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SD-PRIME CORDIAL LABELING OF SUBDIVISION K4−SNAKE AND
RELATED GRAPHS

U. M. PRAJAPATI1∗, A. V. VANTIYA2, §

Abstract. Let f : V (G) → {1, 2, . . . , |V (G)|} be a bijection, and let us denote S =
f(u)+f(v) and D = |f(u)−f(v)| for every edge uv in E(G). Let f ′ be the induced edge
labeling, induced by the vertex labeling f , defined as f ′ : E(G) → {0, 1} such that for
any edge uv in E(G), f ′(uv) = 1 if gcd(S, D) = 1, and f ′(uv) = 0 otherwise. Let ef ′ (0)
and ef ′ (1) be the number of edges labeled with 0 and 1 respectively. f is SD-prime
cordial labeling if |ef ′ (0) − ef ′ (1)| ≤ 1 and G is SD-prime cordial graph if it admits
SD-prime cordial labeling. In this paper, we have discussed the SD-prime cordial label-
ing of subdivision of K4−snake S(K4Sn), subdivision of double K4−snake S(D(K4Sn)),
subdivision of alternate K4−snake S(A(K4Sn)) of type 1, 2 and 3, and subdivision of
double alternate K4− snake S(DA(K4Sn)) of type 1, 2 and 3.

Keywords: SD-prime cordial graph, Subdivision of K4−Snake, Subdivision of Alter-
nate K4−Snake, Subdivision of Double K4−Snake, Subdivision of Double Alternate
K4−Snake, m−Complete Snake.

AMS Subject Classification: 05C78.

1. Introduction

Let G = (V (G), E(G)) be a simple, finite and undirected graph of order |V (G)| and
size |E(G)|. For standard terminology of Graph Theory, we used [1]. For all detailed
survey of graph labeling, we refer [2]. Lau, Chu, Suhadak, Foo and Ng [3] have introduced
SD-prime cordial labeling and they proved behaviour of several graphs like path, complete
bipartite graph, star, double star, wheel, fan, double fan, ladder and grid. They conjecture
that Pm × Pn is SD-prime cordial, for all m ≥ 2 and n ≥ 2. Lau, Shiu, Ng and Jeyan-
thi [4] give sufficient conditions for a theta graph to have an SD-prime cordial labeling,
provide a way to construct new SD-prime cordial graphs from existing ones, and investi-
gate SD-prime cordialness of some general graphs. Lourdusamy and Patrick [5] proved that
S′(K1,n), D2(K1,n), S(K1,n), DS(K1,n), S′(Bn,n), D2(Bn,n), TLn, DS(Bn,n), S(Bn,n), CHn,
K1,3 ?K1,n, F ln, P 2

