APPLICATIONS OF THE OPERATOR $_r\Phi_s$ IN q-POLYNOMIALS

H. L. SAAD^{1*}, H. J. HASSAN¹, §

ABSTRACT. We establish ${}_{r}\Phi_{s}$ as a general operator for many q-operators. A new polynomials $h_{n}(a_{1}, \dots, a_{r}; b_{1}, \dots, b_{s}; x, y; q)$ are described as an extension of the bivariate Rogers-Szegö polynomial $h_{n}(x, y|q)$ and the generalized Al-Salam-Carlitz q-polynomials $\phi_{n}^{(\mathbf{a},\mathbf{b})}(x,y|q)$. With the use of the operator ${}_{r}\Phi_{s}$, we provide an operator proof of the generating function and its extension, Mehler's formula and its extension and Rogers formula and its extension to the polynomials $h_{n}(a_{1},\dots,a_{r};b_{1},\dots,b_{s};x,y;q)$. The generating function and its extension, Mehler's formula and its extension and Rogers formula and its extension for $h_{n}(x,y|q)$ and $\phi_{n}^{(\mathbf{a},\mathbf{b})}(x,y|q)$ are deduced by giving special values to parameters of a new polynomial $h_{n}(a_{1},\dots,a_{r};b_{1},\dots,b_{s};x,y|q)$.

Keywords: the q-operators, the bivariate Rogers-Szegö polynomials, the generalized Al-Salam-Carlitz q-polynomials, generating function, Mehler's formula, Rogers formula.

AMS Subject Classification: 05A30, 33D45.

1. Introduction

In this paper, the notations that was used in [9] is followed, and we assume that |q| < 1. We're going to mention to a few notations for the q-series that we depend on during this paper.

Let $a \in \mathbb{C}$. The q-shifted factorial is given as follows [9]:

$$(a;q)_0 = 1$$
, $(a;q)_m = \prod_{k=0}^{m-1} (1 - aq^k)$, $(a;q)_\infty = \prod_{k=0}^\infty (1 - aq^k)$,

and for the multiple q-shifted factorials by:

$$(a_1, a_2, \dots, a_r; q)_m = (a_1; q)_m (a_2; q)_m \cdots (a_r; q)_m,$$

where $m \in \mathbb{Z}$ or ∞ .

¹ Basrah University, College of Science, Department of Mathematics, Iraq. e-mail: hus6274@hotmail.com; ORCID: https://orcid.org/0000-0001-8923-4759.

^{*} Corresponding author. e-mail: hjmyl359@gmail.com; ORCID: https://orcid.org/0000-0002-2009-7247.

[§] Manuscript received: December 11, 2020; accepted: March 27, 2021.

TWMS Journal of Applied and Engineering Mathematics, Vol.13, No.2 © Işık University, Department of Mathematics, 2023; all rights reserved.

The basic hypergeometric series $_r\phi_s$ is defined as [9]:

$$_{r}\phi_{s}\left(\begin{array}{c}a_{1},\ldots,a_{r}\\b_{1},\ldots,b_{s}\end{array};q,x\right)=\sum_{m=0}^{\infty}\frac{(a_{1},\ldots,a_{r};q)_{m}}{(q,b_{1},\ldots,b_{s};q)_{m}}\left[(-1)^{m}q^{\binom{m}{2}}\right]^{1+s-r}x^{m}.$$

The q-binomial coefficient is presented as follows [9]:

$$\begin{bmatrix} n \\ k \end{bmatrix} = \begin{cases} \frac{(q;q)_n}{(q;q)_k (q;q)_{n-k}}, & \text{if } 0 \leqslant k \leqslant n; \\ 0, & \text{otherwise,} \end{cases}$$

where $n, k \in \mathbb{N}$. The Cauchy identity is given by:

$$\sum_{m=0}^{\infty} \frac{(a;q)_m}{(q;q)_m} \ x^m = \frac{(ax;q)_{\infty}}{(x;q)_{\infty}}, \quad |x| < 1.$$
 (1)

Euler has given special case of Cauchy identity (1) as [9]:

$$\sum_{m=0}^{\infty} \frac{x^m}{(q;q)_m} = \frac{1}{(x;q)_{\infty}}, \quad |x| < 1.$$
 (2)

Definition 1.1. [3, 4, 12]. The D_q operator or the q-derivative is:

$$D_q \{f(a)\} = \frac{f(a) - f(aq)}{a}$$

Theorem 1.1. [3, 12]. For $m \ge 0$, we have

$$D_q^m \{ f(a)g(a) \} = \sum_{k=0}^m {m \brack k} q^{k(k-m)} D_q^k \{ f(a) \} D_q^{m-k} \{ g(aq^k) \}.$$
 (3)

The following theorem is easy to demonstrate:

Theorem 1.2. [3]. We have

$$D_q^k \{a^n\} = \frac{(q;q)_n}{(q;q)_{n-k}} a^{n-k}.$$
 (4)

$$D_q^k \left\{ \frac{1}{(at;q)_{\infty}} \right\} = \frac{t^k}{(at;q)_{\infty}}, \quad |at| < 1.$$
 (5)

Hahn polynomials which were first studied by Hahn [10] and then by Al-Salam and Carlitz [1] are defined as follows:

$$\phi_n^{(a)}(x) = \sum_{k=0}^n {n \brack k} (a;q)_k x^k.$$

Theorem 1.3. [1].

The generating function for $\phi_n^{(a)}(x)$ is

$$\sum_{n=0}^{\infty} \phi_n^{(a)}(x) \frac{w^n}{(q;q)_n} = \frac{(axw;q)_{\infty}}{(w,xw;q)_{\infty}}, \quad \max\{|w|,|xw|\} < 1.$$
 (6)

Mehler's formula for $\phi_n^{(a)}(x)$ is:

$$\sum_{n=0}^{\infty} \phi_n^{(a)}(x) \phi_n^{(b)}(y) \frac{w^n}{(q;q)_n} = \frac{(axw, byw; q)_{\infty}}{(w, xw, yw; q)_{\infty}} \, _3\phi_2 \left(\begin{array}{c} a, b, w \\ axw, byw \end{array}; q, xyw \right), \tag{7}$$

where $\max\{|w|, |xw|, |yw|, |xyw|\} < 1$.

