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DYNAMICS, CONTROL, STABILITY, DIFFUSION AND

SYNCHRONIZATION OF MODIFIED CHAOTIC COLPITTS

OSCILLATOR WITH TRIANGULAR WAVE NON-LINEARITY

N. KUMAR K. A.1, S. RASAPPAN2∗, R. N. DEVI1, §

Abstract. The purpose of this paper is to introduce a new chaotic oscillator. Although
different chaotic systems have been formulated by earlier researchers, only a few chaotic
systems exhibit chaotic behaviour. In this work, a new chaotic system with chaotic
attractor is introduced for triangular wave non-linearity. It is worth noting that this
striking phenomenon rarely occurs in respect of chaotic systems. The system proposed
in this paper has been realized with numerical simulation. The results emanating from
the numerical simulation indicate the feasibility of the proposed chaotic system. More
over, chaos control, stability, diffusion and synchronization of such a system have been
dealt with.

Keywords: Chaos, Colpitts oscillator, Lyapunov exponent, Diffusion, Stability, Synchro-
nization, Triangular Wave Non-linearity.
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1. Introduction

The study of chaotic dynamical systems is drawing the attention of the researchers in
the recent times. Research on a chaotic system with chaotic attractor is posing several
challenges thereby making the study quite interesting.

A non-linear dynamical system exhibiting complex and unpredictable behavior is called
chaotic system [1]. The parameter values are varying with range and the sensitivity de-
pends on initial conditions. These are the remarkable properties [2] of chaotic systems.
Sometimes, the chaotic systems are deterministic [3, 4] and they have long-term unpre-
dictable behavior [5-6].
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While chaotic systems are highly sensitive, their sensitivity depends on their initial
conditions. The chaotic nature is one of the qualitative [7, 8] properties of a dynamical
system [9, 10].

The controlling of the chaotic systems may be accomplished in three ways such as
stabilization [11, 12] of unstable periodic motion “contained” in the chaotic set, suppression
of chaotic behavior by external forcing like periodic noise, periodic parametric perturbation
and algorithm of various automatic control like feedback [13, 14], backstepping [15], sample
feedback, time delay feedback, etc.

There exist two ways for the application of controls in a chaotic system. The first one is
the change of attractor of the system. The second one is the change in the point position
of the phase space for the system which is a constant value in its parameter.

A continuous, repeated and alternating wave production without any input is an os-
cillator. Converting power supply to an alternating current signal is one of the primary
properties of oscillators. The signal of feedback containing a pair of coils and an inductive
divider in the server is called Colpitts oscillator [16, 17]. Due to some parametric change
and the variation of input, the chaotic nature may occur in Colpitts oscillators.

In this paper, a new chaotic Colpitts oscillator is proposed. It is a modified form of the
earlier version of Colpitts oscillators. In section 2, the modified form of Colpitts oscillator
[18, 19] is presented with the formulation of the mathematical model. In addition, invariant
property, equilibrium point and Lyapunov exponents [20-23] are investigated. In section
3, adaptive backstepping technique [24] is explained for the proposed system. In section
4, a non linear feedback system is established. The control strategy of backstepping is
employed to analyze the non linear feedback system in section 5. Finally, the numerical
simulation [25-28] is upheld for the hypothetical outcomes.

2. The Mathematical Model of Chaotic Colpitts Oscillator

The depiction of simplified illustrative diagram for modified Colpitts oscillator is un-
dertaken in Figure 1. In addition to Electronic devices, communication systems also have
wide usage of the Colpitts oscillator. It is a single-transistor implementation of a sinusoidal
oscillator.

The following are the hypotheses for simplifying the extensive simulation of the complete
circuit model.

• The base-emitter(B-E) driving point(V-I) characteristic of the RE with triangular
wave function is

IE = f (VBE) = IS

[
2a

π
sin−1

(
sin

(
2π

p
(x1 + x3)

))]
where IS is the emitter current (inverse saturation current), a is amplitude and p
is period of the B-E junction.
• The state space is schematically represented in Figure 1.

RCC1
dVC1

dt
= V0 − VC1 − VC2 +RCIL −RCf (VBE)

RCC2
dVC2

dt
= V0 − VC1 − VC2 −RCI0 +RCIL

C3
dVC3

dt
= IL − (1− α)f (VBE)

L
dIL
dt

= −RbIL − VC1 − VC2 − VC3
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Figure 1. The circuit diagram

The following is the proposed new system with Colpitts oscillator:

ẋ1 = σ1(−x1 − x2) + x4 − γφ(x1, x3)
ẋ2 = ε1σ1(−x1 − x2) + ε1x4
ẋ3 = ε2(x4 − (1− α)γφ(x1, x3))
ẋ4 = −x1 − x2 − x3 − σ2x4

(1)

where φ(x1, x3) =
2a

π
sin−1

(
sin

(
2π

p
(x1 + x3)

))
.

In system (1), the state variables are assumed as x1, x2, x3 and x4 along with six
positive parameters, σ1, γ, ε1, ε2, σ2 and α. The system (1) is an autonomous system to
which a triangular wave expression is associated.

With the modification of coordinates provided by the scheme (x1, x2, x3, x4) 7→
(−x1, −x2, −x3, −x4), the system (1) is found to be invariant.

The mathematical system of the Colpitts oscillator mathematical system when equated
to zero gives the equilibrium points of the system as specified below:

σ1(−x1 − x2) + x4 − γφ(x1, x3) = 0
ε1σ1(−x1 − x2) + ε1x4 = 0

ε2(x4 − (1− α)γφ(x1, x3)) = 0
−x1 − x2 − x3 − σ2x4 = 0

(2)

Solving the system (2), it is seen that the new chaotic system (2) has a unique equilib-
rium at the origin.

