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ON THE SOLUTIONS OF CERTAIN q-SHIFT DELAY DIFFERENTIAL

EQUATIONS OVER NON-ARCHIMEDEAN FIELD

S. MAITY1, A. BANERJEE1∗, §

Abstract. Inspired by the results of Malmquist [13], in this paper, we have investigated
on the solutions of q-shift delay differential equations over non-Archimedean field. We
also proved Clunie-type result corresponding to certain q-shift delay differential equa-
tions over non-Archimedean field.
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1. Introduction and Definitions.

The well known Nevanlinna’s [6] value distribution theory is a major part of complex
analysis and it plays an important role in the study of differential equations over C. In this
article, we are motivated to investigate the solutions of some type of non-linear differential
equations over non-Archimedean field. To this end, we recall some basic terminologies
related to value distribution theory over non-Archimedean field.

We consider F be a non-Archimedean algebraically closed field which is complete with
respect to a non trivial non-Archimedean absolute value such that characteristic of F is
zero. Let the collection of all power series with radius of convergence ≥ r is denoted by
A[r(F). We use the notations A (F)

(
= A[∞(F)

)
and M (F) to mean the collections of all

entire functions and meromorphic functions respectively on F. Let us denote F̃ = F∪{∞}.
The disjoint union of any two set U and V is written as U t V .

Let f(z) be a non-constant entire function on F. For a constant ρ ∈ R such that
0 < ρ ≤ r, the counting function of f(z) is defined as follows

N(r, a; f) =
1

ln p

∫ r

ρ

n(t, a; f)

t
dt,
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where n(t, a; f) denotes the number of solution (counting multiplicity) of f(z) = a in the
disk Dt = {z ∈ F : |z| ≤ t}.

Let us consider a non-constant function f(z) ∈ A (F), then f(z) has a power series

expansion i.e., we can write f(z) =
∞∑
n=0

anz
n, where an ∈ F. For every r > 0, the function

µ(r, f) : A (F)→ R+ is defined as

µ(r, f) = |f(z)| = max{|an|rn : 0 ≤ n <∞},
for all z such that |z| = r and f(z) 6= 0.

Now we consider f(z) ∈ M (F). Thus f(z) = g(z)
h(z) such that g(z), h(z) ∈ A (F) and

having no common zeros. We define µ(r, f) = µ(r,g)
µ(r,h) . Let z0 be a-point (for a ∈ F̃) of f(z)

(i.e., solution of f(z) − a = 0), then the multiplicity of z0 is denoted by µaf (z0). Notice

that µaf = µ0
g−ah, µ∞f = µ0

h, N(r, a; f) = N(r, 0; g − ah) and N(r,∞; f) = N(r, 0;h).

The compensation (or proximity) function of f(z) is defined as follows:

m(r,∞; f) = log+µ(r, f) = max{0, log µ(r, f)} and m(r, a; f) = log+ 1

µ(r, f − a)
.

The Nevanlinna’s characteristic function is defined as:

T (r, f) = m(r,∞; f) +N(r,∞; f).

For the sake of convenience we use m(r, f) and N(r, f) instead of m(r,∞; f) and
N(r,∞; f). For any non-constant meromorphic function f(z) we define S(r, f) = o(T (r, f)).

Definition 1.1. [9] For a ∈ F̃, the defect of f(z) for the value a is denoted by δ(a, f)

and defined by δ(a; f) = 1 − lim sup
r→∞

N(r, a; f)

T (r, f)
. Also Θ(a; f) is defined as Θ(a; f) =

1− lim sup
r→∞

N(r, a; f)

T (r, f)
.

For some basic results related to Nevanlinna’s theory over F readers can look a glance
at [9].

In 1913, Malmquist [13] first investigated on the existence of solutions of a particular
type of differential equation over C and obtained the following result.

Theorem A. [13] Let

f ′(z) = R(f) =
A(f)

B(f)
=

n1∑
s=0

as(z)f
s(z)

n2∑
t=0

bt(z)f
t(z)

,

where A(f), B(f) are relatively prime polynomial of f with all coefficients are rational
functions. If the equation admits a transcendental meromorphic solution, then n2 = 0 and
n1 ≤ 2.