The Cauchy polynomials are defined by [8] as:

$$P_n(x,y) = \begin{cases} (x-y)(x-qy)(x-q^2y)\cdots(x-q^{n-1}y), & \text{if } n > 0; \\ 1, & \text{if } n = 0. \end{cases}$$
 (8)

The bivariate Rogers-Szegö polynomials $h_n(x, y|q)$ were introduced in 2003 by Chen et al [2] as:

$$h_n(x,y|q) = \sum_{k=0}^{n} {n \choose k} P_k(x,y),$$

where $P_k(x, y)$ is defined as in (8).

Theorem 1.4.

The generating function for the polynomials $h_n(x,y|q)$ [2]:

$$\sum_{n=0}^{\infty} h_n(x, y|q) \frac{t^n}{(q;q)_n} = \frac{(yt;q)_{\infty}}{(t, xt;q)_{\infty}}, \quad \max\{|t|, |xt|\} < 1.$$
 (9)

Mehler's formula for $h_n(x, y|q)$ is [6]:

$$\sum_{n=0}^{\infty} h_n(x,y|q) h_n(u,v|q) \frac{t^n}{(q;q)_n} = \frac{(yt,xvt;q)_{\infty}}{(t,xt,xut;q)_{\infty}} \,_{3}\phi_2 \left(\begin{array}{c} y,xt,v/u \\ yt,xvt \end{array};q,ut \right), \tag{10}$$

where $\max\{|t|, |xt|, |ut|, |xut|\} < 1$.

The Rogers formula for $h_n(x, y|q)$ is [6]:

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} h_{n+m}(x,y|q) \frac{t^n}{(q;q)_n} \frac{s^m}{(q;q)_m} = \frac{(ys;q)_{\infty}}{(s,xs,xt;q)_{\infty}} {}_{2}\phi_1 \begin{pmatrix} y,xs \\ ys \end{pmatrix}; q,t \end{pmatrix}, \tag{11}$$

where $\max\{|t|, |s|, |xt|, |xs|\} < 1$.

Saad and Sukhi [14], provided a new formula for the bivariate Rogers-Szegö polynomials $h_n(x, y|q)$ in 2010, as follows:

$$h_n(x, y|q) = \sum_{k=0}^{n} {n \brack k} (y; q)_k x^{n-k}.$$

Notice that

$$\phi_n^{(y/x)}(x) = h_n(x, y|q). \tag{12}$$

$$\phi_n^{(y)}(1/x) = x^{-n} h_n(x, y|q). \tag{13}$$

By using equations (12) and (13), we can find polynomials identities for $h_n(x, y|q)$ from the polynomials identities for $\phi_n^{(a)}(x)$. For example setting $a = y, x \to 1/x$ and $w \to xt$ in the generating function for $\phi_n^{(a)}(x)$ (6), we get the generating function for $h_n(x, y|q)$ (9) and setting $a = y, x \to 1/x, w \to xt, b = v/u, y = u$ in the Mehler's formula for $\phi_n^{(a)}(x)$ (7), we get Mehler's formula for $h_n(x, y|q)$ (10).

The generalized Al-Salam–Carlitz q-polynomials $\phi_n^{(\mathbf{a},\mathbf{b})}(x,y)$ was introduced in 2020 by Srivastava and Arjika [16] as:

$$\phi_n^{(\mathbf{a},\mathbf{b})}(x,y|q) = \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} \frac{(a_1, a_2, \dots, a_{s+1}; q)_k}{(b_1, b_2, \dots, b_s; q)_k} x^k y^{n-k}.$$

Theorem 1.5. [16].

The generating function for $\phi_n^{(a,b)}(x,y|q)$ is:

$$\sum_{n=0}^{\infty} \phi_n^{(a,b)}(x,y|q) \frac{t^n}{(q;q)_n} = \frac{1}{(yt;q)_{\infty}} \,_{s+1}\phi_s \left(\begin{array}{c} a_1, \cdots, a_{s+1} \\ b_1, \cdots, b_s \end{array}; q, xt \right), \tag{14}$$

where $\max\{|xt|, |yt|\} < 1$.

The Rogers formula for $\phi_{n+m}^{(a,b)}(x,y|q)$ is:

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \phi_{n+m}^{(a,b)}(x,y|q) \frac{t^n}{(q;q)_n} \frac{w^m}{(q;q)_m}
= \frac{1}{(yw,yt;q)_{\infty}} \sum_{n=0}^{\infty} \frac{(a_1,\cdots,a_{s+1};q)_n}{(q,b_1,\cdots,b_s;q)_n} (xt)^n {}_{2}\phi_0 \begin{pmatrix} q^{-n},yt \\ - \end{pmatrix}; q,wq^n/t , \qquad (15)$$

where $\max\{|yw|, |yt|\} < 1$.

Our paper is organized as follows: We define a generalized q-operator ${}_r\Phi_s$ in section 2, and then acquire some of its identities that will be used in the next sections. In section 3, we introduce a new polynomial $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$ and find its generating function and its extension, then deduce the generating function and its extension for $h_n(x, y|q)$ and $\phi_n^{(\mathbf{a}, \mathbf{b})}(x, y|q)$. In section 4, we derive Mehler's formula and its extension for $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$, then we derive the Mehler formula and its extension for $h_n(x, y|q)$ and $\phi_n^{(\mathbf{a}, \mathbf{b})}(x, y|q)$. The Rogers formula and its extension for $h_n(x, y|q)$ are obtained in section 5, then we derive the Rogers formula and its extension for $h_n(x, y|q)$ and $\phi_n^{(\mathbf{a}, \mathbf{b})}(x, y|q)$.

2. The Operator $_r\Phi_s$ and some of its Operator Identities

In this section, the generalized q-operator ${}_r\Phi_s\left(\begin{array}{c} a_1,\cdots,a_r\\ b_1,\cdots,b_s\end{array};q,cD_q\right)$ is introduced, then find some of its operator identities.