n , T (Pn), T (Cn), Qn, A(Tn), Pn�K1, Cn�K1, Jn and the graph obtained
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by duplication of each vertex and cycle by an edge are SD-prime cordial. Lourdusamy,
Wency and Patrick [6] proved that the union of star and path graphs, subdivision of comb
graph, subdivision of ladder graph and the graph obtained by attaching star graph at one
end of the path are SD-prime cordial graphs. They proved that the union of two SD-
prime cordial graphs need not be SD-prime cordial graph. Also, they proved that given a
positive integer n, there is SD-prime cordial graph G with n vertices. Thulukkanam, Vi-
jaya Kumar and Thirusangu [7] proved that the extended duplicate graphs of path graph,
comb graph, twig graph, star graph, bistar graph and double star graph are SD-prime cor-
dial. Delman, Koilraj and Lawrence Rozario Raj [8] proved that Pln graph is SD-prime
cordial. Delman, Koilraj and Lawrence Rozario Raj [9] proved that disconnected graphs
G∪(Pn�K1), G∪K1,n,n, G∪PSn and G∪Pn are SD-prime cordial. Prajapati and Vantiya
[10] proved that Tn(n 6= 3), A(Tn), Qn, A(Qn), DTn, DA(Tn), DQn and DA(Qn) are SD-
prime cordial. Prajapati and Vantiya [11] proved that S(Tn), S(A(Tn)), S(Qn), S(A(Qn))
are SD-prime cordial. Prajapati and Vantiya [12] proved that k−polygonal snake Sn(Ck)
is SD-prime cordial for all integers k ≥ 3, n ≥ 2 (except for k = n = 3). Prajapati
and Vantiya [14] proved that altrnate k−polygonal snake ASn(Ck) of type-1, 2 and 3
are SD-prime cordial, for all integers k ≥ 3, n ≥ 2. Prajapati and Vantiya [13] proved
that double k−polygonal snake D(SnCk) is SD-prime cordial. Prajapati and Vantiya
[15] proved that K4−snake K4Sn, (for all n 6= 2), double K4−snake D(K4Sn), alter-
nate K4−snake A(K4Sn) (for all n, except for n = 2, if it is of type-I), double alternate
K4−snake DA(K4Sn) and prism graph Yn, for n = 2p, where p is prime, are SD-prime
cordial. In this paper, we investigate the SD-prime cordial labeling of subdivision of
K4−snake S(K4Sn), subdivision of double K4−snake S(D(K4Sn)), subdivision of al-
ternate K4−snake S(A(K4Sn)) of type 1, 2 and 3, and subdivision of double alternate
K4−snake S(DA(K4Sn)) of type 1, 2 and 3.

Notation: Throughout this paper, a path Pn = u1, u2, . . . , un, and n ≥ 2.

Definition 1.1. [3] A bijection f : V (G) → {1, 2, . . . , |V (G)|} induces an edge labeling
f ′ : E(G) → {0, 1} such that for any edge uv in G, f ′(uv) = 1 if gcd(S, D) = 1, and
f ′(uv) = 0 otherwise, where S = f(u) + f(v) and D = |f(u) − f(v)|, for every edge uv
in E(G). The labeling f is called SD-prime cordial labeling if |ef ′(0) − ef ′(1)| ≤ 1. G is
called SD-prime cordial graph if it admits SD-prime cordial labeling.

Definition 1.2. [16] An edge uv is said to be subdivided if the edge uv is replaced by the
path P : uwv, where w is the new vertex. The subdivision graph S(G) is obtained from
graph G by subdividing each edge of G by a vertex.

Definition 1.3. An m-complete snake is obtained from the path Pn by replacing every
edge of Pn by a complete graph Km (m ≥ 3). It is denoted by KmSn. It is also called
Km-snake.

Definition 1.4. A double m-complete graph is a graph containing two copies of complete
graphs Km (m ≥ 3) having exactly one common edge.

Definition 1.5. A double m-complete snake is obtained from the path Pn by replacing
every edge of Pn by a double m-complete graph in such a way that the edge is replaced by
the common edge of double m-complete graph. It is denoted by D(KmSn). It is also called
double Km-snake.

Definition 1.6. An alternate m-complete snake is obtained from the path Pn by replacing
every alternate edge of Pn by a complete graph Km (m ≥ 3). It is denoted by A(KmSn).
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It is also called alternate Km-snake.
Note that, for every m, there are three non-isomorphic alternate m-complete snakes de-
pending on values of n, they are defined as follows:

(1) An alternate m-complete snake, in which n is even and the edge uiui+1 of Pn

is replaced by a complete graph Km for every odd i, is said to be an alternate
m-complete snake of type-1. It is denoted by A1(KmSn).

(2) An alternate m-complete snake, in which n is odd and the edge uiui+1 of Pn is
replaced by a complete graph Km for every odd i, is said to be an alternate m-
complete snake of type-2. It is denoted by A2(KmSn).

(3) An alternate m-complete snake, in which n is even and the edge uiui+1 of Pn

is replaced by a complete graph Km for every even i, is said to be an alternate
m-complete snake of type-3. It is denoted by A3(KmSn).