The Jocobian matrix of the system (1) at the equilibrium point E is given by

JE =


−σ1 − 4γa/p −σ1 −4γa/p 1
−ε1σ1 −ε1σ1 0 ε1

−ε2(1− α)4γa/p 0 −ε2(1− α)4γa/p ε2
−1 −1 −1 −σ2

 (3)

The corresponding characteristic equation of Colpitts oscillator system (1) with respect
to E is given by the relation

∆1λ
4 + ∆2λ

3 + ∆3λ
2 + ∆4λ+ ∆5 = 0 (4)

where
∆1 = 1

∆2 =
−4αε2γa+ ε1σ1p+ 4ε2γa+ 4γa+ σ1p+ σ2p

p
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∆3 =

[
−4αε1ε2γσ1a− 4αε2γσ1a− 4αε2γσ2a+ 4ε1ε2γσ1a+ 4ε1γσ1a
+ε1σ1σ2p+ ε1p+ 4ε2γσ1a+ 4ε2γσ2a+ ε2p+ 4γσ2a+ σ1σ2p+ p

]
p

∆4 =

[
−4αε1ε2γσ1σ2a− 4αε1ε2γa− 4αε2γσ1σ2a+ 4ε1ε2γσ1σ2a
+4ε1ε2γa+ ε1ε2σ1p+ 4ε1γσ1σ2a+ 4ε1γa+ 4ε2γσ1σ2a+ ε2σ1p

]
p

∆5 =
4ε1ε2γσ1a

p
Applying Routh-Hurwitz stability criterion [29] to the characteristic equation, we con-

clude that the system is unstable for all values of the parameters at the equilibrium position
E.

From the Jacobian matrix (3), among the states x1, x2, x3 and x4, if x1 and x3 are both
positive or negative or of opposite signs, it implies “Hopf bifurcation”. This phenomenon
is also known as “Poincaré–Andronov–Hopf bifurcation”. This bifurcation leads a local
birth of “chaos” nature in modified Colpitts oscillator (1).

Interestingly, the system (1) is chaotic for the parameters

ε1 = 1, ε2 = 20, σ1 = 1.49, σ2 = 0.872, γ = 38.00, α =
255

256

Lyapunov exponents may be considered as one of the keys to differentiate between
chaotic, hyperchaotic, stable and periodic nature of the systems.

Table 1 gives the details of the chaotic and hyperchaotic nature of the system. For
this calculation, the observation time (T ) is considered as 500 and the sampling time
(∆t) is taken as 0.5. For various initial conditions, the system (1) exhibits chaotic and
hyperchaotic nature.

By applying Wolf algorithm [30], the Lyapunov exponents corresponding to the new
chaotic system (1) are obtained as follows:

Sl. Parameter,a, p Initial condition LEs Sign of Nature
No. the LEs
1 γ = 2.2001, a = 1, p = 1 0.00001, 0.00001, 0.00001, 0.00001 0.009914, 0.010189,−5.086796,−8.273187 [≈ 0,+,−,−] Chaotic
2 γ = 2.2001, a = 1, p = 2 0.00001, 0.00001, 0.00001, 0.00001 0.009914, 0.010189,−5.086796,−8.273187 [≈ 0,+,−,−] Chaotic
3 γ = 2.2001, a = 1, p = 3 0.00001, 0.00001, 0.00001, 0.00001 0.009914, 0.010189,−5.086796,−8.273187 [≈ 0,+,−,−] Chaotic
4 γ = 38.000, a = 1, p = 1 0.00001, 0.00001, 0.00001, 0.00001 0.605403, 0.608392,−3.807690,−51.008494 [+,+,−,−] Hyperchaotic
5 γ = 38.000, a = 1, p = 2 0.00001, 0.00001, 0.00001, 0.00001 0.562656, 0.568263,−3.837630,−41.737089 [+,+,−,−] Hyperchaotic
6 γ = 38.000, a = 1, p = 2 1.00000, 1.00000, 1.00000, 1.00000 0.562656, 0.568263,−3.837630,−42.690649 [+,+,−,−] Hyperchaotic
7 γ = 38.000, a = 1, p = 2 1.50000, 1.50000, 1.50000, 1.50000 0.562656, 0.568263,−3.837630,−42.774085 [+,+,−,−] Hyperchaotic
8 γ = 38.000, a = 1, p = 2 2.00000, 2.00000, 2.00000, 2.00000 0.562656, 0.568263,−3.837630,−42.896532 [+,+,−,−] Hyperchaotic

Table 1. LEs of system (1) for observation time (T ) = 500, sampling
time (∆t) = 0.5, ε1 = 1, ε2 = 20, σ1 = 1.49, σ2 = 0.872, α = 255

256 ,
γ = 2.2001, 38.00 with various sampling and observation times using Wolf
algorithm

From Table 1, the Lyapunov exponential dimension is calculated. The attractor of the
new system is observed to be a strange attractor with fractal dimensions.

Through numerical simulation, the chaotic attractor of the system (1) is obtained as
shown in Figure 3.
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Figure 2 depicts the Lyapunov exponents of the modified Colpitts oscillator and Figure
3 shows the chaotic nature of the modified Colpitts oscillator and Poincaré Map of the
modified Colpitts oscillator.
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Figure 2. Lyapunov exponents of the Modified Colpitts oscillator

−12 −10 −8 −6 −4 −2 0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

4

5

6

(a)
Chaotic
nature
between
x1 and
x2

−10 −8 −6 −4 −2 0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

4

5

(b)
Poincaré
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Map
between
x1, x2
and x3

−15

−10

−5

0

5

10

−4

−2

0

2

4

6

−3

−2

−1

0

1

2

3

(o)
Chaotic
nature
between
x1, x2
and x4

−10

−5

0

5

10

−4

−2

0

2

4

6

−3

−2

−1

0

1

2

3

(p)
Poincaré
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Figure 3. Portrait of Colpitts

The study of qualitative properties is one of the utilities of this paradigm. The sta-
bility control, limit cycle, periodicity and chaos are some notable qualitative properties.
The following theorems bring out the local stability properties of the modified Colpitts
oscillator.

Theorem 2.1. The interior equilibrium point E is locally asymptotically stable in the
positive octant.