Definition 2.1. We define the generalized q-operator $_r\Phi_s$ as follows:

$${}_{r}\Phi_{s}\left(\begin{array}{c}a_{1},\cdots,a_{r}\\b_{1},\cdots,b_{s}\end{array};q,cD_{q}\right)=\sum_{n=0}^{\infty}\frac{W_{n}}{(q;q)_{n}}\left[(-1)^{n}q^{\binom{n}{2}}\right]^{1+s-r}(cD_{q})^{n},$$
(16)

where
$$W_n = \frac{(a_1, \cdots, a_r; q)_n}{(b_1, \dots, b_s; q)_n}$$
.

Some special values can be given to the generalized q-operator $_r\Phi s$ to obtain several previously defined operators, for details see [3, 7, 11, 16, 13, 15, 17].

We obtain the following operator identities by using the q-Leibniz formula (3):

Theorem 2.1. We have

$${}_{r}\Phi_{s}\left(\begin{array}{c} a_{1}, \cdots, a_{r} \\ b_{1}, \cdots, b_{s} \end{array}; q, cD_{q}\right) \left\{\frac{1}{(at, aw; q)_{\infty}}\right\}$$

$$= \frac{1}{(at, aw; q)_{\infty}} \sum_{n=0}^{\infty} \frac{(cw)^{n}}{(q; q)_{n}} \sum_{k=0}^{\infty} \frac{W_{n+k}}{(q; q)_{k}} \left[(-1)^{n+k} q^{\binom{n+k}{2}}\right]^{1+s-r} (aw; q)_{k} (ct)^{k}, \quad (17)^{n+k} q^{\binom{n+k}{2}}$$

where $\max\{|at|, |aw|\} < 1$.

Proof.

$$\begin{split} & _{r}\Phi_{s}\left(\begin{array}{c} a_{1},\cdots,a_{r}\\ b_{1},\cdots,b_{s} \end{array};q,cD_{q}\right)\left\{\frac{1}{(at,aw;q)_{\infty}}\right\}\\ & = \sum_{n=0}^{\infty}\frac{W_{n}}{(q;q)_{n}}\left[(-1)^{n}q^{\binom{n}{2}}\right]^{1+s-r}c^{n}D_{q}^{n}\left\{\frac{1}{(at,aw;q)_{\infty}}\right\} \qquad \text{(by using (16))}\\ & = \sum_{n=0}^{\infty}\frac{W_{n}}{(q;q)_{n}}\left[(-1)^{n}q^{\binom{n}{2}}\right]^{1+s-r}c^{n}\\ & \times\sum_{k=0}^{n}\begin{bmatrix}n\\k\end{bmatrix}q^{k^{2}-nk}D_{q}^{k}\left\{\frac{1}{(at;q)_{\infty}}\right\}D_{q}^{n-k}\left\{\frac{1}{(awq^{k};q)_{\infty}}\right\} \qquad \text{(by using (3))}\\ & = \sum_{k=0}^{\infty}\sum_{n=k}^{\infty}\frac{W_{n}}{(q;q)_{n-k}(q;q)_{k}}\left[(-1)^{n}q^{\binom{n}{2}}\right]^{1+s-r}c^{n}q^{k^{2}-nk}\frac{t^{k}}{(at;q)_{\infty}}\frac{(wq^{k})^{n-k}}{(awq^{k};q)_{\infty}}\\ & = \frac{1}{(at,aw;q)_{\infty}}\sum_{k=0}^{\infty}\sum_{n=k}^{\infty}\frac{W_{n}}{(q;q)_{n-k}(q;q)_{k}}\left[(-1)^{n}q^{\binom{n}{2}}\right]^{1+s-r}c^{n}(aw;q)_{k}t^{k}w^{n-k}\\ & = \frac{1}{(at,aw;q)_{\infty}}\sum_{n=0}^{\infty}\frac{(cw)^{n}}{(q;q)_{n}}\sum_{k=0}^{\infty}\frac{W_{n+k}}{(q;q)_{k}}\left[(-1)^{n+k}q^{\binom{n+k}{2}}\right]^{1+s-r}(aw;q)_{k}(ct)^{k} \;. \end{split}$$

Setting w = 0 in equation (17), we get the following corollary:

Corollary 2.1. We have

$${}_{r}\Phi_{s}\left(\begin{array}{c} a_{1}, \cdots, a_{r} \\ b_{1}, \cdots, b_{s} \end{array}; q, cD_{q}\right) \left\{\frac{1}{(at;q)_{\infty}}\right\} = \frac{1}{(at;q)_{\infty}} \sum_{k=0}^{\infty} \frac{W_{k}}{(q;q)_{k}} \left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} (ct)^{k}$$

$$= \frac{1}{(at;q)_{\infty}} {}_{r}\phi_{s}\left(\begin{array}{c} a_{1}, \cdots, a_{r} \\ b_{1}, \cdots, b_{s} \end{array}; q, ct\right), \tag{18}$$

where |at| < 1.

Theorem 2.2. We have

$$r\Phi_{s}\left(\begin{array}{c}a_{1},\cdots,a_{r}\\b_{1},\cdots,b_{s}\end{array};q,yD_{q}\right)\left\{\frac{x^{k}}{(xw,xt;q)_{\infty}}\right\}$$

$$=\frac{1}{(xw,xt;q)_{\infty}}\sum_{n=0}^{\infty}\frac{(yt)^{n}}{(q;q)_{n}}\sum_{i=0}^{k}W_{n+i}\left[(-1)^{n+i}q^{\binom{n+i}{2}}\right]^{1+s-r}\begin{bmatrix}k\\i\end{bmatrix}(xw,xt;q)_{i}y^{i}x^{k-i}$$

$$\times\sum_{i=0}^{n}\begin{bmatrix}n\\j\end{bmatrix}(xtq^{i};q)_{j}\left(\frac{w}{t}\right)^{j}.$$

$$(19)$$

Proof.