Definition 1.7. A double alternate m-complete snake is obtained from the path Pn by
replacing every alternate edge of Pn by a double m-complete graph in such a way that
the edge is replaced by the common edge of double m-complete graph. It is denoted by
DA(KmSn). It is also called double alternate Km-snake.
Note that, for every m, there are three non-isomorphic double alternate m-complete snakes
depending on values of n, they are defined as follows:

(1) A double alternate m-complete snake, in which n is even and the edge uiui+1 of
Pn is replaced by a double m-complete graph for every odd i, is said to be a double
alternate m-complete snake of type-1. It is denoted by DA1(KmSn).

(2) A double alternate m-complete snake, in which n is odd and the edge uiui+1 of Pn

is replaced by a double m-complete graph for every odd i, is said to be a double
alternate m-complete snake of type-2. It is denoted by DA2(KmSn).

(3) A double alternate m-complete snake, in which n is odd and the edge uiui+1 of Pn

is replaced by a double m-complete graph for every odd i, is said to be a double
alternate m-complete snake of type-3. It is denoted by DA3(KmSn).

2. Main Results

Theorem 2.1. The graph S(K4Sn) is SD-prime cordial.

Proof. Let V (S(K4Sn)) = V (Pn)∪{vi, wi, v′i, w′i, v′′i , w′′i , w′′′i : 1 ≤ i ≤ n−1} and E(S(K4Sn))
= {uiu

′
i, u′iui+1, uiv

′
i, v′ivi, uiv

′′
i , v′′i wi, viw

′′′
i , w′′′i wi, viw

′′
i , w′′i ui+1, wiw

′
i, w′iui+1 : 1 ≤ i ≤

n− 1}. Therefore S(K4Sn) is of order 9n− 8 and size 12n− 12, see the figure 1.

Figure 1. S(K4S6), n = 6

Define f : V (S(K4Sn))→ {1, 2, . . . , 9n− 8} as follows:
f(ui) = 9i− 8 if 1 ≤ i ≤ n;
f(vi) = 9i− 3 if 1 ≤ i ≤ n− 1;
f(wi) = 9i− 4 if 1 ≤ i ≤ n− 1;
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f(u′i) = 9i− 2 if 1 ≤ i ≤ n− 1;
f(v′i) = 9i− 6 if 1 ≤ i ≤ n− 1;
f(w′i) = 9i− 1 if 1 ≤ i ≤ n− 1;
f(v′′i ) = 9i− 5 if 1 ≤ i ≤ n− 1;
f(w′′i ) = 9i if 1 ≤ i ≤ n− 1;
f(w′′′i ) = 9i− 7 if 1 ≤ i ≤ n− 1.

Then, the induced edge labeling is:
f∗(uiv

′
i) = 0 as S and D both are multiples of 2;

f∗(v′ivi) = 0 as S and D both are multiples of 3;
f∗(viw

′′′
i ) = 0 as S and D both are multiples of 2;

f∗(w′′′i wi) = 1 as D = 3 but S is not a multiple of 3;
f∗(wiw

′
i) = 1 as D = 3 but S is not a multiple of 3;

f∗(w′iui+1) = 0 as S and D both are multiples of 2;
f∗(uiu

′
i) = 0 as S and D both are multiples of 2;

f∗(u′iui+1) = 1 as D = 3 but S is not a multiple of 3;
f∗(uiv

′′
i ) = 1 as D = 3 but S is not a multiple of 3;

f∗(v′′i wi) = 1 as D = 1;
f∗(viw

′′
i ) = 0 as S and D both are multiples of 3;

f∗(w′′i ui+1) = 1 as D = 1.

Therefore ef ′(0) = ef ′(1) = 6n− 6.
Thus

∣∣ef ′(0)− ef ′(1)
∣∣ ≤ 1.

Hence S(K4Sn) is SD-prime cordial. �

Illustration 2.1. The graph S(K4S6) satisfying SD-prime cordial labeling is shown in the
figure 2.

Figure 2. SD-Prime Cordial Labeling of S(K4S6), n = 6

For the general graph S(K4Sn) one can visit the following GeoGebra applet:
https: // www. geogebra. org/ m/ zyqxgv5j

Theorem 2.2. The graph S(D(K4Sn)) is SD-prime cordial.

