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ON THE SOLUTIONS OF SOME RECENT OPEN PROBLEMS IN

METRIC FIXED POINT THEORY

N. TAŞ1, §

Abstract. In this paper, our aim is to provide new solutions to some open problems
given in [18] and [27] about the discontinuity at fixed point and related results. For this
purpose, we prove new theorems and corollaries using simulation functions and known
fixed-point techniques.

Keywords: Discontinuity, fixed point, simulation function, complete metric space.

AMS Subject Classification: 54H25, 54E50, 47H09, 47H10, 54C30, 46T99.

1. Introduction and background

Fixed-point theory is very important in the different areas of mathematics such as ap-
plied mathematics, topology, analysis etc. This theory was started with the Banach’s
contraction principle [1]. This principle has been generalized using the various techniques
because there exist some examples of a self-mapping does not satisfy the Banach’s con-
traction principle but has a fixed point. One of these techniques is to generalize the used
contractive condition (for example, see [26] and the references therein). Another technique
is to generalize the used metric spaces (for example, see [12] and the references therein).
Recently, the geometric properties of fixed points have been investigated as a new direc-
tion in the fixed-point theory (see [18]). On the other hand, many contractive conditions
used in the fixed-point theorems require that a self-mapping is continuous at fixed point.
But there are some contractive conditions which do not require that the self-mapping to
be continuous. In this context, the following open questions raised by Rhoades [27] and

Özgür et al. [18] have been extensively studied, respectively:
Open Question 1: Does there exist a contractive condition which is strong enough to

generate a fixed point but which does not force the self-mapping to be continuous at the
fixed point?

Open Question 2: What are the geometric properties of fixed points in which case a
self-mapping has more than one fixed point?
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N. TAŞ: ON THE SOLUTIONS OF SOME RECENT OPEN PROBLEMS 1199

Open Question 3: Does there exist a contractive condition that excludes the identity
map from the obtained fixed-point (resp. fixed-circle, fixed-disc) results?

Many authors have investigated new solutions using various approaches to Open Ques-
tion 1. For example, in [23], Pant obtained a solution using the function φ : R+ → R+

such that φ(t) < t for each t > 0 and the number defined as

m(a, b) = max{d(a, fa), d(b, fb)}.
Theorem 1.1. [23] Let (X, d) be a complete metric space and f : X → X be a self-mapping
such that

(i) d(fa, fb) ≤ φ(m(a, b)),
(ii) Given ε > 0 there exists a δ > 0 such that

ε < m(a, b) < ε+ δ =⇒ d(fa, fb) ≤ ε.
Then f has a unique fixed point z in X and f is continuous at z if and only if lim

a→z
m(a, z) =

0.

After then, various solutions to Open Question 1 have been given (see [2, 3, 4, 5, 6, 7,
22, 24, 28, 30] for more details). These kind results are gained great importance because
there exist some applications of the obtained solutions to some other areas such as biology,
discontinuous neural networks, simulation functions etc. (see [10, 11, 24, 28, 29]).

More recently, the fixed-circle (or fixed-disc) problem has been studied using some

classical fixed-point techniques related to Open Question 2. For example, Özgür and Taş
obtained a solution to this question using Caristi’s inequality (see [8]) as follows:

Theorem 1.2. [18] Let (X, d) be a metric space and Ca0,r = {a ∈ X : d(a, a0) = r} be
any circle on X. Let us define the mapping ϕ : X → [0,∞) such that ϕ(a) = d(a, a0) for
all a ∈ X. If there exists a self-mapping f : X → X satisfying

(C1) d(a, fa) ≤ ϕ(a)− ϕ(fa),
(C2) d(fa, a0) ≥ r for each a ∈ Ca0,r,

then the circle Ca0,r is a fixed circle of f .

Motivated by this fact, this question has been studied as a geometric approach to the
generalization of fixed-point theory. For this purpose, some known techniques used in
fixed-point theorems are adapted to the fixed-circle problem on metric spaces and some
generalized metric spaces (see [18, 19, 20, 24]). The fixed-circle problem has brought a
new light to the fixed-point theory and geometric thinking.

Some contractive conditions have been introduced to exclude the identity map from the
fixed-circle theorems related to Open Question 3 (see [18, 19]).

