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APPLICATIONS OF THE OPERATOR ,®, IN ¢-POLYNOMIALS

H. L. SAAD*, H. J. HASSAN!, §

ABSTRACT. We establish ,®, as a general operator for many g-operators. A new poly-
nomials hyn (a1, - ,ar;b1, - ,bs;x,y;q) are described as an extension of the bivariate
Rogers-Szegd polynomial h,(z,y|q) and the generalized Al-Salam—Carlitz g-polynomials
¢£;"b> (z,y|q). With the use of the operator ,®s, we provide an operator proof of the
generating function and its extension, Mehler’s formula and its extension and Rogers
formula and its extension to the polynomials hn(ai,- - ,ar;b1,- -+ ,bs;x,y;q). The gen-
erating function and its extension, Mehler’s formula and its extension and Rogers formula
and its extension for h,(z,y|q) and o (z,y|q) are deduced by giving special values to
parameters of a new polynomial hy (a1, - ,ar;b1, -, bs;x,y|q).

Keywords: the g-operators, the bivariate Rogers-Szego polynomials, the generalized Al-
Salam—Carlitz g-polynomials, generating function, Mehler’s formula, Rogers formula.

AMS Subject Classification: 05A30, 33D45.

1. INTRODUCTION

In this paper, the notations that was used in [9] is followed, and we assume that |¢| < 1.
We’re going to mention to a few notations for the g-series that we depend on during this

paper.

Let a € C. The g¢-shifted factorial is given as follows [9]:

m— o0
(@:q)o=1, (a;q)m H 1-ad®), (a;iq)eo = [J(1 - ad"),
k=0

and for the multiple ¢-shifted factorials by:

(a1,a2,...,ar;Q)m = (a1;0)m(a2; @)m - - - (@r; @)m,

where m € Z or oo.
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The basic hypergeometric series ,¢; is defined as [9]:

s ( C;;ZZZ: ;q,x) _ Z ((ab...,CLTSQ)m [(71)mq(rg)}l+sfrl‘m‘

m=0 q, bla . '>bs;Q)m

The g-binomial coefficient is presented as follows [9]:

n M, if0 <k <n
el = @Dk (@ @nr
0, otherwise,

where n, k € N. The Cauchy identity is given by:

= (a§Q)m m (axﬂnoo "
2 (G Dm @) o < 1. M)

m=0
Euler has given special case of Cauchy identity (1) as [9]:
o m 1
> as = el < (2)

=G Dm (759)00
Definition 1.1. [3, 4, 12]. The D, operator or the g-derivative is:

D, {f(a)} = fla) = fag)
Theorem 1.1. [3, 12]. For m > 0, we have
Dy {f(a)g(a)} =3 m "= DE (@)} D+ { glad®) } (3)
k=0

The following theorem is easy to demonstrate:

Theorem 1.2. [3]. We have

kg ny (q; Q)n an—k
D e} = (¢ @)n—k ' )

5 1 P .
Da {(at; Q)oo}  (at Q) jaf] < 1. (5)

Hahn polynomials which were first studied by Hahn [10] and then by Al-Salam and
Carlitz [1] are defined as follows:

¢ (x) =" [Z} (a; q)r .

n

k=0
Theorem 1.3. [1].
The generating function for qSSI) (x) is:
> (a) w™ _ (azw; q)oo ]
S = s el ol <1 (©

Mehler’s formula for ¢>§f‘) (z) is:

n

S oo ) o = (W D g (0D ) ()
n=0

(¢;9)n (v, 2w, yw;q) oo azw, byw

where max {|w|, |zw|, |yw|, |ryw|} < 1.
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The Cauchy polynomials are defined by [8] as

Pn(x’y):{ gﬂf—y)(ﬂc—qy)(ﬂ«“—q@)”'(w—qn_ly)y ﬁzig (8)

The bivariate Rogers-Szego polynomials h,(z,y|q) were introduced in 2003 by Chen et
al [2] as:

hn(,ylq) Zzn:HPkwy

k=0

where Py (z,y) is defined as in (8).
Theorem 1.4.
The generating function for the polynomials hy(x,y|q) [2]:

> ha(z, ylg) (qi)n _ (E?/;q;;; max {[t], ||} < 1. ()

Mehler’s formula for hy(z,y|q) is [6]:

tn t, xvt; q)oo , t,
thy\q s vle) o = ) 3¢2(“”/“;q,ut), (10)

Ga)n (62t zul; g)s yt, zvt

where max {|t|, |xt], |ut|, |zut|} < 1.