Proof. Let V (S(D(K4Sn))) = V (Pn) ∪ {vi, wi, v′i, w′i, v′′i , w′′i , w′′′i , xi, yi, x′i, y′i, x′′i , y′′i , y′′′i :
1 ≤ i ≤ n−1} and E(S(D(K4Sn))) = {uiu

′
i, u′iui+1, uiv

′
i, v′ivi, uiv

′′
i , v′′i wi, viw

′′′
i , w′′′i wi, viw

′′
i ,

w′′i ui+1, wiw
′
i, w′iui+1, uix

′
i, x′ixi, uix

′′
i , x′′i yi, xiy

′′′
i , y′′′i yi, xiy

′′
i , y′′i ui+1, yiy

′
i, y′iui+1 : 1 ≤ i ≤

n− 1}. Therefore S(D(K4Sn)) is of order 16n− 15 and size 22n− 22, see the figure 3.

https://www.geogebra.org/m/zyqxgv5j
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Figure 3. S(D(K4S6)), n = 6

Define f : V (S(D(K4Sn)))→ {1, 2, . . . , 16n− 15} as follows:
f(ui) = 16i− 15 if 1 ≤ i ≤ n;
f(vi) = 16i− 7 if 1 ≤ i ≤ n− 1;
f(wi) = 16i− 1 if 1 ≤ i ≤ n− 1;
f(u′i) = 16i− 5 if 1 ≤ i ≤ n− 1;
f(v′i) = 16i− 13 if 1 ≤ i ≤ n− 1;
f(w′i) = 16i if 1 ≤ i ≤ n− 1;
f(v′′i ) = 16i− 6 if 1 ≤ i ≤ n− 1;
f(w′′i ) = 16i− 2 if 1 ≤ i ≤ n− 1;
f(w′′′i ) = 16i− 4 if 1 ≤ i ≤ n− 1;
f(xi) = 16i− 14 if 1 ≤ i ≤ n− 1;
f(yi) = 16i− 8 if 1 ≤ i ≤ n− 1;
f(x′i) = 16i− 12 if 1 ≤ i ≤ n− 1;
f(y′i) = 16i− 3 if 1 ≤ i ≤ n− 1;
f(x′′i ) = 16i− 10 if 1 ≤ i ≤ n− 1;
f(y′′i ) = 16i− 11 if 1 ≤ i ≤ n− 1;
f(y′′′i ) = 16i− 9 if 1 ≤ i ≤ n− 1.

Therefore ef ′(1) = ef ′(0) = 11n− 11.
Thus

∣∣ef ′(0)− ef ′(1)
∣∣ ≤ 1.

Hence S(D(K4Sn)) is SD-prime cordial. �

Illustration 2.2. The graph S(D(K4S6)) satisfying SD-prime cordial labeling is shown
in the figure 4.

Figure 4. SD-Prime Cordial Labeling of S(D(K4S6)), n = 6
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For the general graph S(D(K4Sn)) one can visit the following GeoGebra applet:
https: // www. geogebra. org/ m/ vcjdfrc6

Theorem 2.3. The graph S(A(K4Sn)) is SD-prime cordial.

Proof. Case-1: S(A1(K4Sn)):
In this case, n is even.
Let V (S(A1(K4Sn))) = V (Pn) ∪ {u′i : 1 ≤ i ≤ n − 1} ∪ {vi, wi, v′i, w′i, v′′i , w′′i , w′′′i :
i is odd and 1 ≤ i ≤ n − 1} and E(S(A1(K4Sn))) = {uiu

′
i, u′iui+1 : 1 ≤ i ≤ n −

1} ∪ {uiv
′
i, v′ivi, uiv

′′
i , v′′i wi, viw

′′′
i , w′′′i wi, viw

′′
i , w′′i ui+1, wiw

′
i, w′iui+1 : i is odd and 1 ≤ i ≤

n− 1}. Therefore S(A1(K4Sn)) is of order 11n−2
2 and size 7n− 2, see the figure 5.