In this paper, our aim is to give new solutions to the above open questions. For this
reason, we present a new technique using the family of simulation functions defined in [17].
The function ζ : [0,∞)2 → R is said to be a simulation function, if the followings hold:

(ζ1) ζ(0, 0) = 0,
(ζ2) ζ(t, s) < s− t for all s, t > 0,
(ζ3) If {tn}, {sn} are sequences in (0,∞) such that

lim
n→∞

tn = lim
n→∞

sn > 0,

then
lim sup

n→∞
ζ(tn, sn) < 0.

The set of all simulation functions is denoted by Z [17]. Using this set, many fixed-point
results was obtained with various approaches (see [9, 13, 16, 17, 21, 25] and the references
therein).
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2. Main results

At first, using the set Z, we present some new solutions to Open Question 1.
Let (X, d) be a complete metric space and f : X → X be a self-mapping in the whole

paper unless otherwise stated.

Theorem 2.1. If the following conditions hold
(i) Given ε > 0 there exists a δ(ε) > 0 such that

ε < m(a, b) < ε+ δ =⇒ d(fa, fb) ≤ ε,
(ii) ζ (d (fa, fb) ,m(a, b)) ≥ 0,

for all a, b ∈ X, then f has a fixed point x and the sequence {fna} for each a ∈ X
converges to the fixed point x. Also f is discontinuous at x if and only if lim

a→x
m(a, x) 6= 0.

Proof. Let a0 be any point in X. Let us define a sequence {an} in X as

an = fan−1 = fna0.

If an = an+1 for some n then we have

an = an+1 = an+2 = an+3 = . . . .

So {an} is a Cauchy sequence and an is a fixed point of f . Hence we suppose an 6= an+1

for each n. Then we get

m(an−1, an) = max {d(an−1, fan−1), d(an, fan)} = max {d(an−1, an), d(an, an+1)}
and so using the condition (ii), we have

0 ≤ ζ (d (fan−1, fan) ,m(an−1, an)) . (1)

Let us consider the following cases:
Case 1. Let d(an−1, an) < d(an, an+1). Using the inequality (1) and the condition (ζ2),

we obtain

0 ≤ ζ (d(an, an+1), d(an, an+1)) < d(an, an+1)− d(an, an+1) = 0,

a contradiction.
Case 2. Let d(an−1, an) > d(an, an+1). Using the inequality (1) and the condition (ζ2),

we get
0 ≤ ζ (d(an, an+1), d(an−1, an)) < d(an−1, an)− d(an, an+1)

and so
d(an, an+1) < d(an−1, an),

that is, {d(an, an+1)} is a strictly decreasing sequence of positive numbers and it tends to
a limit w ≥ 0. We assert w = 0. On the contrary, we assume w > 0. Therefore, there
exists a positive integer n0 with n ≥ n0 such that

w < d(an, an+1) < w + δ(w), (2)

or equivalently
w < m(an, an+1) < w + δ(w).

From the condition (i), we get
d(fan, fan+1) ≤ w,

contradicts with the inequality (2). Hence it should be w = 0, that is, d(an, an+1) → 0
as n → ∞. Now we prove that {an} is a Cauchy sequence. To do this, let us fix an
ε > 0. Without loss of generality, we suppose δ(ε) < ε. Since d(an, an+1)→ 0, there exists
n0 ∈ N such that

d(an, an+1) < δ,
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for n ≥ n0. Using the mathematical induction and the Jachymski’s technique (see [14, 15]),
we show that

d(ak, ak+n) < ε+ δ. (3)

The inequality (3) holds for n = 1. We suppose that the inequality (3) is true for some n
and we prove it for n+ 1. Using the triangle inequality, we get

d(ak, ak+n+1) ≤ d(ak, ak+1) + d(ak+1, ak+n+1).

It is enough to show that d(ak+1, ak+n+1) ≤ ε. To do this, we prove that m(ak, ak+n) ≤
ε+ δ, where

m(ak, ak+n) = max {d(ak, fak), d(ak+n, fak+n)} .

From the mathematical induction hypothesis, we get

d(ak, ak+1) < ε+ δ and d(ak+n, ak+n+1) < δ.

Hence m(ak, ak+n) < ε + δ and so by the condition (i), we have d(ak+1, ak+n+1) ≤ ε.
We have completed the induction. Therefore, {an} is a Cauchy sequence. From the
completeness hypothesis, there exists a point x ∈ X such that an → x as n→∞ and also
fan → x as n→∞. Now we claim that fx = x. If not, using the conditions (ii), (ζ2) and
(ζ3), we get

m(an, x) = max {d(an, fan), d(x, fx)} = β

and

0 ≤ lim sup
n→∞

ζ (d(fan, fx),m(an, x)) = lim sup
n→∞

ζ (d(fan, fx), β)

< lim sup
n→∞

[β − d(an+1, fx)] = 0,

a contradiction. So it should be fx = x, that is, x is a fixed point of f . To prove the
last part of this theorem, we show that f is continuous at x if and only if lim

a→x
m(a, x) = 0.