Proof. By divergence criterion theorem, assume

θ(x1, x2, x3, x4) =
1

x1x2x3x4
(5)

where θ(xi, i = 1, 2, 3, 4) > 0 if xi > 0, i = 1, 2, 3, 4.

Now consider
p1 = σ1(−x1 − x2) + x4 − γφ(x1, x3)
p2 = ε1σ1(−x1 − x2) + ε1x4
p3 = ε2(x4 − (1− α)γφ(x1, x3))
p4 = −x1 − x2 − x3 − σ2x4

(6)
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where φ(x1, x3) =
2a

π
sin−1

(
sin

(
2π

p
(x1 + x3)

))
.

Define

∇ =
∂

∂x1
(p1θ) +

∂

∂x2
(p2θ) +

∂

∂x3
(p3θ) +

∂

∂x4
(p4θ) (7)

We have to determine ∇ given by Equation (7) along with the trajectories provided by
Equations (5) and Equation (6). We obtain

∇ = − [σ1 + γ4a/p]x1x2x3x4 + [σ1(−x1 − x2) + x4 − γφ(x1, x3)]x2x3x4
x21x

2
2x

2
3x

2
4

− ε1σ1x1x2x3x4 + [ε1σ1(−x1 − x2) + ε1x4]x1x3x4
x21x

2
2x

2
3x

2
4

− [ε2(1− α)γ4a/p]x1x2x3x4 + ε2 [x4 − (1− α)γφ(x1, x3)]x1x2x4
x21x

2
2x

2
3x

2
4

− σ2x1x2x3x4 + (−x1 − x2 − x3 − σ2x4)x1x2x3
x21x

2
2x

2
3x

2
4

which is less than zero.

From Benedixon-Dulac criterion, it it clear that the first octant does not contain any
limit cycle.

Consequently, the equilibrium provided by E is found to be locally asymptotically stable.

The relation between the limit cycle and closed trajectories exhibits the local asymptotic
stability. The following theorem is concerned with the stability under closed trajectory
using Bendixson’s criteria theorem. �

Theorem 2.2. There is no closed trajectory for the interior equilibrium point.

Proof. Define

Ψ(xi, i = 1, 2, 3, 4) =
∂p1
∂x1

+ . . .+
∂p4
∂x4

(8)

Find Ψ along with the trajectories associated with Equation (8). It follows that

Ψ = −σ1 − γ4a/p− ε1σ1 − ε2(1− α)γ4a/p− σ2 6= 0 (9)

Hence, by applying Bendixson’s criteria theorem to Equation (9), it is seen that there
is no closed trajectory surrounding the point E.

Hence, limit cycle does not exist emcompassing E.

Therefore, the point E is evidential to be locally asymptotically stable.
In oscillator, exhibiting stable periodic orbit and it corresponds to a special type of

solution for a oscillator. The following theorem focuses attention on the nontrivial periodic
solution. �

Theorem 2.3. The modified Colpitts oscillator given by Equation (1) has a nontrivial
periodic solution.
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Proof. Define

Φ =
d

dt

(
x21 + x22 + x23 + x24

2

)
= x1

dx1
dt

+ x2
dx2
dt

+ x3
dx3
dt

+ x4
dx4
dt

= x1ẋ1 + x2ẋ2 + x3ẋ3 + x4ẋ4 =
4∑
i=1

xi
dxi
dt

(10)

Find Φ from Equation (10) along the trajectories Equation (1). We see that

Φ = x1[σ1(−x1 − x2) + x4 − γφ(x1, x3)] + x2[ε1σ1(−x1 − x2) + ε1x4]
+x3[ε2(x4 − (1− α)γφ(x1, x3))] + x4[−x1 − x2 − x3 − σ2x4]

= −σ1x21 − σ1x1x2 + x1x4 − γx1φ(x1, x3)− ε1σ1x1x2 − ε1σ1x22 + ε1x2x4
+ε2x3x4 − ε2(1− α)x3γφ(x1, x3)− x1x4 − x2x4 − x3x4 − σ2x24

= −(σ1x
2
1 + σ1x

2
2 + σ2x

2
4)

−σ1x1x2(1 + ε1)− (1− ε1)x2x4 − (1− ε2)x3x4 − γφ(x1, x3)[x1 + ε2(1− α)x3]
= −(∇1 +∇2)

(11)

where ∇1 = σ1x
2
1 + ε1σ1x

2
2 + σ2x

2
4

∇2 = σ1(1 + ε1)x1x2 + (1− ε1)x2x4 + (1− ε2)x3x4 + γφ(x1, x3)(x1 + ε2(1− α)x3)

It is observed that ∇1 + ∇2 is positive for x21 + x22 + x23 + x24 < a and negative for x21 +
x22 + x23 + x24 > b, where a, b are positive constants.

This implies that any solution xi(t) of (1) which starts in the annulus a <
4∑
i=1

x2i < b.

Hence, by Poincaré-Bendixson theorem, there exists atleast one periodic solution xi(t), i =
1, 2, 3, 4 of Equation (1) lying in this annulus.

Hence, the modified Colpitts oscillator Equation (1) has a nontrivial periodic solution.
�

The study of control refers to the process of influencing the behaviour of an oscillator
to achieve a desired goal, primarily through the use of feedback control. The following
section describes the backstepping control when the parameter values are unknown.

3. Adaptive Backstepping control of the modified Colpitts oscillator
with unknown parameters

Backstepping

control

u1

u2

u3

...

un

parameter

updation

law

eα1

eα2

eα3

...

eαn

chaotic

oscillator

ω1

ω2

ω3

... ωn

−

−

−

−

+
x1

+
x2

+
x3

...+
xn

Figure 4. Block diagram for adaptive backstepping control
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3.1. Pseudo Algorithm for Adaptive Synchronization of Chaotic Oscillator.
Suppose the chaotic dynamics is defined by

ẋ = Ax+ f(x) + u, (12)

where x ∈ Rn is the state of the system, A is the n× n matrix of the system parameters,
f : Rn → Rn is the nonlinear part of the system and u ∈ Rn is the controller of the
response system.