Figure 5. S(A1(K4S6)), n = 6

Define f : V (S(A1(K4Sn)))→ {1, 2, . . . , 11n−2
2 } as follows:

f(ui) =


11i−9

2 i ≡ 1 (mod 4)
11i−2

2 i ≡ 2 (mod 4)
11i−11

2 i ≡ 3 (mod 4)
11i−4

2 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n;

f(vi) =
{

11i+1
2 i ≡ 1 (mod 4)

11i−7
2 i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1;

f(wi) =
{

11i−1
2 i ≡ 1 (mod 4)

11i−3
2 i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1;

f(u′i) =


11i+3

2 i ≡ 1 (mod 4)
11i+2

2 i ≡ 2 (mod 4)
11i+5

2 i ≡ 3 (mod 4)
11i
2 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;

f(v′i) = 11i− 5
2 i is odd if 1 ≤ i ≤ n− 1;

f(w′i) =
{

11i+5
2 i ≡ 1 (mod 4)

11i+3
2 i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1;

f(v′′i ) =
{

11i−3
2 i ≡ 1 (mod 4)

11i+1
2 i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1;

f(w′′i ) =
{

11i+7
2 i ≡ 1 (mod 4)

11i+9
2 i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1;

f(w′′′i ) =
{

11i−7
2 i ≡ 1 (mod 4)

11i−1
2 i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1.

https://www.geogebra.org/m/vcjdfrc6
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Therefore ef ′(1) = ef ′(0) = 7n− 2
2 .

Case-2: S(A2(K4Sn)):
In this case, n is odd.
Let V (S(A2(K4Sn))) = V (Pn) ∪ {u′i : 1 ≤ i ≤ n − 1} ∪ {vi, wi, v′i, w′i, v′′i , w′′i , w′′′i :
i is odd and 1 ≤ i ≤ n − 1} and E(S(A2(K4Sn))) = {uiu

′
i, u′iui+1 : 1 ≤ i ≤ n −

1} ∪ {uiv
′
i, v′ivi, uiv

′′
i , v′′i wi, viw

′′′
i , w′′′i wi, viw

′′
i , w′′i ui+1, wiw

′
i, w′iui+1 : i is odd and 1 ≤ i ≤

n− 1}. Therefore S(A2(K4Sn)) is of order 11n−9
2 and size 7n− 7, see the figure 6.

Figure 6. S(A2(K4S5)), n = 5

Define f : V (S(A2(K4Sn)))→ {1, 2, . . . , 11n−9
2 } as per the case-1 (above).

Therefore ef ′(1) = ef ′(0) = 7n− 7
2 .

Case-3: S(A3(K4Sn)):
In this case, n is even.
Let V (S(A3(K4Sn))) = V (Pn) ∪ {u′i : 1 ≤ i ≤ n − 1} ∪ {vi, wi, v′i, w′i, v′′i , w′′i , w′′′i :
i is even and 1 ≤ i ≤ n − 1} and E(S(A3(K4Sn))) = {uiu

′
i, u′iui+1 : 1 ≤ i ≤ n −

1} ∪ {uiv
′
i, v′ivi, uiv

′′
i , v′′i wi, viw

′′′
i , w′′′i wi, viw

′′
i , w′′i ui+1, wiw

′
i, w′iui+1 : i is even and 1 ≤ i ≤

n− 1}. Therefore S(A3(K4Sn)) is of order 11n−16
2 and size 7n− 12, see the figure 7.