The Rogers formula for hy(z,y|q) is [6]:

Zzhn—kmxy’q ( ) 8

n=0m=0 (Qa Q)m B (S,LUS,CIZ't; q)oo

m

(si@oo o ( v, s ;q,t) .

ys
where max {[t|, s, |zt|, |xs|} < 1.

Saad and Sukhi [14], provided a new formula for the bivariate Rogers-Szegé polynomials
hn(z,y|q) in 2010, as follows:

(2, ylq) = i [Z] (y: q)p 2.

k=0
Notice that
W/ (@) = hn(z,ylq). (12)
oW (1/z) = 27" hn (2, ylq). (13)

By using equations (12) and (13), we can find polynomials identities for h,(z,y|q) from
the polynomials identities for ¢§f) (x). For example setting a =y, x — 1/x and w — zt in
the generating function for ¢${1) () (6), we get the generating function for hy,(z,y|q) (9)

and setting a =y, * — 1/x, w — xt, b = v/u, y = u in the Mehler’s formula for qﬁ,(f) (z)
(7), we get Mehler’s formula for h,(z,y|q) (10).

The generalized Al-Salam—Carlitz ¢-polynomials (b%a’b) (x,y) was introduced in 2020 by
Srivastava and Arjika [16] as:

(a,b) _ — [n (a1,a2, .-, 0541; Dk g nk
S (z,ylg) =) [k] bobe by SV
k‘ZO ) ) 7 )
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Theorem 1.5. [16].
The generating function for d)%a’b) (x,y|q) is:

s n 1 a1 - .a
(a,b) — 1, s Us+1 |
nz:;)(bn ({L’,y|Q) (q’ q)n (yt, Q)oo s+1¢8 < bla"' 7bs 14, Z‘t) y (14)

where max{|zt|, |yt|} < 1.
The Rogers formula for qﬁéﬁ%(m,ym) is:

o\“? (2, y|q)
7;) ,;) * (& Dn (6 Om
1 o at, - ,0s+1;q)n n —n’ t N
~ (yw,ytq) Z((q by, - -- Z'q)) (at) 2¢0<q g wg /t), (15)

n=0

where max{|yw|, |yt|} < 1.

Our paper is organized as follows: We define a generalized g-operator .® in section
2, and then acquire some of its identities that will be used in the next sections. In
section 3, we introduce a new polynomial hy(ai,---,a,;b1,-+- ,bs;x,y|q) and find its
generating function and its extension, then deduce the generating function and its ex-
tension for hy,(x,y|q) and ¢£La’b) (x,y|q). In section 4, we derive Mehler’s formula and
its extension for hy(ai, -+ ,a,; b1, ,bs;x,y|q), then we derive the Mehler formula and

its extension for hy,(x,y|q) and (j)%a’b) (x,y|q). The Rogers formula and its extension for
hp(ai, -+ ap;b1,-++ ,bs;x,y|q) are obtained in section 5, then we derive the Rogers for-

mula and its extension for h,(z,y|q) and gZ),(la’b)(x, y|q).
2. THE OPERATOR ,®, AND SOME OF ITS OPERATOR IDENTITIES

In this section, the generalized g-operator , P, < (Zl’ o ’Zr 14, CDq) is introduced, then
1,77, 0s
find some of its operator identities.