Thus, the synchronization error problem is to find a controller u so that

lim
t→∞
‖e(t)‖ = 0. (13)

In the adaptive synchronization of chaotic systems, it is assumed that the parameters of
the master and slave systems are unknown. To fix the notation, suppose that the vector
α represents the parameters of master system and also that the vector β represents the
parameters of the slave system.

In this case, the synchronizing controller is taken as

u(t) = u(x, α̂, β̂), (14)

where α̂, β̂ are estimates of the unknown parameters vectors α and β.

3.1.1. Design of the parameter Update Law. A quadratic Lyapunov function can be used
for the adaptive synchronization method, viz

V =
1

2
(x21 + x22 + x23 + ...+ x2n + e2β1 + e2β2 + ...+ e2βn + e2α1

+ e2α2
+ ...+ e2βn) (15)

where α = (α1, α2, ....αn) and β = (β1, β2, ....βn).
Then the Lyapunov function V is differentiated along the trajectories of the error dy-

namics and parameter update law is carefully designed so that V̇ is a negative definite
function.

3.2. Adaptive Backstepping control of the modified Colpitts oscillator. The
modified Colpitts oscillator system is given by the dynamics with controllers

ẋ1 = σ1 (−x1 − x2) + x4 − γφ (x1, x3) + u1

ẋ2 = ε1σ1 (−x1 − x2) + ε1x4 + u2

ẋ3 = ε2 (x4 − (1− α) γφ (x1, x3)) + u3

ẋ4 = −x1 − x2 − x3 − σ2x4 + u4

(16)

where φ (x1, x3) =
2a

π
sin−1

(
sin

(
2π

p
(x1 + x3)

))
.

In system (16), x1, x2, x3 and x4 are state variables and u1, u2, u3 and u4 are adaptive
controllers.
The synchronization error is defined as ei = yi − xi, i = 1, 2, 3, 4.
The unknown parameters are updated by

eσ1 = σ1 − σ̂1(t), eσ2 = σ2 − σ̂2(t)
eε1 = ε1 − ε̂1(t), eε2 = ε2 − ε̂2(t)
eα = α− α̂(t), eγ = γ − γ̂(t)

(17)
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By differentiating (17) with respect to ‘t’, one obtains

ėσ1 = − ˙̂σ1(t), ėσ2 = − ˙̂σ2(t)

ėε1 = − ˙̂ε1(t), ėε2 = − ˙̂ε2(t)

ėα = − ˙̂α(t), ėγ = − ˙̂γ(t)

At this stage, the state of the system is considered as

ẋ1 = σ1 (−x1 − x2) + x4 − γφ (x1, x3) + u1 (18)

where x2 is regarded as virtual controller.
In order to stabilize the system, the suitable Lyapunov function is defined as

V1 (x1) =
1

2
x21 +

1

2
e2σ1 +

1

2
e2γ

By differentiating V1 with respect to t,

V̇1 = x1ẋ1 + eσ1 ėσ1 + eγ ėγ

= x1 [σ1 (−x1 − x2) + x4 − γφ (x1, x3) + u1] + eσ1

(
− ˙̂σ1

)
+ eγ

(
− ˙̂γ
) (19)

where x2 is regarded as virtual controller and is defined as

x2 = β1 (x1) and β1 (x1) = 0.

The controller u1 is assumed as

u1 = −x1 + σ̂1x1 − x4 + γ̂φ (x1, x3) (20)

and the unknown parameters σ̂1 and γ̂ are updated by

˙̂σ1 = −x21 + eσ1
˙̂γ = −x1φ (x1, x3) + eγ

(21)

On substitution of (20) and (21) into (19), we get

V̇1 = −x21 − e2σ1 − e
2
γ

which is found to be a negative definite function.
Hence by Lyapunov stability theory, the system is globally asymptotically stable.
Now define the relation between β1 and x2 by

ω2 = x2 − β1
Consider the subsystem (x1, ω2). We have

ẋ1 = −eσ1x1 − σ1ω2 − eγφ (x1, x3)− x1
ω̇2 = −ε1σ1x1 − ε1σ1ω2 + ε1x4 + u2

Define V2 by the Lyapunov function as

V2 = V1 +
1

2
ω2
2 +

1

2
e2ε1

On differentiating V2 with respect to t, we get

V̇2 = x1ẋ1 + eσ1

(
− ˙̂σ1

)
+ eγ

(
− ˙̂γ
)

+ eε1

(
− ˙̂ε1

)
+ ω2ω̇2 (22)

The controller u2 is assumed as

u2 = σ1x1 + ε̂1 (σ1x1 + σ1ω2 − x4) + x3 − ω2 (23)
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Let x3 be the virtual controller. It is defined as x3 = β2 (x1, ω2) with the assumption that
β2 (x1, ω2) = 0.

The parameter ε1 is estimated as ˙̂ε1 = −ω2 (σ1x1 + σ1ω2 − x4) + eε1 (24)

Substituting (23) and (24) into (22), we get

V̇2 = −x21 − e2σ1 − e
2
γ − w2

2 − e2ε1
which is a negative definite function.
Hence by Lyapunov stability theory, the system is globally asymptotically stable.
The relation between x3 and β2 is defined by

ω3 = x3 − β2
Consider the subsystem (x1, ω2, ω3). We have

ẋ1 = −eσ1x1 − σ1ω2 − eγφ (x1, x3)− x1
ω̇2 = −eε1 (σ1x1 + σ1ω2 − x4)− ω2 + σ1x1 + ω3

ω̇3 = ε2 (x4 − (1− α)γφ (x1, x3)) + u3

Now consider the Lyapunov function

V3 = V2 +
1

2
ω2
3 +

1

2
e2ε2 +

1

2
e2α

The derivative of V3 with respect to t is obtained as

V̇3 = V̇2 + ω3ω̇3 + eε2 ėε2 + eαėα (25)

where u3 = −ω2 − ω3 + ε̂2γφ (x1, x3)− ε2α̂γφ (x1, x3) (26)