Figure 7. S(A3(K4S6)), n = 6

Define f : V (S(A3(K4Sn)))→ {1, 2, . . . , 11n−16
2 } as follows:

f(ui) =



2 i = 1
11i−16

2 i ≡ 2 (mod 4)
11i−9

2 i ≡ 3 (mod 4)
11i−18

2 i ≡ 0 (mod 4)
11i−11

2 i ≡ 1 (mod 4) and i 6= 1

if 1 ≤ i ≤ n;

f(vi) =
{

11i−6
2 i ≡ 2 (mod 4)

11i−14
2 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;

f(wi) =
{

11i−8
2 i ≡ 2 (mod 4)

11i−10
2 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;
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f(u′i) =



1 i = 1
11i−4

2 i ≡ 2 (mod 4)
11i−5

2 i ≡ 3 (mod 4)
11i−2

2 i ≡ 0 (mod 4)
11i−7

2 i ≡ 1 (mod 4) and i 6= 1

if 1 ≤ i ≤ n− 1;

f(v′i) = 11i− 12
2 i is even if 1 ≤ i ≤ n− 1;

f(w′i) =
{

11i−2
2 i ≡ 2 (mod 4)

11i−4
2 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;

f(v′′i ) =
{

11i−10
2 i ≡ 2 (mod 4)

11i−6
2 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;

f(w′′i ) =
{

11i
2 i ≡ 2 (mod 4)

11i+2
2 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;

f(w′′′i ) =
{

11i−14
2 i ≡ 2 (mod 4)

11i−8
2 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1.

Therefore ef ′(1) = ef ′(0) = 7n−12
2 .

Thus from all the cases,
∣∣ef ′(0)− ef ′(1)

∣∣ ≤ 1.
Hence S(A(K4Sn)) is SD-prime cordial. �

Illustration 2.3. The graphs S(A(K4Sn)) of types 1, 2 and 3 satisfying SD-prime cordial
labeling are shown in the figures 8, 9 and 10.

Figure 8. SD-Prime Cordial Labeling of S(A1(K4S6)), n = 6

For the general graph S(A1(K4Sn)) one can visit the following GeoGebra applet:
https: // www. geogebra. org/ m/ tmessgeg

Figure 9. SD-Prime Cordial Labeling of S(A2(K4S7)), n = 7

For the general graph S(A2(K4Sn)) one can visit the following GeoGebra applet:
https: // www. geogebra. org/ m/ tmessgeg

https://www.geogebra.org/m/tmessgeg
https://www.geogebra.org/m/tmessgeg
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Figure 10. SD-Prime Cordial Labeling of S(A3(K4S6)), n = 6

For the general graph S(A3(K4Sn)) one can visit the following GeoGebra applet:
https: // www. geogebra. org/ m/ zve8qbh9

Theorem 2.4. The graph S(DA(K4Sn)) is SD-prime cordial.
Proof. Case-1: S(DA1(K4Sn)):
In this case, n is even.
Let V (S(DA1(K4Sn))) = V (Pn)∪{u′i : 1 ≤ i ≤ n−1}∪{vi, wi, v′i, w′i, v′′i , w′′i , w′′′i , xi, yi, x′i,
y′i, x′′i , y′′i , y′′′i : i is odd and 1 ≤ i ≤ n− 1} and E(S(DA1(K4Sn))) = {uiu

′
i, u′iui+1 : 1 ≤

i ≤ n−1}∪{uiv
′
i, v′ivi, uiv

′′
i , v′′i wi, viw

′′′
i , w′′′i wi, viw

′′
i , w′′i ui+1, wiw

′
i, w′iui+1, uix

′
i, x′ixi, uix

′′
i ,

x′′i yi, xiy
′′′
i , y′′′i yi, xiy

′′
i , y′′i ui+1, yiy

′
i, y′iui+1 : i is odd and 1 ≤ i ≤ n−1}. Therefore S(DA1(K4Sn))

is of order 9n− 1 and size 12n− 2, see the figure 11.

Figure 11. S(DA1(K4S6)), n = 6

Define f : V (S(DA1(K4Sn)))→ {1, 2, . . . , 9n− 1} as follows:

f(ui) =


9i− 8 i ≡ 1 (mod 4)
9i− 1 i ≡ 2 (mod 4)
9i− 9 i ≡ 3 (mod 4)
9i− 2 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n;

f(u′i) =


9i + 2 i ≡ 1 (mod 4)
9i + 1 i ≡ 2 (mod 4)
9i− 5 i ≡ 3 (mod 4)
9i i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;

f(vi) =
{

9i i ≡ 1 (mod 4)
9i− 1 i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1;

f(wi) =
{

9i + 6 i ≡ 1 (mod 4)
9i + 5 i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1;

f(v′i) =
{

9i− 6 i ≡ 1 (mod 4)
9i− 7 i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1;

https://www.geogebra.org/m/zve8qbh9
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f(w′i) =
{

