Dλ(t, s) and Lλ(t, s).
(3) For all n ∈ N\ {0} , there exists an operator Bλ,n(t, s) ∈ B(X), such that

(λI −A(t))nBλ,n(t, s) + [Fλ,n(t, s)]n[Dλ(t, s)]n = Cn
2
.

Moreover, the operator Bλ,n(t, s) is commute with each one of Dλ(t, s) and
Fλ,n(t, s).

Proof. (1) Let µ ∈ ρ(A(t)), by Theorem 3.1, for all x ∈ X we have Dλ(t, h)x ∈ D and
hence, for all t, s > 0,

sLλ(t, s)x =

∫ s

0
e−λhDλ(t, h)xdh

=

∫ s

0
e−λhR(µ,A(t))(µ−A(t))Dλ(t, h)xdh,

= R(µ,A(t))[µ

∫ s

0
e−λhDλ(t, h)xdh−

∫ s

0
e−λhA(t)Dλ(t, h)xdh]

= R(µ,A(t))[µsLλ(t, s)x−
∫ s

0
e−λhA(t)Dλ(t, h)xdh]

Therefore for all x ∈ X, we have Lλ(t, s)x ∈ D and

s(µ−A(t))Lλ(t, s)x = µsLλ(t, s)x−
∫ s

0
e−λhA(t)Dλ(t, h)xdh.

Thus

A(t)(sLλ(t, s)x) =

∫ s

0
e−λhA(t)Dλ(t, h)xdh.

Hence, from Theorem 3.1, we conclude that

(λI −A(t))(sLλ(t, s)x) = λsLλ(t, s)x−
∫ s

0

e−λhA(t)Dλ(t, h)xdh

= λsLλ(t, s)sx−
∫ s

0

e−λh
[
λDλ(t, h)x− eλhCx+K(t− h, h)x

]
dh

= λsLλ(t, s)x− λ

∫ s

0

e−λhDλ(t, h)xdh+

∫ s

0

Cxdh−
∫ s

0

e−λhK(t− h, h)xdh

= λsLλ(t, s)x− λsLλ(t, s)x+ sCx− e−λs
∫ s

0

eλ(s−h)K(t− h, h)xdh

= sCx− e−λsDλ(t, s)x

=
[
sC − sϕλ(s)Dλ(t, s)

]
x.

Therefore, we obtain (λI −A(t))Lλ(t, s) + ϕλ(s)Dλ(t, s) = C.
On the other hand and since the family {K(t, s)}t,s≥0 is commutative, then for all
t > s > h > 0, we have Dλ(t, h)K(t− s, s) = K(t− s, s)Dλ(t, h).
Hence, then for all s, r, t ≥ h > 0, we have Dλ(t, s)Dλ(t, r) = Dλ(t, r)Dλ(t, s).
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Thus, we deduce that

Dλ(t, s)Lλ(t, s) = Lλ(t, s)Dλ(t, s).

Since for all x ∈ X, A(t)Lλ(t, s)x =

∫ s

0
e−λhA(t)Dλ(t, h)xdh and for all x ∈ D,

A(t)Dλ(t, h)x = Dλ(t, h)A(t)x, then we obtain for all x ∈ D,
(λI −A(t))Lλ(t, s)x = λLλ(t, s)x−A(t)Lλ(t)x

= λLλ(t, s)x−
∫ s

0
e−λhA(t)Dλ(t, h)xdh

= λLλ(t, s)x−
∫ s

0
e−λhDλ(t, h)A(t)xdh

= λLλ(t, s)x− Lλ(t, s)A(t)x

= Lλ(t, s)(λI −A(t))x.

From 2) of the definition of a C-quasi-semigroup {K(t, s)}t,s≥0 with r = 0, we
have CK(t− h, h) = K(t− h, h)C for all t > h > 0.

Therefore, CDλ(t, s) = Dλ(t, s)C and CLλ(t, s) = Lλ(t, s)C.

(2) For all n ∈ N\ {0}, we obtain

[(λI −A(t))Lλ(t, s)]n = [C − ϕλ(s)Dλ(t, s)]n

=
n∑
i=0

CinC
n−i[−ϕλ(s)Dλ(t, s)]i

= Cn +

n∑
i=1

CinC
n−i[−ϕλ(s)Dλ(t, s)]i

= Cn −Dλ(t, s)

n∑
i=1

CinC
n−i[ϕλ(s)]i[−Dλ(t, s)]i−1

= Cn −Dλ(t, s)Fλ,n(t, s),

Where

Fλ,n(t, s) =
n∑
i=1

CinC
n−i[ϕλ(s)]i[−Dλ(t, s)]i−1.

Therefore, we have

(λI −A(t))n[Lλ(t, s)]n +Dλ(t, s)Fλ,n(t, s) = Cn.

Finally, for commutativity, it is clear that Fλ,n(t, s) commute with each one of
Dλ(t, s) and Lλ(t, s) since the operators Lλ(t, s), Dλ(t, s) and (λI − A(t)) are
mutually commuting and C is commute with each one Dλ(t, s) and Lλ(t, s) from
(1).