$$\begin{split} & _{r}\Phi_{s}\left(\frac{a_{1},\cdots,a_{r}}{b_{1},\cdots,b_{s}};q,yD_{q}\right)\left\{\frac{x^{k}}{(xw,xt;q)_{\infty}}\right\}\\ & = \sum_{n=0}^{\infty}\frac{W_{n}}{(q;q)_{n}}\left[(-1)^{n}q^{\binom{n}{2}}\right]^{1+s-r}y^{n}D_{q}^{n}\left\{\frac{x^{k}}{(xw,xt;q)_{\infty}}\right\}\\ & = \sum_{n=0}^{\infty}\frac{W_{n}}{(q;q)_{n}}\left[(-1)^{n}q^{\binom{n}{2}}\right]^{1+s-r}y^{n}D_{q}^{n}\left\{\frac{x^{k}}{(xw,xt;q)_{\infty}}\right\}\\ & = \sum_{n=0}^{\infty}\frac{W_{n}}{(q;q)_{n}}\left[(-1)^{n}q^{\binom{n}{2}}\right]^{1+s-r}y^{n}D_{q}^{i}\left\{x^{k}\right\}D_{q}^{n-i}\left\{\frac{1}{(xwq^{i},xtq^{i};q)_{\infty}}\right\}\\ & = \sum_{i=0}^{\infty}\sum_{n=0}^{\infty}\frac{W_{n}}{(q;q)_{n-i}(q;q)_{i}}\left[(-1)^{n}q^{\binom{n}{2}}\right]^{1+s-r}y^{n}q^{i(i-n)}D_{q}^{i}\left\{x^{k}\right\}D_{q}^{n-i}\left\{\frac{1}{(xwq^{i},xtq^{i};q)_{\infty}}\right\}\\ & = \sum_{i=0}^{\infty}\sum_{n=0}^{\infty}\frac{W_{n+i}}{(q;q)_{n}(q;q)_{i}}\left[(-1)^{n+i}q^{\binom{n+i}{2}}\right]^{1+s-r}y^{n+i}q^{-ni}D_{q}^{i}\left\{x^{k}\right\}D_{q}^{n}\left\{\frac{1}{(xwq^{i},xtq^{i};q)_{\infty}}\right\}\\ & = \sum_{i=0}^{\infty}\sum_{n=0}^{\infty}\frac{W_{n+i}}{(q;q)_{n}(q;q)_{i}}\left[(-1)^{n+i}q^{\binom{n+i}{2}}\right]^{1+s-r}y^{n+i}q^{-ni}D_{q}^{i}\left\{x^{k}\right\}\sum_{j=0}^{n}\begin{bmatrix}n\\j\right]q^{j(j-n)}\\ & \times D_{q}^{j}\left\{\frac{1}{(xwq^{i};q)_{\infty}}\right\}D_{q}^{n-j}\left\{\frac{1}{(xtq^{i+j};q)_{\infty}}\right\}\\ & = \sum_{i=0}^{\infty}\sum_{n=0}^{\infty}\frac{W_{n+i}}{(q;q)_{n}(q;q)_{i}}\left[(-1)^{n+i}q^{\binom{n+i}{2}}\right]^{1+s-r}y^{n+i}q^{-ni}\frac{(q;q)_{k}}{(q;q)_{k-i}}x^{k-i}\sum_{j=0}^{n}\begin{bmatrix}n\\j\right]q^{j(j-n)}\\ & \times\frac{(wq^{i})^{j}}{(xwq^{i};q)_{\infty}}\frac{(tq^{i+j})^{n-j}}{(xtq^{i+j})^{n-j}}\\ & = \frac{1}{(xw,xt;q)_{\infty}}\sum_{n=0}^{\infty}\frac{(yt)^{n}}{(q;q)_{n}}\sum_{i=0}^{k}W_{n+i}\left[(-1)^{n+i}q^{\binom{n+i}{2}}\right]^{1+s-r}\left[\frac{k}{i}\right](xw,xt;q)_{i}y^{i}x^{k-i}\\ & \times\sum_{j=0}^{n}\begin{bmatrix}n\\j\right](xtq^{i};q)_{j}\left(\frac{w}{t}\right)^{j}. \end{split}$$

If w=0 in equation (19), we obtain the following corollary:

Corollary 2.2. We have

$${}_{r}\Phi_{s}\left(\begin{array}{c} a_{1}, \cdots, a_{r} \\ b_{1}, \cdots, b_{s} \end{array}; q, yD_{q}\right) \left\{\frac{x^{k}}{(xt;q)_{\infty}}\right\}$$

$$= \frac{1}{(xt;q)_{\infty}} \sum_{n=0}^{\infty} \frac{(yt)^{n}}{(q;q)_{n}} \sum_{i=0}^{k} W_{n+i} \left[(-1)^{n+i} q^{\binom{n+i}{2}} \right]^{1+s-r} \left[k \atop i \right] (xt;q)_{i} \ y^{i} x^{k-i}, \qquad (20)$$

where |at| < 1.

3. The Generating Function for $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$

In this section a polynomials $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$ are defined. The generating function and its extension for the polynomials $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$ is

obtained by using the operator ${}_r\Phi_s\left(\begin{array}{c} a_1,\ldots,a_r\\ b_1,\ldots,b_s\end{array};q,cD_q\right)$. We provide some special values for the parameters in the generating function as well as its extension for the polynomials $h_n(a_1,\cdots,a_r;b_1,\cdots,b_s;x,y|q)$ to obtain the generating function and its extension for $h_n(x,y|q)$ and $\phi_n^{(\mathbf{a},\mathbf{b})}(x,y)$.

Definition 3.1. The polynomials $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$ are defined as follows:

$$h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q) = \sum_{k=0}^n {n \brack k} W_k \left[(-1)^k q^{\binom{k}{2}} \right]^{1+s-r} x^{n-k} y^k, \qquad (21)$$

where
$$W_k = \frac{(a_1, \dots, a_r; q)_k}{(b_1, \dots, b_s; q)_k}$$
.