In [12], for some general non-linear differential equations, Laine proved Clunie-type [2]
theorem. After that in 2004, Korhonen [10] and in 2007, Yang-Ye [17] extended Laine’s
result. In [5], Hulburd-Korhonen found the difference analogue of Clunie’s theorem.

On the other hand, in 2002, Gundersen et al. [4] investigated on the growth of mero-
morphic solutions of similar types of equations as in Theorem A. They considered f(qz)
instead of f ′(z) and established some results. For more results related to Malmquist-type
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theorems reader can see Gackstatter-Laine [3], Laine [11], Toda [15], Yosida [18] and He-
Xiao [7]. Notice that all the above mentioned results are in the field of complex numbers.
So far a very few results can be found in this direction over non-Archimedean field. In
this paper one of our aim is to investigate on Clunie-type theorem and solutions of some
non-linear delay differential equations over non-Archimedean field.

Let f(z) be a non-constant meromorphic function on F and qi, ci ∈ F \ {0}, |qi| = 1 (for
i = 1, 2, · · · , n) with q0 = 1, c0 = 0. Consider the operators Ω,Φ1,Φ2,Φ3 as follows:

Ω =
∑
ξ∈Ξ

αξ

n∏
i=0

(
f(qiz + ci)

)ξi
, (1.1)

Φ1 =
∑
κ∈K

βκ

n∏
i=0

(
f (i)(z)

)κi
, (1.2)

Φ2 =
∑
λ∈Λ

βλ

n∏
i=0

(
f(qiz + ci)

)λi
, (1.3)

Φ3 =
∑
η∈H

βη

n∏
i=0

(
f (i)(qiz + ci)

)ηi
, (1.4)

where αξ, βκ, βλ, βη are non-constant meromorphic functions on F and Ξ,K,Λ, H are index
sets of non-negative integers with finite cardinality and ξ = (ξ0, ξ1, ξ2, · · · , ξn) similar for
κ, λ, η. Define

deg(Ω) = max
ξ∈Ξ

{ n∑
i=0

ξi

}
, γ(Ω) = max

ξ∈Ξ

{ n∑
i=1

iξi

}
, Γ(Ω) = max

ξ∈Ξ

{ n∑
i=0

(i+ 1)ξi

}
.

Similarly we can define deg(Φi), γ(Φi) and Γ(Φi) for i = 1, 2, 3. For the sake of convenience
we call Ω (or Φ2), Φ1,Φ3 as q-shift, differential and delay differential operator respectively.

The non-Archimedian analogue of Clunie-type result for non-linear differential equation
was first investigated by Yang-Hu [16] in the following manner.

Theorem B. [16] Consider Φ1 as defined in (1.2). Let f(z) ∈M (F) be a solution of

Φ1 = R(f) =
A(f)

B(f)
=

n1∑
s=0

as(z)f
s(z)

n2∑
t=0

bt(z)f
t(z)

,

where A(f), B(f) are relatively prime polynomials of f(z) with all coefficients are in M (F).
If n2 ≥ n1 then

(i) m(r,Φ1) ≤
∑
κ∈K

m(r, βκ) +

n1∑
s=0

m(r, as) +O

(
m
(
r,

1

bn2

)
+

n2∑
t=0

m(r, bt)

)
,

(ii) N(r,Φ1) ≤
∑
κ∈K

N(r, βκ) +

n1∑
s=0

N(r, as) +O

(
n2∑
t=0

N
(
r,

1

bt

))
.

Recently Hu-Luan [8] studied on the solution of non-linear difference equation as follows.
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Theorem C. [8] Let f(z) ∈M (F) be a admissible non-constant meromorphic solution of
the equation

Ω =
A(f)

B(f)
,

where Ω defined in (1.1) and A(f) =

n1∑
s=0

as(z)f
s(z), B(f) =

n2∑
t=0

bt(z)f
t(z) with as(z), bt(z)

are meromorphic function on F. Then n2 = 0 and n1 ≤ deg(Ω).