Let us denote the virtual controller by x4. It is defined as x4 = β3 (x1, ω2, ω3) and we
assume that β3 (x1, ω2, ω3) = 0.
The parameters are estimated as

˙̂ε2 = −ω3γφ (x1, x3) + eε2
˙̂α = ω3ε2γφ (x1, x3) + eα

(27)

Substitute (26) and (27) into (25). Then we get

V̇3 = −x21 − e2σ1 − e
2
γ − w2

2 − e2ε1 − w
2
3 − e2ε2 − e

2
α

which is a negative definite function.
Hence by the theory of Lyapunov, it follows that the system provided by Equation (16) is
stable.
Now the relation between x4 and β3 is defined by

ω4 = x4 − β3
Consider the subsystem (x1, ω2, ω3, ω4) provided by

ẋ1 = −eσ1x1 − σ1ω2 − eγφ (x1, x3)− x1
ω̇2 = −eε1 (σ1x1 + σ1ω2 − x4)− ω2 + ω3 + σ1x1

ω̇3 = ε2ω4 − eε2γφ (x1, x3) + eαε2γφ (x1, x3)− ω2 − ω3

ω̇4 = −x1 − x2 − x3 − σ2ω4 + u4

Now consider the Lyapunov function

V4 = V3 +
1

2
ω2
4 +

1

2
e2σ2
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The derivative of V4 with respect to t is obtained as

V̇4 = V̇3 + ω4ω̇4 + eσ2 ėσ2 (28)

where u4 = −ε2ω3 + x1 + x2 + x3 + σ̂2ω4 − ω4 (29)

By working backward, the parameter is estimated as

˙̂σ2 = eσ2 − w2
4 (30)

Substitute (29) and (30) into (28). Then we are led to

V̇4 = −x21 − e2σ1 − e
2
γ − w2

2 − e2ε1 − w
2
3 − e2ε2 − e

2
α − w2

4 − e2σ2

which is a negative definite function.
By the stability theory due to Lyapunov, it is seen that the Colpitts oscillator provided
by Equation (1) is asymptotically stable.

3.3. Numerical simulation. For the numerical simulations, the fourth order Runge-
Kutta method is used to solve the system using MATLAB ode45.

The initial value of the drive system (16) are taken as

x1(0) = 1.9124, x2(0) = 1.3942, x3(0) = 1.3125 and x4(0) = 1.9873.

The initial conditions of the parameters are taken as

σ̂1(0) = 10.9546, σ̂2(0) = 5.9353,

α̂(0) = 3.8765, γ̂(0) = 2.1654,

ε̂1(0) = 7.8762, ε̂2(0) = 9.9876

The adaptive backstepping controllers are updated by

u1 = −x1 + σ̂1x1 − x4 + γ̂φ (x1, x3)

u2 = σ1x1 + ε̂1 (σ1x1 + σ1ω2 − x4) + x3 − ω2

u3 = −ω2 − ω3 + ε̂2γφ (x1, x3)− ε2α̂γφ (x1, x3)

u4 = −ε2ω3 + x1 + x2 + x3 + σ̂2ω4 − ω4

The parameter values are updated by

˙̂σ1 = −x21 + eσ1
˙̂γ = −x1φ (x1, x3) + eγ

˙̂ε1 = −ω2 (σ1x1 + σ1ω2 − x4) + eε1
˙̂ε2 = −ω3γφ (x1, x3) + eε2
˙̂α = ω3ε2γφ (x1, x3) + eα

˙̂σ2 = eσ2 − w2
4

Figure 5 depicts the parameter estimation of the modified Colpitts oscillator.
Figure 6 depicts the stability of the modified Colpitts oscillator.
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Figure 5. The parameter estimation of the modified Colpitts oscillator
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Figure 6. The stability of the modified Colpitts oscillator

4. Synchronization of modified chaotic Colpitts oscillator wtih
non-linear control

The synchronization of a chaotic system is another way of explaining the sensitivity
based on the initial conditions. One has to design master-slave or drive-response coupling
between the two chaotic systems such that the time evolution becomes ideal.

In general, the two dynamic systems involved in the synchronization are called the
master and slave systems, respectively. A well-designed controller will make the trajectory
of the slave system track and trajectory of the master system, that is, the two systems
will be synchronous.

The following sub-section contains the detailed explanation of the synchronization pro-
cess for the modified Colpitts oscillator using non-linear control.
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x1
u1

x2
u2

...

xn
un

Figure 7. Block diagram for non-linear controller

4.1. Pseudo Algorithm for Synchronization of modified chaotic oscillator using
Non-linear Feedback method. In general, the two dynamics in synchronization are
called the master and slave systems respectively. A well designed controller will make the
trajectory of slave system track the trajectory of the slave system track the trajectory of
the master system.

Consider the chaotic system described by the dynamics

ẋ = Ax+ f(x) (31)

where x ∈ Rn is the state of the system, A is the n× n matrix of the system parameters
and f : Rn → Rn is the nonlinear part of the system. The system (31) is considered as
the master or drive system.

Consider the slave system with the controller [u1, u2, u3, ...un]T described by the dy-
namics

ẏ = By + f(y) + u (32)

where y ∈ Rn is the state of the system, B is the n× n matrix of the system parameters
and g : Rn → Rn is the nonlinear part of the system and u ∈ Rn nonlinear part of the
slave system. If A = B and f = g, then x and y are the states of two identical chaotic
systems. If A 6= B or f 6= g, then x and y are the states of two different chaotic systems.
The chaotic systems (31) and (32) depend not only on state variables but also on time t
and the parameters.

The synchronization error is defined as

e = y − x. (33)

Then the synchronization error dynamics is obtained as

ė = By −Ax+ g(y)− f(x) + u. (34)

The synchronization error system control a controlled chaotic system with control input
[u1, u2, u3, ...un].
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Thus, the global synchronization problem is essentially to find a nonlinear feedback
controller u so as to stabilize the error dynamics (34) for all initial conditions e(0) ∈
Rn, i.e. lim

t→∞
‖e(t)‖ = 0 for all initial conditions e(0) ∈ Rn.