Setting r = 1, s = 0, y = 1 and then $a_1 = y$ we get the new form for the bivariate Rogers-Szegö polynomials $h_n(x, y|q)$ given by Saad and Sukhi [15]. Setting r = s + 1 and exchanging x and y, we get the generalized Al-Salam-Carlitz q-polynomials $\phi_n^{(\mathbf{a}, \mathbf{b})}(x, y|q)$ defined by Srivastava and Arjika [16].

By using (4), it is easy to prove that

$$_{r}\Phi_{s}\left(\begin{array}{c}a_{1},\cdots,a_{r}\\b_{1},\cdots,b_{s}\end{array};q,yD_{q}\right)\left\{x^{n}\right\}=h_{n}(a_{1},\cdots,a_{r};b_{1},\cdots,b_{s};x,y|q).$$
 (22)

The following theorem can be easily demonstrated by using (22) and (18):

Theorem 3.1. (The generating function for $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$). We have

$$\sum_{n=0}^{\infty} h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q) \frac{t^n}{(q;q)_n} = \frac{1}{(xt;q)_{\infty}} {}_r \phi_s \begin{pmatrix} a_1, \dots, a_r \\ b_1, \dots, b_s \end{pmatrix}; q, yt , \qquad (23)$$

where |xt| < 1.

- Setting r = 1, s = 0, y = 1 and then $a_1 = y$ in equation (23), we recover the generating function for the bivariate Rogers-Szegö polynomial $h_n(x, y|q)$ (9).
- Setting r = s+1 and exchanging x and y in equation (23), we recover the generating function for the generalized Al-Salam-Carlitz q-polynomials $\phi_n^{(\mathbf{a},\mathbf{b})}(x,y|q)$ (14).

Using (22) and (20), it is easy to prove the following theorem:

Theorem 3.2. (Extension for generating function for $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$). We have

$$\sum_{n=0}^{\infty} h_{n+k}(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q) \frac{t^n}{(q;q)_n}$$

$$= \frac{x^k}{(xt;q)_{\infty}} \sum_{n=0}^{\infty} \frac{(yt)^n}{(q;q)_n} \sum_{i=0}^k W_{n+i} \left[(-1)^{n+i} q^{\binom{n+i}{2}} \right]^{1+s-r} \begin{bmatrix} k \\ i \end{bmatrix} (xt;q)_i (y/x)^i, \quad |xt| < 1. \quad (24)$$

• Setting r = 1, s = 0, y = 1 and then $a_1 = y$ in equation (24), we obtain an extension to generating function for the bivariate Rogers-Szegő polynomials $h_n(x, y|q)$ as follows:

$$\sum_{n=0}^{\infty} h_{n+k}(x,y|q) \frac{t^n}{(q;q)_n} = \frac{(yt;q)_{\infty}}{(t,xt;q)_{\infty}} \sum_{i=0}^{k} \begin{bmatrix} k \\ i \end{bmatrix} \frac{(y,xt;q)_i}{(yt;q)_i} \ x^{k-i},$$

where $\max\{|x|, |xt|\} < 1$.

• Setting r = s + 1 and exchanging x and y in equation (24), we obtain an extension to the generating function for the generalized Al-Salam-Carlitz q-polynomials $\phi_n^{(\mathbf{a},\mathbf{b})}(x,y)$ as follows:

$$\sum_{n=0}^{\infty} \phi_{n+k}^{(\mathbf{a},\mathbf{b})}(x,y|q) \frac{t^n}{(q;q)_n}$$

$$= \frac{1}{(yt;q)_{\infty}} \sum_{n=0}^{\infty} \frac{(xt)^n}{(q;q)_n} \sum_{i=0}^k \frac{(a_1,\cdots,a_{s+1};q)_{i+j}}{(b_1,\cdots,b_s;q)_{i+j}} \begin{bmatrix} k \\ i \end{bmatrix} (yt;q)_i \ x^i y^{k-i}, \quad |yt| < 1.$$

4. Mehler's Formula for $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$

In this section, we plan to present an operator approach to Mehler's formula and its extension for the generalized polynomials $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$. By giving special values for variables in the Mehler's formula and its extension for $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$, the Miller's formula and its extension for the bivariate Rogers-Szegö polynomials $h_n(x, y|q)$ and the generalized Al-Salam-Carlitz q-polynomials $\phi_n^{(\mathbf{a}, \mathbf{b})}(x, y|q)$ are obtained.

Theorem 4.1. (Mehler's formula for $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$). We have

$$\sum_{n=0}^{\infty} h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q) h_n(\hat{a}_1, \dots, \hat{a}_r; \hat{b}_1, \dots, \hat{b}_s; z, c|q) \frac{t^n}{(q;q)_n}$$

$$= \frac{1}{(xzt; q)_{\infty}} \sum_{m=0}^{\infty} \widehat{W}_m \frac{(xct)^m}{(q;q)_m} \left[(-1)^m q^{\binom{m}{2}} \right]^{1+s-r} \sum_{k=0}^{\infty} \frac{(yzt)^k}{(q;q)_k}$$

$$\times \sum_{i=0}^{m} W_{k+i} \left[(-1)^{k+i} q^{\binom{k+i}{2}} \right]^{1+s-r} \begin{bmatrix} m \\ i \end{bmatrix} (xzt; q)_i (y/x)^i, \quad |xzt| < 1.$$
 (25)

Proof.

Now, we retrieve the Mehler's formula for $h_n(x, y|q)$ (10) by using special values for variables in the Mehler's formula for $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$.