Definition 2.1. We define the generalized q-operator @5 as follows:

al, - ,ar e M/n n (n) 1+s—r n
rPs ;q,cDg | = —1 2 cDg)", 16
(bl,...,bs q ) > Gy LB (ep) (16)
(ala"' ’CLMQ)n
where W, = ~——————.
(bla”'ubs;q)n

Some special values can be given to the generalized g-operator ,®s to obtain several
previously defined operators, for details see [3, 7, 11, 16, 13, 15, 17].

We obtain the following operator identities by using the ¢-Leibniz formula (3):
Theorem 2.1. We have

a17.-- ,a/r 1
r S<bl7"'7bs 4, C Q>{(at’aw;q)oo}

_ 1 o (W) S~ Wik [ vtk ("15)
(at,aw;q)oo%(q;qn = (@ Dk [( e

14+s—r

(aw; q)y. (), (17)

where max{|at|, jaw|} < 1.
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J? (ol aw-a)
— N (qV[;n) [(‘Unq(g)} I4s—r "Dy {(atatlu'q)} (by using (16))
n—=0 ‘1 4/n O Do
-S e o]
n—=0 ‘1 4/n
x ,;0 [Z] g¥* =k { (at;lq)oo } Dy* {M} (by using (3))

tk k\n—k

o — Wh n (M1 0 k2on (WQ)
0 S e

= = (G Dk (G Dk s (awq"; q)o

w. 7 1+s—r
- - W Ty (5) A aw: k ok
(at, aw; g)oc kzzonz:; (@ Dn—r(g; O [( D' } (awsq)i ¢
_ 1 o (cw)” oo Witk yntk (n;—k) 1+s—7 v . A
(at, aw; @)oo =5 (¢ D) kzo (¢; ) [( D™ } (aw; g (ct)

Setting w = 0 in equation (17), we get the following corollary:

Corollary 2.1. We have

s < Zi Zz b ch) {(atslq)oo} B (at;lq)oo kzzo (Q‘?;k)k [(_l)kq(g)rﬁ_r (ct)"

where |at| < 1.

Theorem 2.2. We have

k

at,- - ,0qpr x
r(I)s ’ ’ 1 q, D —_
<b1,"',b Y q){(a:w x5 q) oo }

! ZWW [ 1yrtigl"s i)]HH m (zw,xt; q); y* 2™

- (zw, zt; q) oo Z

nO

xZ{ } wtas q); (7:)] (19)
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Proof.

k
al,:--- ar €T
T(I)S ’ ’ ; b D T N
( by, ,bs ¢y q>{(a:w,xt;q)oo}
° n\71+s—r k
W [(_1)%(2)} y D" {fv}

(2w, xt; ¢) oo

5 s [0S R R g
(by using (3))

Sps Wy n"lJrSirnzznz n—i
:ZZ,.,[(D q(2>] y'q' ™D D {qu g D) }

(@5 On—i(q: Q)i

1=0 n=i
(o OlNe o)

_ Z Z L [( 1)n+ q(n+z):| 1+s—r y"ﬂ —mDZ D { }
= (¢ On(g; ) (zwqt, xtq @)oo

~2 X Gty () ey e

. 1 ‘ 1
pil— —  \pny)____ -
8 q{(qul;Q)oo} a {(wtq”f;q)oo}

=33 e [ g e s [

(wg')!  (tg"H)7
(zwq"; q)oc (IW+ 93 q)

1 D
N (xw, xt; Q)oo Z

nO

<> [Mwtat) (@;)J‘.

Jj=0

b

Z Wass [(-1450CE] Y ot ot o

If w = 0 in equation (19), we obtain the following corollary:

Corollary 2.2. We have

k
al aT €T
P ’ " sq,yD
T S( bl7"'7bs ’Q7y q>{($t,q)oo}

k

_ (mt.lq) i v ZWnH [ n+z (nﬂ)} 1+s—r [l;] (t: q); yixk_i, (20)
11700 n=0

where |at] < 1.