We see that Theorem B is on Clunie-type results for non-linear differential equation and
Theorem C is on solution of non-linear q-shift equation. In this paper, first we investigate
Clunie-type result for q-shift delay differential equation. In this perspective, we have the
following result.

Theorem 1.1. Consider the non-linear q-shift delay differential equation

Ω =
A(f)

B(f)

(
Φ1 + Φ2 + Φ3

)
, (1.5)

where A(f), B(f) are same as in Theorem C and Ω,Φ1,Φ2,Φ3 are defined as in (1.1)-(1.4).
Let Γ = max

{
Γ(Φ1),Γ(Φ2),Γ(Φ3)

}
. If n2 ≥ n1 + Γ then

(i) m(r,Ω) ≤
∑
ξ∈Ξ

m(r, αξ) +
∑

τ∈KtΛtH
m(r, βτ ) +

n1∑
s=0

m(r, as) + l1m
(
r,

1

bn2

)

+l1

n2−1∑
t=0

m(r, bt) +O(1),

where l1 = max{1, deg(Ω)};

(ii) N(r,Ω) ≤
∑
ξ∈Ξ

N(r, αξ) +
∑

τ∈KtΛtH
N(r, βτ ) +

n1∑
s=0

N(r, as) + l2

n2∑
t=0

N
(
r,

1

bt

)
,

where l2 = max
{

1, deg(Ω)
n2

}
.

Corollary 1.1. If all the conditions of Theorem 1.1 are satisfied, then

T (r,Ω) ≤
∑
ξ∈Ξ

T (r, αξ) +
∑

τ∈KtΛtH
T (r, βτ ) +

n1∑
s=0

T (r, as) +O
( n2∑
t=0

T (r, bt)
)

+O(1).

Definition 1.2. Let f(z) ∈ M (F) be a non-constant solution of the equation (1.5) then
f(z) is said to be admissible solution of (1.5) if f(z) satisfies the following condition∑

ξ∈Ξ

T (r, αξ) +
∑

τ∈KtΛtH
T (r, βτ ) +

n1∑
s=0

T (r, as) +

n2∑
t=0

T (r, bt) = S(r, f).

Notice that if all the coefficient functions of Ω,Φi, A(f), B(f) (for i = 1, 2, 3) are small
functions with respect to f(z) then f(z) must be admissible solution of the equation (1.5).
Inspired by Theorem C, our next result is related to the admissible solution of the equation
(1.5).
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Theorem 1.2. Let f(z) be a non-constant admissible meromorphic solution of (1.5). If
(Φ1 + Φ2 + Φ3) is non-constant with n2 ≥ n1 + Γ, then

n2 ≤ min
{ 3∑
i=1

deg(Φi) + (1−Θ(∞; f))

3∑
i=1

γ(Φi),

3∑
i=1

Γ(Φi)
}

and if (Φ1 + Φ2 + Φ3) is constant, then

n2 = 0, n1 ≤ deg(Ω).

In the next section we discuss on some lemmas which will be useful for proving our
main results.

2. Lemmas

Lemma 2.1. [1] Let f(z) be a non-constant meromorphic function on F and q, c ∈ F,
|q| = 1, c 6= 0. Then

(i) m
(
r, f(qz+c)

f(z)

)
= O(1);

(ii) N
(
r, 0; f(qz + c)

)
= N(r, 0; f(z)) +O(1);

(iii) N
(
r, f(qz + c)

)
= N(r, f(z)) +O(1);

(iv) T
(
r, f(qz + c)

)
= T (r, f(z)) +O(1).

Lemma 2.2. Let f(z) be a non-constant meromorphic function on F and q, c ∈ F, |q| = 1,
c 6= 0. Then

m
(
r,
f (j)(qz + c)

f(z)

)
= O(1).

Proof. Using the lemma of logarithmic derivative and Lemma 2.1 we get

m
(
r,
f (j)(qz + c)

f(z)

)
≤ m

(
r,
f (j)(qz + c)

f(qz + c)

)
+m

(
r,
f(qz + c)

f(z)

)
= O(1).