The nonlinear control design uses Lyapunov function methodology for establishing the
synchronization of master system (31)and (32). By the Lyapunov function methodology,a
candidate Lyapunov function is taken as

V (e) = eTPe (35)

where P is a n× n positive definite matrix.
Note that V : R→ R is a positive definite function by construction. It is assumed that

the parameters of master and slave systems are known that the states of both systems
(31) and (32) are measurable.

If a controller u can be found such that

V̇ (e) = −eTQe (36)

where Q is a positive definite matrix, then V̇ is a negative definite function. Hence, by
Lyapunov stability theory, the error dynamics (34) is globally exponetially stable and hence
the condition lim

t→∞
‖e(t)‖ = 0 will be satisfied for all initial conditions e(0) ∈ Rn. Then the

state of the master system (31) and the slave system (32) will be globally exponentially
synchronized.

4.2. Synchronization of modified chaotic Colpitts oscillator using Non-linear
Feedback method. The synchronization of modified Colpitts oscillator is now taken
up. The drive-response formalism is utilized. The identical synchronization is elaborated
between the modified Colpitts oscillators.

The chaos synchronization basically requires the global asymptotic stability of the error
dynamics

i.e., lim
t→∞
‖e(t)‖ = 0.

The modified Colpitts oscillator is taken as drive system, which is described by

ẋ1 = σ1 (−x1 − x2) + x4 − γφ (x1, x3)

ẋ2 = −ε1σ1x1 − ε1σ1x2 + ε1x4

ẋ3 = ε2x4 − ε2 (1− α) γφ (x1, x3)

ẋ4 = −x1 − x2 − x3 − σ2x4

(37)

where x1, x2, x3 and x4 are state variables, σ1, σ2, ε1, ε2, γ, α are positive parameters and

φ (x1, x3) =
2a

π
sin−1

(
sin

(
2π

p
(x1 + x3)

))
.

The modified Colpitts oscillator is also taken as the response system which is described
by

ẏ1 = σ1 (−y1 − y2) + y4 − γφ (y1, y3) + u1

ẏ2 = −ε1σ1y1 − ε1σ1y2 + ε1y4 + u2

ẏ3 = ε2y4 − ε2 (1− α) γφ (y1, y3) + u3

ẏ4 = −y1 − y2 − y3 − σ2y4 + u4

(38)

where φ (y1, y3) =
2a

π
sin−1

(
sin

(
2π

p
(y1 + y3)

))
.
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The synchronization error occurring in the system is defined by

ei = yi − xi, i = 1, 2, 3, 4 (39)

The resulting error dynamics of the system is governed by the set of equations

ė1 = −σ1e1 − σ1e2 + e4 − γφ (y1, y3) + γφ (x1, x3) + u1

ė2 = −ε1σ1e1 − ε1σ1e2 + ε1e4 + u2

ė3 = ε2e4 − ε2 (1− α) γ (φ (y1, y3)− φ (x1, x3)) + u3

ė4 = −e1 − e2 − e3 − σ2e4 + u4

(40)

where u = (u1, u2, u3, u4)
T is the non-linear controller to be designed so as to synchronize

the states of identically modified Colpitts oscillator.
Now the objective is to find the control law ui, i = 1, 2, 3, 4 for stabilizing the error

variable of the system (40) at the origin.
Let the energy source function Lyapunov be chosen as

V =
1

2

4∑
i=1

e2i (41)

The derivative of (41) with respect to t is provided by

V̇ =
4∑
i=1

eiėi (42)

Substituting (39) and (40) into (42) we are led to the relation

V̇ = e1 (−σ1e1 − σ1e2 + e4 − γφ (y1, y3) + γφ (x1, x3) + u1)

+ e2 (−ε1σ1e1 − ε1σ1e2 + ε1e4 + u2)

+ e3 (ε2e4 − ε2 (1− α) γ (φ (y1, y3)− φ (x1, x3)) + u3)

+ e4 (−e1 − e2 − e3 − σ2e4 + u4)

The controllers are defined by

u1 = σ1e2 − e4 + γ (φ (y1, y3)− φ (x1, x3))

u2 = ε1σ1e1 − ε1e4
u3 = ε2 (1− α) γ (φ (y1, y3)− φ (x1, x3))− ε2e4 − e3
u4 = e1 + e2 + e3

(43)

Therefore the relation (42) becomes

V̇ = −σ1e21 − ε1σ1e22 − e23 − σ2e24

which is a negative definite function.
Thus, by Lyapunov stability theory, the error dynamics provided by (40) is found to be

globally asymptotically stable for all initial conditions e(0) ∈ R4.
Thus, the states of the drive and response system synchronize globally and asymptoti-

cally.
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4.3. Numerical simulation. For the numerical simulations, the fourth order Runge-
Kutta method is used to solve the system using MATLAB ode45.

The initial value of the drive system (37) are taken as

x1(0) = 0.09124, x2(0) = 0.3942, x3(0) = 0.0125 and x4(0) = 0.9823

and inital value of the response system (38) are taken as

y1(0) = 0.9546, y2(0) = 0.9353, y3(0) = 0.8765 and y4(0) = 0.1654.

The non-linear controllers are updated by (43).
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Figure 8. Synchronization of the Modified Colpitts oscillator
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Figure 9. Error Dynamics of Chaotic Colspitts oscillator

5. The synchronization of Colpitts oscillator via Backstepping Control

The backstepping technique is a cyclic procedure through a suitable Lyapunov function
along with a feedback controller. It leads to the global stability synchronization of the
strict feedback chaotic systems. In this section, the backward backstepping method is
employed for the proposed system.

In general, the two dynamics in synchronization are called the master and slave systems
respectively. A well designed controller will make the trajectory of slave system track the
trajectory of the master system.
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· · ·
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Figure 10. Block diagram for n-step backstepping control

Consider the chaotic system described by the dynamics

ẋ1 = F1(x1, x2...xn),
ẋ2 = F2(x1, x2...xn),
...