Suppose that f is continuous at the fixed point x and an → x as n→∞. By the continuity
of f , we have fan → fx = x and by the triangle inequality, we get

d(an, fan) ≤ d(an, x) + d(x, fan)→ 0 as n→∞.

Then we get lim
n→∞

m(an, x) = 0. Conversely, if lim
an→x

m(an, x) = 0 then d(an, fan) → 0 as

an → x. This implies fan → x = fx, that is, f is continuous at the fixed point x. �

Using the self-mapping f defined as in Example 1 given in [23], we give the following
example.

Example 2.1. Let X = [0, 2] be the complete metric space with the usual metric d defined
as d(a, b) = |a− b| for all a, b ∈ X. Let us define the self-mapping

fa =

{
1 ; a ≤ 1
0 ; a > 1

,

for all a ∈ X. Then f satisfies the conditions of Theorem 2.1 with

δ(ε) =

{
1 ; ε ≥ 1

1− ε ; ε < 1

and

ζ(t, s) =

{
0 ; t, s ≥ 1

2
3s− t ; otherwise

.

Consequently, f has a fixed point a = 1 and f is discontinuous at the point a = 1 if and
only if lim

a→1
m(a, 1) 6= 0.
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Assume that the self-mapping f satisfies the condition (i) of Theorem 2.1 in all of the
following corollaries. Then we get the following results.

Corollary 2.1. If the following condition holds

d(fa, fb) ≤ λm(a, b), λ ∈ [0, 1) (4)

for all a, b ∈ X, then f has a fixed point x and the sequence {fna} for each a ∈ X
converges to the fixed point x. Also f is discontinuous at x if and only if lim

a→x
m(a, x) 6= 0.

Proof. Let us define the mapping ζ1 : [0,∞)2 → R by

ζ1(t, s) = λs− t,

for all s, t ∈ [0,∞) (see Corollary 2.10 given in [17]). Then the self-mapping f satisfies the
condition (ii) of Theorem 2.1 with respect to ζ1 ∈ Z. Therefore, the proof can be easily
obtained by taking ζ = ζ1 in Theorem 2.1. �

Corollary 2.2. If the following condition holds

d(fa, fb) ≤ m(a, b)− ϕ(m(a, b)),

for all a, b ∈ X, where ϕ : [0,∞)→ [0,∞) is lower semi continuous function and ϕ−1(0) =
{0}, then f has a fixed point x and the sequence {fna} for each a ∈ X converges to the
fixed point x. Also f is discontinuous at x if and only if lim

a→x
m(a, x) 6= 0.

Proof. Let us define the mapping ζ2 : [0,∞)2 → R by

ζ2(t, s) = s− ϕ(s)− t,

for all s, t ∈ [0,∞) (see Corollary 2.11 given in [17]). Then the self-mapping f satisfies the
condition (ii) of Theorem 2.1 with respect to ζ2 ∈ Z. Therefore, the proof can be easily
seen by taking ζ = ζ2 in Theorem 2.1. �

Corollary 2.3. If the following condition holds

d(fa, fb) ≤ ϕ(m(a, b))m(a, b),

for all a, b ∈ X, where ϕ : [0,∞) → [0, 1) is a mapping such that lim sup
t→r+

ϕ(t) < 1 for all

r > 0, then f has a fixed point x and the sequence {fna} for each a ∈ X converges to the
fixed point x. Also f is discontinuous at x if and only if lim

a→x
m(a, x) 6= 0.