3. THE GENERATING FUNCTION FOR hp(ai,: - ,a,; b1, ,bs;x,9|q)

In this section a polynomials hy(ai,---,ar;b1,--+ ,bs;x,y|q) are defined. The gen-
erating function and its extension for the polynomials hy (a1, ,ar; b1, ,bs;x,y|q) is
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aly...,a : 1
bl, ) br ‘g, c Dq> . We provide some special values
1y s Us

for the parameters in the generating function as well as its extension for the polynomials
hp(ai, -+ ar;b1,-++ ,bs;x,y|q) to obtain the generating function and its extension for

ha(z,ylq) and ¢\ (. ).

Definition 3.1. The polynomials hy(a1,- - ,a,;b1,- -+ ,bs;x,y|q) are defined as follows:

obtained by using the operator , ® <

n n k] 1+s—r _
hn(ab'" 7ar;b17"' 7b8;x7y‘q) :Z |:k):| Wk |:(_1>kq(2):| x" kyk7 (21>
k=0
(a1, an @k
where Wk = m

Setting r = 1, s = 0, y = 1 and then a; = y we get the new form for the bivariate
Rogers-Szegd polynomials hy,(x,y|q) given by Saad and Sukhi [15]. Setting r = s+ 1 and

exchanging = and y, we get the generalized Al-Salam-Carlitz g-polynomials qﬁ%ab) (z,y|q)
defined by Srivastava and Arjika [16].

By using (4), it is easy to prove that
a ’. .. ’a/
T(I)S ( bi bT' 7q7qu> {xn}: h?’b(a’la 7CLT‘;b17”' 7b87$7y|q) (22)
) S

The following theorem can be easily demonstrated by using (22) and (18):
Theorem 3.1. (The generating function for hy,(aq, - ,ar;b1,- -+ ,bs;z,y|q)). We have

ih(a e i eyl = g (O (23)
part n\01, s Uy U1, y 085, Y|4 (q7Q)n (xt7Q)oo r¥s bly"'abs 34,y )

where |zt] < 1.

e Setting r = 1, s = 0, y = 1 and then a1 = y in equation (23), we recover the
generating function for the bivariate Rogers-Szegd polynomial hy,(x,y|q) (9).
e Setting r = s+1 and exchanging x and y in equation (23), we recover the generating

function for the generalized Al-Salam-Carlitz ¢-polynomials gb%a’b) (x,ylq) (14).
Using (22) and (20), it is easy to prove the following theorem:

Theorem 3.2. (Extension for generating function for hy(ai,---,ar;b1,--- ,bs;2z,y|q)).
We have
o0 n
hnyr(ar, - ar;by, -, bs; 2, ylg
nz:% ikl ' ST,
k e n K ) _
€T (yt) . nti11+s—r [k .
- Wi [ (~1)"+g("3)] trq) (y/z), ot < 1. (24
(It; Q)oo 7;) (q; Q)n ; n+t ( ) qr 2 i (x Q)z (y/x) ’(IZ ’ ( )

e Setting r =1, s =0, y =1 and then a; = y in equation (24), we obtain an exten-
sion to generating function for the bivariate Rogers-Szegd polynomials h,(x,y|q)
as follows:

> hoir(z,ylq)
n=0

(i) 3 m (.ot g

tn
(G On (¢ 2t;q)os i (yt;q)s

where max{|z|, |zt|} < 1.

1=0
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e Setting » = s + 1 and exchanging = and y in equation (24), we obtain an exten-
sion to the generating function for the generalized Al-Salam-Carlitz ¢g-polynomials

¢£La’b) (z,y) as follows:
0o (ab) m
: : x’

1 & (a1 , Qs 415 q) k
U s+ 4+ i, k—i
E E t;q)i ) < 1.
) (b1, - ‘ |:Z»:|(y7Q)2xy ;o lytl <

- (Whd) P bs; @)i+;