Proof. With r = 1, s = 0, y = 1, z = u, c = 1, $\hat{a}_1 = v$ and then $a_1 = y$ in equation (25), we get

$$\sum_{n=0}^{\infty} h_n(x,y|q) h_n(u,v|q) \frac{t^n}{(q;q)_n}$$

$$= \frac{1}{(xut;q)_{\infty}} \sum_{m=0}^{\infty} \frac{(v;q)_m}{(q;q)_m} (xt)^m \sum_{i=0}^m \begin{bmatrix} m \\ i \end{bmatrix} (xut;q)_i (\frac{1}{x})^i \sum_{k=0}^{\infty} \frac{(y;q)_{k+i}}{(q;q)_k} (ut)^k$$

$$= \frac{(yut;q)_{\infty}}{(xut,ut;q)_{\infty}} \sum_{i=0}^{\infty} \frac{(y,xut;q)_i}{(q,yut;q)_i} (\frac{1}{x})^i \sum_{m=0}^{\infty} \frac{(v;q)_{m+i}}{(q;q)_m} (xt)^{m+i} \quad \text{(by using (1))}$$

$$= \frac{(yut;q)_{\infty}}{(xut,ut;q)_{\infty}} \sum_{i=0}^{\infty} \frac{(y,xut,v;q)_i}{(q,yut;q)_i} t^i \sum_{m=0}^{\infty} \frac{(vq^i;q)_m}{(q;q)_m} (xt)^m$$

$$= \frac{(yut,xvt;q)_{\infty}}{(xut,ut,xt;q)_{\infty}} {}_{3}\phi_{2} \left(\begin{array}{c} y,xut,v \\ xvt,yut \end{array} ; q,t \right). \quad \text{(by using (1))}$$

Replacing a, b, c, d, e by y, xut, v, xvt, yut, respectively, in transformations of $_3\phi_2$ series [9, Appendix III, equation (III.9)], we get the desired result.

For r = s+1 and exchanging x and y, z and c in equation (25), we get Mehler's formula for the generalized Al-Salam-Carlitz q-polynomials $\phi_n^{(\mathbf{a},\mathbf{b})}(x,y|q)$ as follows:

Corollary 4.1. (Mehler's formula for $\phi_n^{(\mathbf{a},\mathbf{b})}(x,y|q)$). We have

$$\begin{split} \sum_{n=0}^{\infty} & \phi_n^{(a,b)}(x,y|q) \phi_n^{(\hat{a},\hat{b})}(z,c|q) \frac{t^n}{(q;q)_n} \\ &= \frac{1}{(yct;q)_{\infty}} \sum_{m=0}^{\infty} \frac{(\hat{a}_1,\cdots,\hat{a}_{s+1};q)_m}{(\hat{b}_1,\cdots,\hat{b}_s;q)_m} \, \frac{(yzt)^m}{(q;q)_m} \sum_{k=0}^{\infty} \frac{(xct)^k}{(q;q)_k} \\ &\times \sum_{i=0}^{m} \frac{(a_1,\cdots,a_{s+1};q)_{k+i}}{(b_1,\cdots,b_s;q)_{k+i}} \, \begin{bmatrix} m \\ i \end{bmatrix} (yct;q)_i \, (x/y)^i \,, \quad |yct| < 1. \end{split}$$

Theorem 4.2. (Extension of Mehler's formula for $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$). We have

$$\sum_{n=0}^{\infty} h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q) h_{n+k}(\hat{a}_1, \dots, \hat{a}_r; \hat{b}_1, \dots, \hat{b}_s; z, c|q) \frac{t^n}{(q; q)_n}$$

$$= \frac{1}{(xzt; q)_{\infty}} \sum_{j=0}^{\infty} \frac{(xct)^j}{(q; q)_j} \sum_{i=0}^k {k \brack i} \widehat{W}_{i+j} \left[(-1)^{i+j} q^{\binom{i+j}{2}} \right]^{1+s-r} (xzt; q)_i \ y^{k-i} \ c^i$$

$$\times \sum_{r=0}^{\infty} \frac{(yztq^i)^n}{(q; q)_n} \sum_{l=0}^j {j \brack l} W_{n+l} \left[(-1)^{n+l} q^{\binom{n+l}{2}} \right]^{1+s-r} (xztq^i; q)_l (\frac{y}{x})^l, \quad |xzt| < 1. \quad (26)$$

Proof.

Using r = 1, s = 0, y = 1, z = u, c = 1, $\hat{a}_1 = v$ and then $a_1 = y$ in equation (26), we get an extension of Mehler's formula for bivariate Rogers-Szegö polynomials $h_n(x, y|q)$ as follows:

Corollary 4.2 (Extension of Mehler's Formula for $h_n(x,y|q)$). We have

$$\sum_{n=0}^{\infty} h_n(x,y|q) h_{n+k}(u,v|q) \frac{t^n}{(q;q)_n} = \frac{1}{(xut;q)_{\infty}} \sum_{j=0}^{\infty} \frac{(xt)^j}{(q;q)_j} \sum_{i=0}^k {k \brack i} (v;q)_{i+j} u^{k-i}(xut;q)_i$$

$$\times \sum_{m=0}^{\infty} \frac{(utq^i)^m}{(q;q)_m} \sum_{l=0}^j {j \brack l} (y;q)_{m+l} (xutq^i;q)_l (\frac{1}{x})^l,$$

where |xut| < 1.

With r = s + 1 and exchanging x and y, z and c in equation (26), we get Mehler's formula for the generalized Al-Salam-Carlitz q-polynomials $\phi_n^{(\mathbf{a},\mathbf{b})}(x,y|q)$ as follows:

Corollary 4.3. (Extension of Mehler's formula for $\phi_n^{(\mathbf{a},\mathbf{b})}(x,y|q)$). We have

$$\begin{split} &\sum_{n=0}^{\infty} \phi_{n}^{(a,b)}(x,y|q) \phi_{n+k}^{(\hat{a},b)}(z,c|q) \frac{t^{n}}{(q;q)_{n}} \\ &= \frac{1}{(yct;q)_{\infty}} \sum_{j=0}^{\infty} \frac{(yzt)^{j}}{(q;q)_{j}} \sum_{i=0}^{k} \begin{bmatrix} k \\ i \end{bmatrix} \frac{(\hat{a}_{1},\cdots,\hat{a}_{s+1};q)_{i+j}}{(\hat{b}_{1},\cdots,\hat{b}_{s};q)_{i+j}} \ (yct;q)_{i} \ x^{k-i} \ z^{i} \\ &\times \sum_{n=0}^{\infty} \frac{(xctq^{i})^{n}}{(q;q)_{n}} \sum_{l=0}^{j} \begin{bmatrix} j \\ l \end{bmatrix} \frac{(a_{1},\cdots,a_{s+1};q)_{n+l}}{(b_{1},\cdots,b_{s};q)_{n+l}} \ (yctq^{i};q)_{l}, \quad |yct| < 1. \end{split}$$

5. Rogers Formula for $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$

In this section, we intend to present an operator approach to Rogers formula and its extension for the generalized polynomials $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$. The Rogers formula and its extension for the bivariate Rogers-Szegö polynomials $h_n(x, y|q)$ and the generalized Al-Salam-Carlitz q-polynomials $\phi_n^{(\mathbf{a},\mathbf{b})}(x,y|q)$ are obtained by including special values for variables in the Rogers formula and its expansion for $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y; q)$.