Proof. Let us define the mapping ζ3 : [0,∞)2 → R by

ζ3(t, s) = sϕ(s)− t,

for all s, t ∈ [0,∞) (see Corollary 2.13 given in [17]). Then the self-mapping f satisfies the
condition (ii) of Theorem 2.1 with respect to ζ3 ∈ Z. Therefore, the proof can be easily
seen by taking ζ = ζ3 in Theorem 2.1. �

Corollary 2.4. If the following condition holds

d(fa, fb) ≤ η(m(a, b)),

for all a, b ∈ X, where η : [0,∞)→ [0,∞) is an upper semi continuous mapping such that
η(t) < t for all t > 0 and η(0) = 0, then f has a fixed point x and the sequence {fna}
for each a ∈ X converges to the fixed point x. Also f is discontinuous at x if and only if
lim
a→x

m(a, x) 6= 0.
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Proof. Let us define the mapping ζ4 : [0,∞)2 → R by

ζ4(t, s) = η(s)− t,
for all s, t ∈ [0,∞) (see Corollary 2.14 given in [17]). Then the self-mapping f satisfies the
condition (ii) of Theorem 2.1 with respect to ζ4 ∈ Z. Therefore, the proof can be easily
seen by taking ζ = ζ4 in Theorem 2.1. �

Corollary 2.5. If the following condition holds

d(fa,fb)∫
0

φ(u)du ≤ m(a, b),

for all a, b ∈ X, where φ : [0,∞) → [0,∞) is a function such that
ε∫
0

φ(u)du exists and

ε∫
0

φ(u)du > ε, for each ε > 0, then f has a fixed point x and the sequence {fna} for

each a ∈ X converges to the fixed point x. Also f is discontinuous at x if and only if
lim
a→x

m(a, x) 6= 0.

Proof. Let us define the mapping ζ5 : [0,∞)2 → R by

ζ5(t, s) = s−
t∫

0

φ(u)du,

for all s, t ∈ [0,∞) (see Corollary 2.15 given in [17]). Then the self-mapping f satisfies the
condition (ii) of Theorem 2.1 with respect to ζ5 ∈ Z. Therefore, the proof can be easily
seen by taking ζ = ζ5 in Theorem 2.1. �

Remark 2.1. 1) If a self-mapping f satisfies the inequality (4) of Corollary 2.1, then f
satisfies the condition (iii) of Theorem 1 given in [23].

2) Notice that Corollary 2.4 can be considered same as Theorem 2.6 given in [22].
3) The above results are the new solutions of Open Question 1.

Following Corollary 2.3 given in [2], we get the following corollary.

Corollary 2.6. If the following conditions hold
(i) Given ε > 0 there exists a δ(ε) > 0 such that

ε < t < ε+ δ =⇒ ζ(t, ε) ≥ 0,

for any t > 0,
(ii) ζ (d (fa, fb) , d(a, b)) ≥ 0 for all a, b ∈ X,

then f has a fixed point x and the sequence {fna} for each a ∈ X converges to the fixed
point x.

Proof. By the similar arguments used in the proof of Theorem 2.1 and the properties of a
simulation function, the proof can be easily seen. �

Following Theorem 2.9 given in [22], we give the following theorem using the set Z:

Theorem 2.2. Let f be a continuous self-mapping of X and the following conditions hold
(i) Given ε > 0 there exists a δ(ε) > 0 such that

ε < m(a, b) < ε+ δ =⇒ d(fa, fb) ≤ ε,
(ii) ζ (d (fa, fb) ,m(a, b)) ≥ 0 for all a, b ∈ X,
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(iii) ζ
(
d
(
fa, f2a

)
,m(a, fa)

)
≥ 0 for all a ∈ X,

(iv) inf {m(a, b) : a, b ∈ X} < M , where M = sup {m(a, b) : a, b ∈ X}, that is, m(a, b)
is not constant on X ×X.
If δ(ε) is continuous in (0,M) then f has a fixed point x.

Proof. Let b ∈ X. By the conditions (ii), (iii) and (ζ2), we get

0 ≤ ζ(d(fnb, fn+1b),m(fn−1b, fnb)) = ζ(d(fnb, fn+1b), d(fn−1b, fnb))

< d(fn−1b, fnb)− d(fnb, fn+1b),

whence
d(fnb, fn+1b) < d(fn−1b, fnb) < d(fn−2b, fn−1b) < . . . < d(b, fb), (5)

that is, {d(fnb, fn+1b)} is a strictly decreasing sequence of positive numbers. By the
condition (iv), there exist x, y ∈ X such that m(x, y) < M , that is, d(x, fx) < M and
d(y, fy) < M . Using the inequality (5), we get

d(fnx, fn+1x) < d(fn−1x, fnx) < . . . < d(x, fx) < M .