�

The next lemma is the non-Archimedian analogue of Mokhon’ko [14] lemma which was
proved by Yang-Hu [16].

Lemma 2.3. [16] Let R(f) = A(f)
B(f) , where A(f) =

n1∑
s=0

as(z)f
s(z), B(f) =

n2∑
t=0

bt(z)f
t(z)

with as(z), bt(z) are any meromorphic function on F. Then

T (r,R) = max{n1, n2}T (r, f) +O

(
n1∑
s=0

T (r, as) +

n2∑
t=0

T (r, bt)

)
.

Lemma 2.4. Consider the operator Φ3 as defined in (1.4). Then

T (r,Φ3) ≤
∑
η∈H

T
(
r, βη

)
+ deg(Φ3)T (r, f) + γ(Φ3)N(r, f) +O(1).
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Proof. Using Lemma 2.2 we get

m(r,Φ3) ≤ max
η∈H

m
(
r, βη

n∏
i=0

(
f (i)(qiz + ci)

)ηi)
(2.1)

≤ max
η∈H

m(r, βη) + max
η∈H

[
m
(
r, f

∑n
i=0 ηi

)
+

n∑
i=0

ηi m

(
r,
f (i)(qiz + ci)

f(z)

)]

≤
∑
η∈H

m(r, βη) +m(r, f) max
η∈H

( n∑
i=0

ηi

)
+O(1)

≤
∑
η∈H

m(r, βη) + deg(Φ3)m(r, f) +O(1).

Now with the help of Lemma 2.1 we deduce

N(r,Φ3) ≤
∑
η∈H

N(r, βη) + max
η∈H

[ n∑
i=0

ηiN
(
r, f (i)

)]
(2.2)

≤
∑
η∈H

N(r, βη) + max
η∈H

[ n∑
i=0

ηi
(
N(r, f) + iN(r, f)

)]
≤

∑
η∈H

N(r, βη) + deg(Φ3)N(r, f) + γ(Φ3)N(r, f) +O(1).

Combining (2.1) and (2.2) we get

T (r,Φ3) ≤
∑
η∈H

T
(
r, βη

)
+ deg(Φ3)T (r, f) + γ(Φ3)N(r, f) +O(1).

�

Remark 2.1. From Lemma 2.4 it is easy to verify that

T (r,Φ3) ≤
∑
η∈H

T
(
r, βη

)
+
[
deg(Φ3) + (1−Θ(∞; f))γ(Φ3)

]
T (r, f) +O(1).

Similar inequalities also hold for Φ1 and Φ2.

Remark 2.2. We know that deg(Φi) ≤ Γ(Φi), for i = 1, 2, 3. So (2.1) can be written as

m(r,Φ3) ≤
∑
η∈H

m(r, βη) + Γ(Φ3)m(r, f) +O(1). (2.3)

We can also write (2.2) as

N(r,Φ3) ≤
∑
η∈H

N(r, βη) + max
η∈H

[ n∑
i=0

ηi
(
N(r, f) + iN(r, f)

)]
(2.4)

≤
∑
η∈H

N(r, βη) + max
η∈H

[ n∑
i=0

(
i+ 1

)
ηi

]
·N(r, f)

≤
∑
η∈H

N(r, βη) + Γ(Φ3)N(r, f).

Combining (2.3) and (2.4) we obtain

T (r,Φ3) ≤
∑
η∈H

T (r, βη) + Γ(Φ3)T (r, f) +O(1). (2.5)
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It is easy to see that similar inequalities like (2.5) also holds for Φ1 and Φ2.

3. Proofs of the theorem.

Proof of Theorem 1.1. Take z ∈ F such that none of f(z), αξ(z), βκ(z), βλ(z), βη(z), as(z),
bt(z) are equals to 0 or ∞ for all ξ ∈ Ξ, κ ∈ K,λ ∈ Λ, η ∈ H, 0 ≤ s ≤ n1, 0 ≤ t ≤ n2. Now
consider

B(z) = max
0≤t≤n2−1

{
1,

(
|bt(z)|
|bn2(z)|

) 1
n2−t

}
.