...
...

ẋn = Fn(x1, x2...xn),

(44)

where x ∈ Rn is the state of the system. The system (44) is considered as the master
system.

The slave system is a chaotic system with the controller u = [u1, u2, u3...un]T described
by the dynamics

ẏ1 = G1(y1, y2...yn) + u1,
ẏ2 = G2(y1, y2...yn) + u2,
...

...
...

ẏn = Gn(y1, y2...yn) + un,

(45)

where y ∈ Rn is the state of the slave system and Fi, Gi(i = 1, 2, 3...n) linear or nonlinear
functions with input from systems (44) and (45).

If Fi = Gi for all i, then the system (44) and (45) are called identical and otherwise the
are non-identical chaotic systems.

The synchronization error is defined as

ei = yi − xi, i=1, 2, 3...n. (46)

Then the synchronization error dynamics is obtained as,

ė1 = G1(y1, y2...yn)− F1(x1, x2...xn) + u1,
ė2 = G2(y1, y2...yn)− F2(x1, x2...xn) + u2,
...

...
...

ėn = Gn(y1, y2...yn)− Fn(x1, x2...xn) + un

(47)

The chaos synchronization problem basically requires the global asymptotically stability
of the error dynamics (47), i.e.

lim
t→∞
‖e(t)‖ = 0 (48)
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for all initial conditions e(0) ∈ Rn.
Backstepping design procedure is recursive and guarantee global stability performance

of strict-feedback chaotic systems. By using the backstepping design, at the ith step, the
ith order subsystem is stabilized with respect to a Lyapunov function Vi, by the virtual
control αi and a control input function ui.

Consider the global asymptotic stability of the system

ė1 = G1(y1, y2...yn)− F1(x1, x2...xn) + u1, (49)

where u1 is control input, which is the function of the error vector ei, and the state
variables x(t) ∈ Rn, y(t) ∈ Rn. As long as this feedback stabilizes, the system (49) will
converge to zero as t→∞, where e2 = α1(e1) is regarded as a virtual controller.

For the design of α1(e1) to stabilize the subsystem (49), we consider the Lyapunov
function defined by

V1(e) = eT1 P1e1, (50)

where P1 is a positive definite matrix.
Suppose the derivative of V1 is

V̇1 = −eT1Q1e1, (51)

where Q1 is a positive definite matrix.
Then V̇1 is a negative definite function.
Thus by a Lyapunov stability theory, the error dynamics(49) is globally asymptotically

stable.
The function α1(e1) is an estimative function when e2 is considered as a controller.
The error between e2 and α1(e1) is

w2 = e2 − α1(e1) (52)

Considering (e1, w2) subsystem given by

ė1 = G1(y1, y2...yn)− F1(x1, x2...xn) + u1,
ẇ2 = G2(y1, y2...yn)− F2(x1, x2...xn)− α̇1(e1) + u2.

(53)

Let e3 as a virtual controller in system (53), assume that when

e3 = α2(e1, w2). (54)

The system (53) is made globally asymptotically stable.
Consider the Lyapunov function defined by

V2(e2, w2) = V1(e1) + wT2 P2w2 (55)

where P2 is a positive definite matrix.
Suppose the derivative of V2(e1, w2) is

V̇2 = −eT1Q1e1 − wT2 Q2w2, (56)

where Q1, Q2 are a positive definite matrix.
Then V̇2(e1, w2) is a negative definite function.
Thus by a Lyapunov stability theory, the error dynamics (53) is globally asymptotically

stable. The virtual controller e3 = α2(e1, w2) and the state feedback input u2 makes the
system (53) asymptotically stable.

For the nth state of the error dynamics, define the error variable wn as

wn = en − αn−1(e1, w2, w3....wn−1) (57)
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Considering the (e1, w2, w3....wn) subsystem given by

ė1 = G1(y1, y2...yn)− F1(x1, x2...xn) + u1,
ẇ2 = G2(y1, y2...yn)− F2(x1, x2...xn)− α̇1(e1) + u2
...

...
...

ẇn = Gn(y1, y2...yn)− Fn(x1, x2...xn)− α̇n−1(e1, w2, ...wn−1) + u2

(58)

Consider the Lyapunov function defined by

Vn(e2, w2, ...wn) = Vn−1(e1, w2...wn−1) + wTnPnwn (59)

where Pn is a positive definite matrices.
Suppose the derivative of Vn(e1, w2, w3....wn) is

V̇n(e1, w2, ...wn) = −eT1Q1e1 − wT2 Q2w2...− wTnQnwn (60)

where Q1, Q2...Qn are a positive definite matrix.
Then V̇2(e1, w2, w3....wn) is a negative definite function on Rn.
Thus by a Lyapunov stability theory, the error dynamics (58) is globally asymptotically

stable. The virtual controller

en = αn−1(e1, w2, ...wn−1), (61)

and the state feedback input un makes the system (58) asymptotically stable.
Hence the state of the master and slave systems are globally and asymptotically syn-

chronized.

5.1. The synchronization of Colpitts oscillator via Backstepping Control. The
error dynamics system is taken as

ė4 = −e1 − e2 − e3 − σ2e4 + u1

ė3 = ε2e4 − ε2 (1− α) γ (φ (y1, y3)− φ (x1, x3)) + u2

ė2 = −ε1σ1e1 − ε1σ1e2 + ε1e4 + u3

ė1 = −σ1e1 − σ1e2 + e4 − γ (φ (y1, y3)− φ (x1, x3)) + u4

(62)

Now the objective is to find the control laws ui(i = 1, 2, 3, 4) for stabilizing the error
variables of the system (62) at the origin.

First consider the stability of the system

ė4 = −e1 − e2 − e3 − σ2e4 + u1 (63)

where e3 is considered as virtual controller provided by

e3 = β1 (e4) and β1 (e4) = 0

The Lyapunov function is defined as

V1 =
1

2
e24 (64)

The derivative of V1 with respect to t is obtained as

V̇1 = e4ė4 (65)

If β1 = 0 and u1 = e1 + e2, then we obtain

V̇1 = −σ2e24 (66)

which is a negative definite function.
Hence the system (63) is globally asymptotically stable.
The function β1 (e4) is an estimator when e3 is considered as virtual controller.