4. MEHLER’S FORMULA FOR hy(ay, - ,ar;b1,- -+ ,bs; 2, y|q)

In this section, we plan to present an operator approach to Mehler’s formula and its ex-
tension for the generalized polynomials hy,(ay,--- ,ar;b1,- -, bs;x,y|q). By giving special
values for variables in the Mehler’s formula and its extension for
hp(at, -+ ap;b1,-++ ,bs;x,y|q), the Miller’s formula and its extension for the bivariate
Rogers-Szegd polynomials h,(x,y|q) and the generalized Al-Salam-Carlitz ¢-polynomials

gi),(la’b) (x,y|q) are obtained.
Theorem 4.1. (Mehler’s formula for hy, (a1, ,a,;b1,- - ,bs;x,ylq)). We have

[e') N n
hn a17'”7a7";b17'”7b5;x7thn dla'”ad’l‘;blv” bsvch
Z ( 19)hn | )(QaQ)n
S " e
- Wm [_1 mq(z)}
(w2t q)oc Z o LY kzzo(q;q)k

% ZW’H‘Z [ k+z ) ]lJrSir [7?] (xzt; q); (y/x)z, |zzt| < 1. (25)

Proof.
oS . . m
Zhn(ala'” 7aT’;b17”' )bsax7y|Q)hn(&17 7&1”;()17”' 7bS;Z,C|q)

(4 9)n
S (D) @ b, b b )
=3 o (G D) (a  hlan by bzl

(by using (22))
(o 0D, ) | S bl i iz 20
bi, -+ ,bs D q ] ) y Uy UL, ) (q7 q>n
_ A1, 5 0p 1 C}l?""(:l?“. .
- ’V‘(DS < b17 ’bS 7q7qu> {( . 7‘¢S < bl, ,bs 7Q7x6t>} (by uS]'ng (23))

- S [T (5 wom) ()

3 Wi [0 a3 T st/ (by using (20)
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Now, we retrieve the Mehler’s formula for h,(z,y|q) (10) by using special values for
variables in the Mehler’s formula for hy (a1, - ,ar;b1,- -+, bs; 2, y|q).

Proof. Withr=1,s=0,y=1, 2z =u, c=1, @G = v and then a; = y in equation (25),
we get
tn

T;) ha (2, y|q) hn (u, v]q) @
U;Q)m (xt)m Z
=0

2 ¢ Dm

m=0 i

(y, zutiq)i (1, N (V3 @i o) usin
(¢, yut; q); ) > (at) (by using (1))

—~

—~

1
(zut; @)oo

(yut; q)oo
(zut, ut; q)so

g I[M)¢

(yut; @)oo (y, zut,v;9)i i ~~ (V€5 Dm  om
D Sty T (at)
(zut, ut; @)oo = (q,yut; q);

_ (yut,zvt; @)oo y, xut,v ‘
 (aut, ut, ot; @)oo 302 xut, yut 7q;t ). (by using (1))

m=0

Replacing a, b, ¢, d, e by y, zut, v, zvt, yut, respectively, in transformations of 3¢9 series
[9, Appendix III, equation (II1.9)], we get the desired result. O

For r = s+ 1 and exchanging = and y, z and ¢ in equation (25), we get Mehler’s formula
for the generalized Al-Salam-Carlitz ¢-polynomials ¢£La’b) (z,y|q) as follows:

Corollary 4.1. (Mehler’s formula for qﬁ%ab) (z,ylq)). We have

n

ab 33 (a,b) z,c
r;)¢ ,ylq) L0 ( IQ)(q o

].)"' S-i-].a
th q ZZO b17 T bs;Q)m m ;)

m

(a1, -+, Q511 Qryi [m] i

X A (yet;q)i (x/y),  |yct] < 1.
; (bla"' 7bS;Q)k’+i ? ( )Z( / ) | |

m

Theorem 4.2. (Extension of Mehler’s formula for hy (a1, - ,ar;b1,---,bs;z,y|q)). We
have

% . . m
Zhn(ala"' Ja’l’;bla"' 7bs§x,y|Q)hn+k(&17"' 7&7“;[)17"' 7b5;z>c‘Q) 7;