First we consider |f(z)| > B(z). Then

|bt(z)||f(z)|t ≤ |bn2(z)|Bn2−t(z)|f(z)|t < |bn2(z)||f(z)|n2 .

Thus

|B(f)| = max
0≤t≤n2

|bt(z)||f(z)|t = |bn2(z)||f(z)|n2 . (3.1)

Note that |f(z)| > B(z) ≥ 1, thus using (3.1) we get

|Ω| ≤ |A(f)|
|B(f)|

max{|Φ1|, |Φ2|, |Φ3|} (3.2)

≤
max

0≤s≤n1

|as|

|bn2 |
1

|f |(n2−n1)
max{|Φ1|, |Φ2|, |Φ3|}.

Now

|Φ1| ≤ max
κ∈K

(
|βκ|

n∏
i=0

∣∣∣f (i)(z)
∣∣∣κi)

≤ |f |deg(Φ1) max
κ∈K

(
|βκ|

n∏
i=0

∣∣∣f (i)(z)

f(z)

∣∣∣κi),
similar inequalities can be deduce for |Φ2| and |Φ3|. Let us assume δ = max{deg(Φi) : i =
1, 2, 3}. So from (3.2) we obtain

|Ω| ≤ max
0≤s≤n1

|as|
|bn2 |

· 1

|f |(n2−n1−δ)
·max

[
max
κ∈K
|βκ|

n∏
i=0

∣∣∣f (i)(z)

f(z)

∣∣∣κi , (3.3)

max
λ∈Λ
|βλ|

n∏
i=0

∣∣∣∣∣f(qiz + ci)

f(z)

∣∣∣∣∣
λi

,max
η∈H
|βη|

n∏
i=0

∣∣∣∣∣f (i)(qiz + ci)

f(z)

∣∣∣∣∣
ηi]

.

Recall that |f(z)| > B(z) ≥ 1 and the given condition n2 ≥ n1 + Γ ≥ n1 + δ. From (3.3)

|Ω| ≤ max
0≤s≤n1

|as|
|bn2 |

·max

[
max
κ∈K
|βκ|

n∏
i=0

∣∣∣f (i)(z)

f(z)

∣∣∣κi , (3.4)

max
λ∈Λ
|βλ|

n∏
i=0

∣∣∣∣∣f(qiz + ci)

f(z)

∣∣∣∣∣
λi

,max
η∈H
|βη|

n∏
i=0

∣∣∣∣∣f (i)(qiz + ci)

f(z)

∣∣∣∣∣
ηi]

.
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Let us denote

A1 = max
0≤s≤n1

µ
(
r,
as
bn2

)
·max

[
max
κ∈K

µ(r, βκ)
n∏
i=0

(
µ
(
r,
f (i)(z)

f(z)

))κi
,

max
λ∈Λ

µ(r, βλ)
n∏
i=0

(
µ
(
r,
f(qiz + ci)

f(z)

))λi
,max
η∈H

µ(r, βη)
n∏
i=0

(
µ
(
r,
f (i)(qiz + ci)

f(z)

))ηi]
.

Next let us consider |f(z)| ≤ B(z), then from (1.1) we get

|Ω| ≤ Bdeg(Ω)(z) max
ξ∈Ξ
|αξ|

n∏
i=0

∣∣∣∣∣f(qiz + ci)

f(z)

∣∣∣∣∣
ξi

≤ max
0≤t≤n2−1

{
1,

∣∣∣∣ btbn2

∣∣∣∣
deg(Ω)
n2−t

}
max
ξ∈Ξ
|αξ|

n∏
i=0

∣∣∣∣∣f(qiz + ci)

f(z)

∣∣∣∣∣
ξi

. (3.5)

Denote

A2 = max
0≤t≤n2−1

{
1,
(
µ
(
r,
bt
bn2

)) deg(Ω)
n2−t

}
max
ξ∈Ξ

µ(r, αξ)
n∏
i=0

(
µ
(
r,
f(qiz + ci)

f(z)

))ξi
.