Theorem 5.1. (Roger's Formula for $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$). We have

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} h_{n+m}(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q) \frac{t^n}{(q;q)_n} \frac{w^m}{(q;q)_m} = \frac{1}{(xw, xt; q)_{\infty}}$$

$$\times \sum_{k=0}^{\infty} \frac{(yw)^n}{(q;q)_n} \sum_{n=0}^{\infty} \frac{W_{n+k}}{(q;q)_k} \left[(-1)^{n+k} q^{\binom{n+k}{2}} \right]^{1+s-r} (yt)^k (xw; q)_k, \tag{27}$$

where $\max\{|xw|, |xt|\} < 1$.

Proof.

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} h_{n+m}(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q) \frac{t^n}{(q;q)_n} \frac{w^m}{(q;q)_m} \\
= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} {}_r \Phi_s \left(\begin{array}{c} a_1, \dots, a_r \\ b_1, \dots, b_s \end{array}; q, y D_q \right) \left\{ x^{n+m} \right\} \frac{t^n}{(q;q)_n} \frac{w^m}{(q;q)_m} \quad \text{(by using (22))} \\
= {}_r \Phi_s \left(\begin{array}{c} a_1, \dots, a_r \\ b_1, \dots, b_s \end{array}; q, y D_q \right) \left\{ \frac{1}{(xt, xw; q)_{\infty}} \right\} \quad \text{(by using (2))} \\
= \frac{1}{(xt, xw; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(yw)^n}{(q;q)_n} \sum_{n=0}^{\infty} \frac{W_{n+k}}{(q;q)_k} \left[(-1)^{n+k} q^{\binom{n+k}{2}} \right]^{1+s-r} (yt)^k (xw; q)_k. \\
\text{(by using (17))}$$

Now, we recover the Rogers formula for $h_n(x, y|q)$ and $\phi_n^{(\mathbf{a}, \mathbf{b})}(x, y|q)$ by using unique values for the variables in the Rogers formula for $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$.

With r = 1, s = 0, y = 1 and then $a_1 = y$ and w = s in equation (27), we recover Rogers formula for $h_n(x, y|q)$ (11).

For r = s + 1, and exchanging x and y in equation (27), we recover Rogers formula for $\phi_n^{(\mathbf{a},\mathbf{b})}(x,y|q)$ (15).

Theorem 5.2. (Extension of Roger's formula for $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$). Let $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$ be defined as in (21), then

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} h_{n+m+k}(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q) \frac{t^n}{(q;q)_n} \frac{w^m}{(q;q)_m}$$

$$= \frac{1}{(xw, xt; q)_{\infty}} \sum_{n=0}^{\infty} \frac{W_{n+i}}{(q;q)_n} (yt)^n \left[(-1)^{n+i} q^{\binom{n+i}{2}} \right]^{1+s-r}$$

$$\times \sum_{i=0}^{k} {k \brack i} (xw, xt; q)_i x^{k-i} \sum_{j=0}^{n} {n \brack j} (xtq^i; q)_j \left(\frac{w}{t} \right)^j,$$
(28)

where $\max\{|xw|, |xt|\} < 1$.

Proof.

$$\begin{split} &\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} h_{n+m+k}(a_1, \cdots, a_r; b_1, \cdots, b_s; x, y|q) \frac{t^n}{(q;q)_n} \frac{w^m}{(q;q)_m} \\ &= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} {}_r \Phi_s \left(\begin{array}{c} a_1, \cdots, a_r \\ b_1, \cdots, b_s \end{array}; q, y D_q \right) \left\{ x^{n+m+k} \right\} \frac{t^n}{(q;q)_n} \frac{w^m}{(q;q)_m} \quad \text{(by using (22))}. \\ &= {}_r \Phi_s \left(\begin{array}{c} a_1, \cdots, a_r \\ b_1, \cdots, b_s \end{array}; q, y D_q \right) \left\{ \frac{x^k}{(xw, xt; q)_{\infty}} \right\} \quad \text{(by using (2))} \\ &= \frac{1}{(xw, xt; q)_{\infty}} \sum_{n=0}^{\infty} \frac{(yt)^n}{(q;q)_n} \sum_{i=0}^k W_{n+i} \left[(-1)^{n+i} q^{\binom{n+i}{2}} \right]^{1+s-r} \left[\begin{matrix} k \\ i \end{matrix} \right] (xw, xt; q)_i \ y^i \ x^{k-i} \\ &\times \sum_{j=0}^n \begin{bmatrix} n \\ j \end{bmatrix} (xtq^i; q)_j \left(\frac{w}{t} \right)^j. \quad \text{(by using (19))} \end{split}$$

Now, we get an extension of the Rogers formula for $h_n(x, y|q)$ and $\phi_n^{(\mathbf{a}, \mathbf{b})}(x, y|q)$ by using specific values for variables in the extension of the Rogers formula for $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y|q)$.