(3) Since we have Dλ(t, s)Fλ,n(t, s) = Cn− (λI −A(t))n[Lλ(t, s)]n, then for all n ∈ N∗

[Dλ(t, s)Fλ,n(t, s)]n =
[
Cn − (λI −A(t))n[Lλ(t, s)]n

]n
= Cn

2

−
n∑
i=1

Cin
[
Cn
]n−i[

(λI −A(t))n[Lλ(t, s)]n
]i

= Cn
2

− (λI −A(t))n
n∑
i=1

Cin
[
Cn(n−i)(λI −A(t))n(i−1)[Lλ(t, s)]ni

= Cn
2

− (λI −A(t))nBλ,n(t, s),
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Where Bλ,n(t, s) =
n∑
i=1

CinC
n(n−i)(λI −A(t))n(i−1)[Lλ(t, s)]ni. Hence, we obtain

[Dλ(t, s)]n[Fλ,n(t, s)]n + (λI −A(t))nBλ,n(t, s) = Cn
2
.

Finally, the commutativity is clear.
�

Proposition 3.1. Let A(t) be a closed and densely defined generator of a C−quasi-
semigroup {K(t, s)}t,s≥0 on a Banach space X. For all λ ∈ C, n ∈ N\ {0} and t ≥ s > 0,
we have

(1) If d(eλsC −K(t− s, s)) = n, then d(λI −A(t)) ≤ n.
(2) If a(eλsC −K(t− s, s) = n, then a(λI −A(t)) ≤ n.

Proof.

(1) Let y ∈ Rg[λI −A(t)]n, then there exists x ∈ Dn (domain of A(t)n) satisfying,

(λI −A(t))nx = y.

Since d[eλsC −K(t− s, s)] = n, then

Rg[eλsC −K(t− s, s)]n = Rg[eλsC −K(t− s, s)]n+1.

Hence, there exists z ∈ X such that
[eλsC −K(t− s, s)]nx = [eλsC −K(t− s, s)]n+1z, (6)

Let u ∈ X such as, Cn2
u = x, thus y = (λI −A(t))nCn

2
u.

On the other hand, by (3) in Theorem 3.3, we have,
(λI −A(t))nBλ,n(t, s)u+ [Fλ,n(t, s)]n[Dλ(t, s)]nu = Cn

2
u, (7)

Thus we have,
y = (λI −A(t))n[(λI −A(t))nBλ,n(t, s) + [Fλ,n(t, s)]n[Dλ(t, s)]n]u

= (λI −A(t))n(λ−A(t))nBλ,n(t, s)u+ [Fλ,n(t, s)]n(λI −A(t))n[Dλ(t, s)n]u

= (λI −A(t))2nBλ,n(t, s)u+ [Fλ,n(t, s)]n[eλsC −K(t− s, s)]nu, (by Theorem 3.1)

= (λI −A(t))2nBλ,n(t, s)u+ [Fλ,n(t, s)]n[eλsC −K(t− s, s)]nC−n2

x

= (λI −A(t))2nBλ,n(t, s)u+ [Fλ,n(t, s)]nC−n2

[eλsC −K(t− s, s)]nx

= (λI −A(t))2nKλ,n(t, s)u+ [Dλ,n(t, s)]nC−n2

[[eλsC −K(t− s, s)]n+1z], by (6)

= (λI −A(t))2nKλ,n(t, s)u+ [Dλ,n(t, s)]n[[eλsC −K(t− s, s)]n+1C−n2

z]

= (λI −A(t))2nKλ,n(t, s)u+ [Dλ,n(t, s)]n[(λI −A(t))n+1[Dλ(t, s)]n+1C−n2

z]

= (λI −A(t))n+1[(λI −A(t))n−1Kλ,n(t, s)u+ [Dλ,n(t, s)]n[Dλ(t, s)]n+1C−n2

z].

Therefore, we conclude that y ∈ Rg[λI −A(t)]n+1 and hence,

Rg[λI −A(t)]n = Rg[λI −A(t)]n+1.

Finally, we conclude that

d(λI −A(t)) ≤ n.
(2) Let x ∈ N(λI −A(t))n+1 and we suppose that a[eλsC −K(t− s, s)] = n, then we

obtain
N [eλsC −K(t− s, s)]n = N [eλsC −K(t− s, s)]n+1.
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From corollary 3.1, we have

N(λI −A(t))n+1 ⊆ N [eλsC −K(t− s, s)]n+1,

hence
x ∈ N [eλsC −K(t− s, s)]n.

Moreover, by Theorem 3.1 and (7) we have
Cn

2

(λI −A(t))nx = [(λI −A(t))nBλ,n(t, s) + [Fλ,n(t, s)]n[Dλ(t, s)]n](λI −A(t))nx
= (λI −A(t))n−1Bλ,n(t, s)(λI −A(t))n+1x+ [Fλ,n(t, s)]n[eλsC −K(t− s, s)]nx
= 0.

Therefore, we obtain x ∈ N(λI −A(t))n and hence, a(λI −A(t)) ≤ n.
�

Corollary 3.2. Let A(t) be a closed and densely defined generator of a C−quasi-semigroup
{K(t, s)}t,s≥0 on a Banach space X. For all λ ∈ C and all t, s > 0, we have

(1) eσa(A(t))s ⊆ σa(C,K(t− s, s))\{0}.
(2) eσd(A(t))s ⊆ σd(C,K(t− s, s))\{0}.

Proof. Immediately comes from Proposition 3.1. �

4. Conclusion

In this paper, we have proved some results concerning the C-quasi-semigroups and we
have showed a spectral inclusion of a different spectra of a regularized quasi-semigroups of
a bounded linear operators on a Banach space and their infinitesimal generators, and we
will end this article with the open question concerning the equality of a different spectra
of this family of operators and its infinitesimal generator.
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