1116 TWMS J. APP. AND ENG. MATH. V.13, N.3, 2023

The relation between e3 and β1 is defined by

ω2 = e3 − β1 = e3

Consider the subsystem (e4, ω2) given by

ė4 = −ω2 − σ2e4
ω̇2 = ε2e4 − ε2 (1− α) γ (φ (y1, y3)− φ (x1, x3)) + u2

(67)

Let e2 be a virtual controller in system (67).
Assume that when e2 = β2 (e4, ω2), the system (67) is rendered globally asymptotically

stable.
Consider the Lyapunov function defined by

V2 = V1 +
1

2
ω2
2

The derivative of V2 with respect to t is

V̇2 = e4ė4 + ω2ω̇2

If β2 = 0 and u2 = −(ε2 − 1)e4 + ε2(1 − α)γ (φ (y1, y3)− φ (x1, x3)) + e2 − ω2, then we
obtain

V̇2 = −σ2e24 − ω2
2

which is a negative definite function.
Hence by Lyapunov stability theory, the system is stable.
Let us consider the relation between e2 and β2 defined by

ω3 = e2 − β2 = e2

Now the subsystem (e4, ω2, ω3) is considered as

ė4 = −ω2 − σ2e4
ω̇2 = e4 + ω3 − ω2

ω̇3 = −ε1σ1e1 − ε1σ1ω3 + ε1e4 + u3

(68)

Consider the function V3 due to Lyapunov function defined by

V3 = V2 +
1

2
ω2
3

On differentiating V3 with respect to t, we get

V̇3 = e4ė4 + ω2ω̇2 + ω3ω̇3

If β3 = 0 and u3 = −ω2 − ε1e4, then we obtain

V̇3 = −σ2e24 − ω2
2 − ε1σ1ω2

3

which is a negative definite function.
Now the relation between e1 and β3 is defined as

ω4 = e1 − β3 = e1

Let us consider the subsystem (e4, ω2, ω3, ω4) provided by

ė4 = −ω2 − σ2e4
ω̇2 = e4 + ω3 − ω2

ω̇3 = −ε1σ1ω4 − ε1σ1ω3 − ω2

ω̇4 = −σ1ω4 − σ1ω3 + e4 − γ (φ (y1, y3)− φ (x1, x3)) + u4

(69)
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Consider the Lyapunov function

V4 = V3 +
1

2
ω2
4

The derivative of V4 with respect to t is

V̇4 = e4ė4 + ω2ω̇2 + ω3ω̇3 + ω4ω̇4

If β4 = 0 and u4 = ε1σ1ω3 + σ1ω3 − e4 + γ (φ (y1, y3)− φ (x1, x3)), then we obtain

V̇4 = −σ2e24 − ω2
2 − ε1σ1ω2

3 − σ1ω2
4

which is a negative definite function.
Hence by Lyapunov stability theory, the system is stable.

5.2. Numerical simulation. For the numerical simulations, the fourth order Runge-
Kutta method is used to solve the system using MATLAB ode45.

The initial value of the drive system (37) are taken as

x1(0) = 0.09124, x2(0) = 0.3942, x3(0) = 0.0125 and x4(0) = 0.9823

and inital value of the response system (38) are taken as

y1(0) = 0.9546, y2(0) = 0.9353, y3(0) = 0.8765 and y4(0) = 0.1654.

The backstepping controllers of (62) are updated by

u1 = e1 + e2

u2 = −(ε2 − 1)e4 + ε2(1− α)γ (φ (y1, y3)− φ (x1, x3)) + e2 − ω2

u3 = −ω2 − ε1e4
and u4 = ε1σ1ω3 + σ1ω3 − e4 + γ (φ (y1, y3)− φ (x1, x3))

Figure 11 portrays the chaos synchronization of identical drive and response systems
provided by Equations (37) and (38), respectively.
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Figure 11 Synchronization of identical modified Colpitts oscillator,
error plot for identical modified Colpitts oscillator

6. Circuit Implementation

In order to verify the dynamical properties of the modified Colpitts oscillator, an
operational amplifier circuit is designed in accordance with the equation (1). The cir-
cuit is designed by linear resistance and linear capacitors. The allowable voltage range of
operational amplifiers leads to the appropriate variables proportional compression trans-
formation to the state variables of the system. According to the circuit diagrams, the
corresponding oscillation circuit equation is described as follows

ẋ1 = σ1(−x1 − x2) + x4 − γφ(x1, x3)
ẋ2 = ε1σ1(−x1 − x2) + ε1x4
ẋ3 = ε2(x4 − (1− α)γφ(x1, x3))
ẋ4 = −x1 − x2 − x3 − σ2x4

where φ(x1, x3) =
2a

π
sin−1

(
sin

(
2π

p
(x1 + x3)

))
and the parameter values are

σ1 =
R2 (R5 +R8)

R5R1C1R3 (R6 +R7)
=

R36 (R31 +R32)

R37R31 (R34 +R35)
, σ2 =

R64R76R78

R63C4R65R75R77
,

ε1 =
R28R37

R27C2R29R36
, ε2 =

R42R46

R41C3R43R45
,

γ =
R2R20

R1C1R3R17
=
R58

R55
, α =

R46 −R45

R46
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7. Conclusions

In this paper, the Colpitts oscillator with triangular wave non-linearity is analyzed.
The qualitative properties of the modified Colpitts oscillator is analyzed in this study.
It exhibits the chaotic and hyperchaotic nature for some specified initial conditions and
parameters. By Wolf method, the Lyapunov exponent’s is calculated. For some initial
conditions, it exhibits the dissipative nature. The adaptive backstepping control technique
is used to control the system. Synchronization, the non-linear and backstepping control
are utilized. Numerical simulations support the results. MATLAB is used for numerical
simulation.
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