—
Q
~—
3

14+s—r

- i (fL"Ct)j. i m Wi [(_l)wq(w)} (x2t;q); " &

14+s—r i N’
(aetgsan(2), ozt <1 (26)
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Proof.
00 . A m
Zhn(alv'” 7a7';b17"' abs§l‘a?/|Q)hn+k(&17"‘ 7dT‘;bl7“' 7bs;ZaC‘q) A
n=0 (Q7Q)n
= a a "
= P ( blj--' ’br ;q,qu> {2"} hpyr(@1, -+ @i by, - -+, bss 2, ¢lq) —
= Lo bs (¢ Dn
(by using (22))
)

0

Usingr=1,s=0,y=1, z=wu, c =1, G = v and then a1 = y in equation (26), we
get an extension of Mehler’s formula for bivariate Rogers-Szegd polynomials h,,(z,y|q) as
follows:

Corollary 4.2 (Extension of Mehler’s Formula for h,(z,y|q)). We have

o0 1 & (@) [k 0 @l (zut: )
S sl - = (mt;q)m;@;qhg[i}( )il (wuti )
= (“tqi)m (i ) i 1y

where |zut| < 1.

With » = s 4+ 1 and exchanging = and y, z and ¢ in equation (26), we get Mehler’s
formula for the generalized Al-Salam-Carlitz ¢-polynomials d)%a’b) (z,y|q) as follows:
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Corollary 4.3. (Extension of Mehler’s formula for (;5,(13’]0) (x,ylq)). We have

t'ﬂ,

&) (2, yq)o' %Y (2, clq
> el el

1 ° ik (1, Ger1: Q)igi o

(Yet; @)oo =5 (@:0); 5 Li] (br, -+ b @ity
. (zctg®)"” ! []] (at, -+ ,G54159)n ;
+1 i
XD TN (yetq'sq)i,  lyet| < 1.
T;) (¢ @)n ; 1o (b, bs3 @n ’
5. ROGERS FORMULA FOR hy(ay,- - ,ap; b1, ,bs;x,y|q)

In this section, we intend to present an operator approach to Rogers formula and its
extension for the generalized polynomials hy,(ay,--- ,a;;b1,- -, bs; x,y|q). The Rogers for-
mula and its extension for the bivariate Rogers-Szegd polynomials h,(x,y|q) and the gen-
eralized Al-Salam-Carlitz g-polynomials ngLa’b) (z,y|q) are obtained by including special val-
ues for variables in the Rogers formula and its expansion for hy,(aq, -+ ,ap;b1,- -+, bs; T, Y; q).

Theorem 5.1. (Roger’s Formula for hy (a1, ,ar; b1, ,bs;2,9|q)). We have

n

e t w™ 1
h aa'”aa;ba"‘ab;x7 q =
2 D (e mo Sk )(q;q)n (G Q)m (2w, 2t;¢)s0

n=0m=0

— (yw)" &~ Wa n ntky] L4s—r .
* kZ:O (@ Dn nz:() 5 [<_1) +kq( ? )} (yt)k (xw; q)k, (27)

— (¢ 9
where max{|zw|, |zt|} < 1.
Proof.
o0 o0
Z Z hn—f—m(al; e 7a7’;b1; e 7bs;m7y‘Q)

n=0m=0
_ o0 o0 a17,,.’a7, . ntm tTL wm ]

N r®s 4 D) x by using (22

S5 (3008 00) ) i

_ Q1,0 1 .
= ,,,q)s ( bl,"' ’bs 7qa qu> {(.’L‘t, xw§Q)oo} (by USIHg (2)>

= 1 (yw)n S Witk _\n+k (n;k) ts=r k(zw:
(2, 2w; Qoo = (q;q)nnz:;)(q;q)k [( 1™ ] (yt)" (xw; q).-

tTL m

(¢ Dn (G Dm

(by using (17))
([l

Now, we recover the Rogers formula for h,(z,y|q) and ¢£La’b) (x,y|q) by using unique
values for the variables in the Rogers formula for h,(ai,--- ,ar;b1,- -+, bs; x,y|q).