9i + 7 i ≡ 1 (mod 4)
9i + 6 i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1;

f(v′′i ) =
{

9i + 1 i ≡ 1 (mod 4)
9i i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1;

f(w′′i ) =
{

9i + 5 i ≡ 1 (mod 4)
9i + 4 i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1;

f(w′′′i ) =
{

9i + 3 i ≡ 1 (mod 4)
9i + 8 i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1;

f(xi) =
{

9i− 7 i ≡ 1 (mod 4)
9i + 2 i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1;

f(yi) =
{

9i− 1 i ≡ 1 (mod 4)
9i− 2 i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1;

f(x′i) =
{

9i− 5 i ≡ 1 (mod 4)
9i− 6 i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1;

f(y′i) =
{

9i + 4 i ≡ 1 (mod 4)
9i + 3 i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1;

f(x′′i ) =
{

9i− 3 i ≡ 1 (mod 4)
9i− 4 i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1;

f(y′′i ) =
{

9i− 4 i ≡ 1 (mod 4)
9i− 3 i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1;

f(y′′′i ) =
{

9i− 2 i ≡ 1 (mod 4)
9i + 1 i ≡ 3 (mod 4)

if 1 ≤ i ≤ n− 1.

Therefore ef ′(1) = ef ′(0) = 6n− 1.
Case-2: S(DA2(K4Sn)):
In this case, n is odd.
Let V (S(DA2(K4Sn))) = V (Pn)∪{u′i : 1 ≤ i ≤ n−1}∪{vi, wi, v′i, w′i, v′′i , w′′i , w′′′i , xi, yi, x′i,
y′i, x′′i , y′′i , y′′′i : i is odd and 1 ≤ i ≤ n− 1} and E(S(DA2(K4Sn))) = {uiu

′
i, u′iui+1 : 1 ≤

i ≤ n−1}∪{uiv
′
i, v′ivi, uiv

′′
i , v′′i wi, viw

′′′
i , w′′′i wi, viw

′′
i , w′′i ui+1, wiw

′
i, w′iui+1, uix

′
i, x′ixi, uix

′′
i ,

x′′i yi, xiy
′′′
i , y′′′i yi, xiy

′′
i , y′′i ui+1, yiy

′
i, y′iui+1 : i is odd and 1 ≤ i ≤ n−1}. Therefore S(DA2(K4Sn))

is of order 9n− 8 and size 12n− 12, see the figure 12.

Figure 12. S(DA2(K4S5)), n = 5
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Define f : V (S(DA2(K4Sn)))→ {1, 2, . . . , 9n− 8} as per the case-1 (above).
Therefore ef ′(1) = ef ′(0) = 6n− 6.
Case-3: S(DA3(K4Sn)):
In this case, n is even.
Let V (S(DA3(K4Sn))) = V (Pn)∪{u′i : 1 ≤ i ≤ n−1}∪{vi, wi, v′i, w′i, v′′i , w′′i , w′′′i , xi, yi, x′i,
y′i, x′′i , y′′i , y′′′i : i is even and 1 ≤ i ≤ n−1} and E(S(DA3(K4Sn))) = {uiu

′
i, u′iui+1 : 1 ≤

i ≤ n−1}∪{uiv
′
i, v′ivi, uiv

′′
i , v′′i wi, viw

′′′
i , w′′′i wi, viw

′′
i , w′′i ui+1, wiw

′
i, w′iui+1, uix

′
i, x′ixi, uix

′′
i ,

x′′i yi, xiy
′′′
i , y′′′i yi, xiy

′′
i , y′′i ui+1, yiy

′
i, y′iui+1 : i is even and 1 ≤ i ≤ n − 1}. Therefore

S(DA3(K4Sn)) is of order 9n− 15 and size 12n− 22, see the figure 13.