If fnx = fn+1x for some n then fnx is a fixed point of f . Therefore we can suppose
that fnx 6= fn+1x for each n. Since {d(fnx, fn+1x)} is a strictly decreasing sequence
of positive real numbers, it converges to a real number w such that 0 ≤ w < M . By
the similar arguments used in the proof of Theorem 2.1, we have w = 0 and also {fnx}
is Cauchy. From the completeness hypothesis, there exists a point u ∈ X such that
lim
n→∞

fnx = u. By the continuity of f , we have lim
n→∞

f(fnx) = fu, that is, lim
n→∞

fnx = fu.

So we obtain fu = u, that is, u is a fixed point of f . �

Remark 2.2. It can be also investigated new results on discontinuity at the fixed point
using the continuity of f2 (resp. the continuity of fp or the orbitally continuity of f) in-
stead of the continuity condition given in Theorem 2.2.

Let the number m∗(a, b) be defined as follows:

m∗(a, b) = max

{
d(a, b), d(a, fa), d(b, fb),

d(a, fb) + d(b, fa)

2

}
.

Using this number and simulation functions, various types of fixed-point theorems were
obtained (for example, see [21]). Also, using this number, a solution was given to Open
Question 1 in [2]. Now we get a new solution to Open Question 1 using this number and
the set of simulation functions.

Theorem 2.3. If the following conditions hold
(i) Given ε > 0 there exists a δ(ε) > 0 such that

ε < m∗(a, b) < ε+ δ =⇒ d(fa, fb) ≤ ε,
(ii) ζ (d (fa, fb) ,m∗(a, b)) ≥ 0,

for all a, b ∈ X, then f has a unique fixed point x and the sequence {fna} for each a ∈ X
converges to the fixed point x. Also f is discontinuous at x if and only if lim

a→x
m∗(a, x) 6= 0.

Proof. By the similar arguments used in the proof of Theorem 2.1, it is easy to see that f
has a fixed point x. Now we show that the fixed point x is unique. To do this, we suppose
that y is another fixed point of f such that x 6= y. From the conditions (ii), (ζ2) and the
symmetry property, we have

m∗(x, y) = max

{
d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)

2

}
= d(x, y)
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and

0 ≤ ζ (d (fx, fy) ,m∗(x, y)) = ζ (d (x, y) , d(x, y)) < d(x, y)− d(x, y) = 0,

a contradiction. So we get x = y, that is, x is a unique fixed point of f . The last part of
this theorem is clear. �

Example 2.2. If we consider the metric space (X, d) and the self-mapping f given in
Example 2.1, then f satisfies the conditions Theorem 2.3. Consequently, f has a fixed
point a = 1 and f is discontinuous at the point a = 1 if and only if lim

a→1
m∗(a, 1) 6= 0.

In [20], a new solution was given using the number m∗(a, b) and the set of simulation
functions on metric spaces to Open Question 2. In [20], Open Question 3 has been left for
the obtained fixed-disc results. To obtain a solution to this question, we use the number
m(a, b) and the set of simulation functions. Therefore, we exclude the identity map IX
(IX : X → X is a function defined by IX(x) = x for all x ∈ X) from the obtained fixed-disc
results in [20].

Theorem 2.4. Let (X, d) be a metric space and f : X → X be a self-mapping. There
exist a0 ∈ X and ζ ∈ Z such that

d(a, fa) > 0 =⇒ ζ(d(a, fa),m(a, a0)) ≥ 0, (6)

for all a ∈ X if and only if f = IX .

Proof. At first, we show that a0 is a fixed point of f . Let a0 6= fa0. Then we have
d(a0, fa0) > 0. By the conditions (6) and (ζ2), we get

0 ≤ ζ(d(a0, fa0),m(a0, a0)) = ζ(d(a0, fa0), d(a0, fa0))

< d(a0, fa0)− d(a0, fa0) = 0,

a contradiction. It should be

a0 = fa0. (7)

Let us take a ∈ X − {a0} and a 6= fa. Hence we obtain d(a, fa) > 0 and so using the
conditions (6), (ζ2) and the equality (7), we find

0 ≤ ζ(d(a, fa),m(a, a0)) = ζ(d(a, fa), d(a, fa))

< d(a, fa)− d(a, fa) = 0,

a contradiction. Therefore, we have a = fa. Consequently, we get f = IX . The converse
statement of this theorem can be easily proved. �

3. Conclusion

In the present paper, some solutions are given to the above mentioned open questions
using the set of simulation functions. By similar approaches, new solutions can be de-
rived to these open questions on metric and some generalized metric spaces. Also, some
applications of the obtained results can be investigated in other research areas such as
discontinuous activation functions, integral equations etc.
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