When r = 1, s = 0, y = 1 and then $a_1 = y$ and w = s in equation (28), we get an extension of Roger's formula for the bivariate Rogers-Szegö polynomials $h_n(x, y|q)$ as follows:

Corollary 5.1 (Extension of Roger's Formula for $h_n(x,y|q)$). We have

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} h_{n+m+k}(x, y|q) \frac{t^n}{(q;q)_n} \frac{s^m}{(q;q)_m}$$

$$= \frac{1}{(xs, xt; q)_{\infty}} \sum_{n=0}^{\infty} \frac{t^n}{(q;q)_n} \sum_{i=0}^{k} (y;q)_{n+i} \begin{bmatrix} k \\ i \end{bmatrix} (xs, xt;q)_i x^{k-i} \sum_{j=0}^{n} \begin{bmatrix} n \\ j \end{bmatrix} (xtq^i;q)_j \left(\frac{s}{t} \right)^j,$$

where $\max\{|xs|, |xt|\} < 1$.

With r = s + 1 and exchanging x and y in equation (28), we get an extension of Roger's formula for generalized Al-Salam-Carlitz q-polynomials $\phi_n^{(\mathbf{a},\mathbf{b})}(x,y|q)$ as follows:

L

Corollary 5.2 (Extension of Roger's Formula for $\phi_n^{(\mathbf{a},\mathbf{b})}(x,y|q)$). We have

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \phi_{n+m+k}^{(a,b)}(x,y|q) \frac{t^n}{(q;q)_n} \frac{w^m}{(q;q)_m} = \frac{1}{(yw,yt;q)_{\infty}} \sum_{n=0}^{\infty} \frac{(a_1,\cdots,a_{s+1};q)_n}{(q,b_1,\cdots,b_s;q)_n} (xt)^n \times \sum_{i=0}^{k} \begin{bmatrix} k \\ i \end{bmatrix} (yw,yt;q)_i x^i y^{k-i} \sum_{j=0}^{n} \begin{bmatrix} n \\ j \end{bmatrix} (ytq^i;q)_j \left(\frac{w}{t}\right)^j,$$

where $\max\{|yw|, |yt|\} < 1$.

6. Conclusions

- (1) Many operators can be obtained by assigning some special values to the generalized q-operator $_r\Phi s$.
- (2) The bivariate Rogers-Szegö polynomials $h_n(x, y|q)$ and the the generalized Al-Salam-Carlitz q-polynomials $\phi_n^{(\mathbf{a}, \mathbf{b})}(x, y|q)$ are special cases of the polynomials $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y; q)$.
- (3) The polynomials identities for $h_n(a_1, \dots, a_r; b_1, \dots, b_s; x, y; q)$ are an extension of the polynomials identities for the bivariate Rogers-Szegö polynomial $h_n(x, y|q)$ and the generalized Al-Salam-Carlitz q-polynomials $\phi_n^{(\mathbf{a}, \mathbf{b})}(x, y|q)$.

Acknowledgement. We are deeply grateful to the referees for valuable comments that lead to an improvement of an earlier version.

References

- [1] Al-Salam, W.A. and Carlitz, L., (1965), Some orthogonal q-polynomials, Math. Nachr., 30, pp. 47 61.
- [2] Chen, W.Y.C., Fu, A.M. and Zhang, B.Y., (2003), The homogeneous q-difference operator, Adv. Appl. Math., 31, pp. 659-668.
- [3] Chen, W.Y.C. and Liu, Z.G., (1997), Parameter augmenting for basic hypergeometric series, II, J. Combin. Theory, Ser. A, 80, pp. 175-195.
- [4] Chen, W.Y.C. and Liu, Z.G., (1998), Parameter augmenting for basic hypergeometric series, I, Mathematical Essays in Honor of Gian-Carlo Rota, Eds., B.E. Sagan and R.P. Stanley, Birkhauser, Boston, pp. 111–129.
- [5] Chen, V.Y.B. and Gu, N.S.S, (2008), The Cauchy operator for basic hypergeometric series, Adv. Appl. Math., 41, pp. 177-196.
- [6] Chen, W.Y.C., Saad, H.L. and Sun, L.H., (2007), The bivariate Rogers-Szegö polynomials, J. Phys. A: Math. Theor., 40, pp. 6071-6084.
- [7] Fang, J-P, (2008), Extensions of q-Chu-Vandermonde's identity, J. Math. Anal. Appl., 339, pp. 845–852.
- [8] Goulden, I.P. and Jackson, D.M., (1983), Combinatorial Enumeration, John Wiley & Sons, New York.
- [9] Gasper, G. and Rahman, M., (2004), Basic Hypergeometric Series, 2nd ed., Cambridge University Press, Cambridge, MA.
- [10] Hahn, V.W., (1949), Über orthogonal-poiynome, die q-differenzengleichungen genügen. Diese Nachr., 2, pp. 4-34.
- [11] Li, N.N. and Tan, W., (2016), Two generalized q-exponential operators and their applications, Advances in difference equations, 53, pp. 1-14.
- [12] Roman, S., (1985), More on the umbral calculus, with emphasis on the q-umbral caculus, J. Math. Anal. Appl., 107, pp. 222–254.
- Anal. Appl., 101, pp. 222–204.
 [13] Saad, H.L., Jaber, R.H., (2020), Application of the Operator $\phi\begin{pmatrix} a,b,c\\d,e\end{pmatrix}$; q,fD_q for the Polynomials $Y_n(a,b,c;d,e;x,y|q)$, TWMS J. App. and Eng. Math., accepted.
- [14] Saad, H.L. and Sukhi, A. A., (2010), Another Homogeneous q-difference Operatore, Applied Mathmaics and Computation, 215, pp. 4331-4339.
- [15] Saad, H.L. and Sukhi, A.A., (2013), The q-Exponential Operator, Appl. Math. Sci., 7, pp. 6369 6380.

- [16] Srivastava, H.M. and Arjika S., (2020), Generating functions for some families of the generalized Al-Salam-Carlitz q-polynomials, Adv. Difference Equ., 498, pp. 1–17.
- [17] Zhang, Z.Z. and Yang, J.Z., (2010), Finite q-exponential operators with two parameters and their applications, Acta Mathematica Sinica, Chinese Series, 53, pp. 1007–1018.

Husam Luti Saad for the photography and short autobiography, see TWMS J. App. and Eng. Math. V.12, N.2.

Hassan J. Hassan is an MSc. student in the Department of Mathematics, College of Science, Basrah University, Iraq. He is interested in q-Series and q-Operators.