Figure 13. S(DA3(K4S6)), n = 6

Define f : V (S(DA3(K4Sn)))→ {1, 2, . . . , 9n− 15} as follows:

f(ui) =


9i− 8 i ≡ 1 (mod 4)
9i− 16 i ≡ 2 (mod 4)
9i− 9 i ≡ 3 (mod 4)
9i− 15 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n;

f(u′i) =


9i− 6 i ≡ 1 (mod 4)
9i− 12 i ≡ 2 (mod 4)
9i− 7 i ≡ 3 (mod 4)
9i− 5 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;

f(vi) =
{

9i− 8 i ≡ 2 (mod 4)
9i− 7 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;

f(wi) =
{

9i− 2 i ≡ 2 (mod 4)
9i− 1 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;

f(v′i) =
{

9i− 14 i ≡ 2 (mod 4)
9i− 13 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;

f(w′i) =
{

9i− 1 i ≡ 2 (mod 4)
9i i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;

f(v′′i ) =
{

9i− 7 i ≡ 2 (mod 4)
9i− 6 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;

f(w′′i ) =
{

9i− 3 i ≡ 2 (mod 4)
9i− 2 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;
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f(w′′′i ) =
{

9i + 1 i ≡ 2 (mod 4)
9i− 4 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;

f(xi) =
{

9i− 5 i ≡ 2 (mod 4)
9i− 14 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;

f(yi) =
{

9i− 9 i ≡ 2 (mod 4)
9i− 8 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;

f(x′i) =
{

9i− 13 i ≡ 2 (mod 4)
9i− 12 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;

f(y′i) =
{

9i− 4 i ≡ 2 (mod 4)
9i− 3 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;

f(x′′i ) =
{

9i− 11 i ≡ 2 (mod 4)
9i− 10 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;

f(y′′i ) =
{

9i− 10 i ≡ 2 (mod 4)
9i− 11 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1;

f(y′′′i ) =
{

9i− 6 i ≡ 2 (mod 4)
9i− 9 i ≡ 0 (mod 4)

if 1 ≤ i ≤ n− 1.

Therefore ef ′(1) = ef ′(0) = 6n− 11.
Thus from all the cases,

∣∣ef ′(0)− ef ′(1)
∣∣ ≤ 1.

Hence S(DA(K4Sn)) is SD-prime cordial. �

Illustration 2.4. The graphs S(DA(K4Sn)) of types 1, 2 and 3 satisfying SD-prime
cordial labeling are shown in the figures 14, 15 and 16.

Figure 14. SD-Prime Cordial Labeling of S(DA1(K4S6)), n = 6

For the general graph S(DA1(K4Sn)) one can visit the following GeoGebra applet:
https: // www. geogebra. org/ m/ v6jwn7xu

https://www.geogebra.org/m/v6jwn7xu
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Figure 15. SD-Prime Cordial Labeling of S(DA2(K4S7)), n = 7

For the general graph S(DA2(K4Sn)) one can visit the following GeoGebra applet:
https: // www. geogebra. org/ m/ v6jwn7xu

Figure 16. SD-Prime Cordial Labeling of S(DA3(K4S6)), n = 6

For the general graph S(DA3(K4Sn)) one can visit the following GeoGebra applet:
https: // www. geogebra. org/ m/ dywtdzwy

3. Conclusion:

We have proved that subdivision of K4−snake S(K4Sn), subdivision of double K4−snake
S(D(K4Sn)), subdivision of alternate K4−snake S(A(K4Sn)) and subdivision of double
alternate K4− snake graphs S(DA(K4Sn)) are SD-prime cordial.

It is observed that SD-prime cordial labeling gets more difficult, when we have more
vertices having large degree. So one can try to find the relation between number of vertices
and their degrees, so that the graph will not be SD-prime cordial.

Further investigation can be done for the more general case S(KmSn), for arbitrary
m ∈ N . But there might be some difficulties for large m, because it will increase the
number of vertices having large degree.
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