Hence combining (3.4) and (3.5) we get µ(r,Ω) ≤ max{A1, A2}. Now with the help of
Lemma 2.1,2.2 and lemma of logarithmic derivative we get

m(r,Ω) ≤ max
0≤s≤n1

τ∈KtΛtH
0≤t≤n2−1

ξ∈Ξ

[
m(r, as) +m

(
r,

1

bn2

)
+m

(
r, βτ

)
,

deg(Ω)m(r, bt) + deg(Ω)m
(
r,

1

bn2

)
+m(r, αξ)

]
+O(1)

≤
∑
ξ∈Ξ

m(r, αξ) +
∑

τ∈KtΛtH
m(r, βτ ) +

n1∑
s=0

m(r, as) + l1m
(
r,

1

bn2

)

+l1

n2−1∑
t=0

m(r, bt) +O(1),

where l1 = max{1, deg(Ω)}. Therefore (i) of Theorem 1.1 follows.
Next we will prove (ii). Take a point z0 ∈ F such that z0 is a pole of f(z). We know

that

µ∞A(f)(z0) ≤ n1µ
∞
f (z0) +

n1∑
s=0

µ∞as(z0), (3.6)

µ∞B(f)(z0) ≥ n2µ
∞
f (z0)−

n2∑
t=0

µ0
bt(z0). (3.7)

Now we have the following two cases:
Case 1: Let us assume µ∞B(f) > 0. It can be easily establish the following three

inequalities

µ∞Φ1
(z0) ≤ Γ(Φ1)µ∞f (z0) +

∑
κ∈K

µ∞βκ(z0),
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µ∞Φ2
(z0) ≤ deg(Φ2)µ∞f (z0) +

∑
λ∈Λ

µ∞βλ(z0) ≤ Γ(Φ2)µ∞f (z0) +
∑
λ∈Λ

µ∞βλ(z0),

µ∞Φ3
(z0) ≤ Γ(Φ3)µ∞f (z0) +

∑
η∈H

µ∞βη(z0).

Let us assume Γ = max{Γ(Φ1),Γ(Φ2),Γ(Φ3)}. Thus

max
{
µ∞Φ1

(z0), µ∞Φ2
(z0), µ∞Φ3

(z0)
}

≤ Γ · µ∞f (z0) +
∑
κ∈K

µ∞βκ(z0) +
∑
λ∈Λ

µ∞βλ(z0) +
∑
η∈H

µ∞βη(z0)

= Γ · µ∞f (z0) +
∑

τ∈KtΛtH
µ∞βτ (z0).

Using (3.6), (3.7) and the given condition n2 ≥ n1 + Γ we get

µ∞Ω (z0) ≤ µ∞A(f)(z0)− µ∞B(f)(z0) + max
{
µ∞Φ1

(z0), µ∞Φ2
(z0), µ∞Φ3

(z0)
}

(3.8)

≤ (n1 + Γ− n2)µ∞f (z0) +
∑

τ∈KtΛtH
µ∞βτ (z0) +

n1∑
s=0

µ∞as(z0) +

n2∑
t=0

µ0
bt(z0)

≤
∑

τ∈KtΛtH
µ∞βτ (z0) +

n1∑
s=0

µ∞as(z0) +

n2∑
t=0

µ0
bt(z0).

Case 2: Let us assume µ∞B(f) ≤ 0. So from (3.7) we get

n2µ
∞
f (z0)−

n2∑
t=0

µ0
bt(z0) ≤ 0

=⇒ µ∞f (z0) ≤ 1

n2

n2∑
t=0

µ0
bt(z0). (3.9)

In the view of (3.9) from (1.1) we deduce

µ∞Ω (z0) ≤ deg(Ω)µ∞f (z0) +
∑
ξ∈Ξ

µ∞αξ(z0) (3.10)

≤ deg(Ω)

n2

n2∑
t=0

µ0
bt(z0) +

∑
ξ∈Ξ

µ∞αξ(z0).