With r =1, s =0, y = 1 and then a; = y and w = s in equation (27), we recover
Rogers formula for h,(z,y|q) (11).
For r = s+ 1, and exchanging x and y in equation (27), we recover Rogers formula for

¢ (2, ylg) (15).



H. L. SAAD, H. J. HASSAN: APPLICATIONS OF THE OPERATOR r®s IN Q-POLYNOMIALS 707

Theorem 5.2. (Extension of Roger’s formula for h, (a1, ,a,; 01, ,bs;x,y|q)). Let
hn(ay, -+ ,ar; b1, - bs;z,y|q) be defined as in (21), then

hnm k’a17'"7a7";b17"'7bs;x7yq
7;)7;0 ekl | )(q;q)n (¢ Dm
1 > Wn+i . i 1+s—r
(zw, 2t; ¢)oo nz_% (¢ @)n Wiy |(=1)

k
k i
X g [z] (zw, zt; q); xk
=0

where max{|zw|, |zt|} < 1.

Proof.

0o 00 mn w
Zzthrerk(ah"' 7a'7“;b17"' 7bs;xay‘Q) R R

n=0m=0

_ a,- -+, 0y . +m+k tm w
_ZZ < ’7bs 7q7qu> {{L’n m } : :

n=0m=0

k
o Ay, ,0p | x .
= r®s < by, ,bs ' qu) {(azw 2t @)oo } (by using (2))

= ZWn+z [ 1ytig"s i)]HH m (zw,xt; q); y' =7

o0
"~ (zw, ot q)oo Z

nO

X Z{ } wtq'; q); (?)J (by using (19))

(by using (22)).

O

Now, we get an extension of the Rogers formula for h,,(z,y|q) and qﬁ%ab) (z,y|q) by using
specific values for variables in the extension of the Rogers formula for
hn(al, e apy by, bsy yIQ)

When r = 1, s = 0, y = 1 and then a; = y and w = s in equation (28), we get
an extension of Roger’s formula for the bivariate Rogers-Szegd polynomials h,(z,y|q) as
follows:

Corollary 5.1 (Extension of Roger’s Formula for h,(x,y|q)). We have

n=0m=0 "
1 x o & i - s\J
- (.TS,Z‘t;Q)ooZ ; nﬂ[] @8, ot @) o ggo{ } (xtq"; 9); <¥) ’

where max{|xs|,|zt|} < 1.

With r = s+ 1 and exchanging x and y in equation (28), we get an extension of Roger’s
formula for generalized Al-Salam-Carlitz ¢-polynomials gf),(la’b) (x,y|q) as follows:
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Corollary 5.2 (Extension of Roger’s Formula for ¢£La’b) (x,ylq)). We have

= (a,) o wm 1 (a1, 4 A543 n , on
¢n m T, Ylq = xt
2 2, Ol @10 (@3 0)n (@ @)m (yw,yt;q)oog_:o @b, b D

n=0m=0
k k . . n n . w\J
x> H (yw, yt; @iz’ " > u (ytq'; q); (;) 7
i=0 §=0

where max{|yw|, |yt|} < 1.

6. CONCLUSIONS

(1) Many operators can be obtained by assigning some special values to the generalized
g-operator ,Ps.
(2) The bivariate Rogers-Szegé polynomials h,(z,y|q) and the the generalized Al-

Salam-Carlitz ¢-polynomials QSna’b)(x,y]q) are special cases of the polynomials

hn(a‘la T, G b17 ) bs; z,Y; q)
(3) The polynomials identities for hy (a1, ,ar; b1, ,bs; x,y;q) are an extension of
the polynomials identities for the bivariate Rogers-Szeg6 polynomial hy,(z, y|q) and

the generalized Al-Salam—Carlitz g-polynomials ¢7(1a’b)(m, ylq).
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