From Case 1 and Case 2, combining (3.8) and (3.10) we obtain

µ∞Ω (z0) ≤
∑

τ∈KtΛtH
µ∞βτ (z0) +

n1∑
s=0

µ∞as(z0) + max
{

1,
deg(Ω)

n2

} n2∑
t=0

µ0
bt(z0) +

∑
ξ∈Ξ

µ∞αξ(z0).

Thus

N(r,Ω) ≤
∑
ξ∈Ξ

N(r, αξ) +
∑

τ∈KtΛtH
N(r, βτ ) +

n1∑
s=0

N(r, as) + l2

n2∑
t=0

N
(
r,

1

bt

)
,

where l2 = max
{

1, deg(Ω)
n2

}
. This completes the proof of (ii) in Theorem 1.1. �



S. MAITY, A. BANERJEE: ON THE SOLUTIONS OF CERTAIN Q-SHIFT DELAY... 611

Proof of Theorem 1.2. Let us assume f(z) be non-constant admissible meromorphic solu-
tion of (1.5). Now we have following two cases:
Case 1: Let (Φ1 + Φ2 + Φ3) is non-constant. So from Corollary 1.1 and Definition 1.1 we
get

T (r,Ω) = S(r, f). (3.11)

Notice that (1.5) can be written as

Ω∑3
i=1 Φi

=
A(f)

B(f)
.

From the given condition it is obvious that n2 > n1. Using Lemma 2.3 and the fact f(z)
is admissible solution then we deduce

T

(
r,

Ω∑3
i=1 Φi

)
= T

(
r,
A(f)

B(f)

)
(3.12)

= n2T (r, f) +O

(
n1∑
s=0

T (r, as) +

n2∑
t=0

T (r, bt)

)
= n2T (r, f) + S(r, f).

With the help of (3.11) we obtain

T

(
r,

Ω∑3
i=1 Φi

)
≤ T (r,Ω) + T

(
r,

3∑
i=1

Φi

)
+O(1) (3.13)

≤
3∑
i=1

T (r,Φi) + S(r, f).

As f(z) is admissible so from Remark 2.1, 2.2 we get the following two inequalities

3∑
i=1

T (r,Φi) ≤
[ 3∑
i=1

deg(Φi) + (1−Θ(∞; f))

3∑
i=1

γ(Φi)
]
T (r, f) (3.14)

+
∑

τ∈KtΛtH
T (r, βτ ) + S(r, f)

=
[ 3∑
i=1

deg(Φi) + (1−Θ(∞; f))

3∑
i=1

γ(Φi)
]
T (r, f) + S(r, f),

3∑
i=1

T (r,Φi) ≤
( 3∑
i=1

Γ(Φi)
)
T (r, f) +

∑
τ∈KtΛtH

T (r, βτ ) + S(r, f) (3.15)

=
( 3∑
i=1

Γ(Φi)
)
T (r, f) + S(r, f).
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Thus from (3.13), (3.14), (3.15) we deduce

T

(
r,

Ω∑3
i=1 Φi

)

≤ min
{ 3∑
i=1

deg(Φi) + (1−Θ(∞; f))
3∑
i=1

γ(Φi),
3∑
i=1

Γ(Φi)
}
· T (r, f) (3.16)

+S(r, f).

Therefore from (3.12) and (3.16) we get

n2 ≤ min
{ 3∑
i=1

deg(Φi) + (1−Θ(∞; f))

3∑
i=1

γ(Φi),

3∑
i=1

Γ(Φi)
}
.

Case 2: Let (Φ1 + Φ2 + Φ3) is constant. Then proceeding as similar method used in the
proof of Theorem 1.3 in [8], we can get n2 = 0, n1 ≤ deg(Ω). Therefore this completes the
proof of Theorem 1.2. �

4. Conclusion

Solutions of delay differential equations have lots of applications in various areas of
mathematics as well as in physics. In this article, we consider a class of non-linear q-shift
delay-differential equations and investigate the existence of admissible solutions.
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