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STABILIZATION OF HYPERBOLIC FITZHUGH-NAGUMO

EQUATIONS WITH ONE INTERIOR FEEDBACK CONTROLLER

G. N. ALIYEVA1, §

Abstract. We show that the hyperbolic modification of FitzHugh-Nagumo system de-
fined in a bounded domain G ⊂ Rn is global exponetally stablizable by a feedback
controller action in an open subdomian ω ⊂ G such that G \ ω is sufficiently thin.
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1. Introduction

We study the problem of interior feedback stabilization of the following coupled system
of equations 

τ∂2t u+ ∂tu−∆u+ f(u) + v = 1ω(x)w, x ∈ G, t > 0,

∂tv + dv − bu = 0, x ∈ G, t > 0,

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), v(x, 0) = v0(x), x ∈ G,
u(x, t) = 0, x ∈ ∂G, t > 0,

(1)

where G ⊂ RN (N ≤ 3) is a bounded domain with sufficiently smooth boundary ∂G,
τ > 0, b > 0, d > 0 are given numbers, u0, u1, v0 are given functions, w is the control
function, 1ω(x) is a characteristic function of the domain ω, f : R → R is a continuously
differentiable function that satisfies the conditions

f(s)s−F(s) ≥ −r1s2, ∀s ∈ R, (2)

a1|s|p+2 − r2s2 ≤ F(s) ≤ a2|s|p+2 + r3, ∀s ∈ R, (3)

where a1, a2, r1, r2, r3 are given positive numbers, p ≥ 2 if N = 1, 2 and p ∈ [2, 4] if
N = 3 are given numbers and

F(s) =

∫ s

0
f(y)dy.
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The system of equations (1) is one of the mathematical models describing the transmission
of electrical impulses through a nerve axon.
The parabolic FitzHugh Nagumo equations, i.e. the system of equations{

∂tu−∆u+ f(u) + v = 0, x ∈ G, t > 0,

∂tv + dv − bu = 0, x ∈ G, t > 0,
(4)

with f(u) = u(a − u)(b − u), where a > 0, b > 0, c > 0 are given paprameters, arised
as a model describing the signal transmission across axons. There are many publica-
tions devoted to the mathematical analysis of the Cauchy problem and initial boundary
value problems for parabolic FitzHugh-Nagumo equations (4), where the authors obtained
results on global existence of solutions of the Caucy problem and initial boundary value
problems for this system. It is shown that under some natural restrictions on the nonlinear
term f(u) (icluding, the nonlinearity of the form f(u) = u(a − u)(b − u), the semigroup
generated by the initial boundary value problem for (4) possesses a finite dimensional
global attractor (see, e.g., [7], [8], [13] and references therein.)
In [15], the authors proved that the parabolic FitzHugh-Nagumo system can be exponen-
tially stabilized by a feedback controller acting on subdomain in the reaction - diffusion
equation. It is necessary to note that there are many publications devoted to the study
of internal feedback stablization of various parabolic equations and systems (see, e.g., [1],
[2] and referencis therein).
A number of papers are devoted to the study of modification of the FitzHug-Nagumo
equations taking into account the effects of relaxation (see, e.g., [14], [9], [12] ).
In these papers the authors studied the problems of existence of solitary waves, existece
and uniqueness of solution to the Cauchy problem and intial boubdary value problems,
existence of bouded solutions of considered systems and some other qualitative properties
of the system.
Our main goal in this short note is to show that the hyperbolic FitzHugh-Nagumo system
also can be exponentially stabilized by a feedback controller acting on subdomain in the
nonlinear damped wave equation.

We will be using the following notations:
QT = G × (0, T ); Lp(G), 1 ≤ p ≤ ∞, and Hs(G), s > 0, are the usual Lebesgue and
Sobolev spaces respectively. With (·, ·) and ‖ · ‖ we denote the inner product and norm of
L2(G) .

We will need below the following inequalities:

Young’s inequality

ab ≤ ε

p
ap +

1

qε1/(p−1)
bq, for all a, b, ε > 0, with q = p/(p− 1), 1 < p <∞. (5)

.
Intepolation inequality

‖∇u‖2 ≤ ‖∇u‖‖∆u‖, ∀u ∈ H2(G) ∩H1
0 (G). (6)

Poincaré inquality

‖u‖2 ≤ λ−1
1 ‖∇u‖

2, ∀u ∈ H1
0 (G), (7)

where λ1 is the first eigenvalue of the Laplace oparator −∆ under the homogeneous Dirich-
let’s boundary condidition.
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Sobolev inequality

‖u‖Lp(G) ≤ c0‖∇u‖, ∀u ∈ H1
0 (G), (8)

where p ∈ [2, 2n
n−2 ] if N > 2 and p > 0 is arbitrary if N = 1, 2, c0 is an absolute constant

for p = 2n
n−2 and depends on G otherwise.

Finally let us give the definition of a weak solution of the problem (1).

Definition 1.1. A pair of functions [u, v] is called a weak solution of the problem(1) if

u ∈ C(0, T ;H1
0 (G), v ∈ C(0, T ;L2(G)), ∀T > 0

and the equations (11),(12) are satisfied in the sense of distributions.

1ω(x) is the characteristic function of the subdomain ω ⊂ G with smooth boundary and
ω ⊂ G.
Let us denote by λ1(Gω) the first eigenvalue of the problem

−∆v = λv, x ∈ Gω; v = 0, x ∈ ∂Gω,
where Gω := G \ ω. We will need the following Lemma in the proof of the main result of
this section:

Lemma 1.1. (see, e.g.,[15]) For each γ > 0 there exists a number µ0(γ) > 0 such that
the following inequality holds true∫

G

(
|∇v(x)|2 + µ1ω(x)v2(x)

)
dx ≥ (λ1(Gω)− γ)

∫
G
v2(x)dx, ∀v ∈ H1

0 (G), (9)

whenever µ > µ0.

2. Uniform estimates

To study the stabilization of the system, we apply the feedback controller

w = −µu (10)

with µ > 0 and get the following closed-loop system:

τ∂2t u+ ∂tu−∆u+ f(u) + v = −µ1ω(x)u, x ∈ G, t > 0, (11)

∂tv + dv − bu = 0, x ∈ G, t > 0, (12)

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), v(x, 0) = v0(x), x ∈ G, (13)

u(x, t) = 0, x ∈ ∂G, t > 0, (14)

First we multiply the equation (11) by ∂tu + εu, ε > 0, and integrate the obtained
relation over the domain G

d

dt
Eε(t) + (1− ετ)‖∂tu(t)‖2 + ε‖∇u(t)‖2 + ε(f(u), u) + ε(v, u)− (∂tv, u)

= −µε
∫
ω
u2(x, t)dx, (15)

where

Eε(t) :=
τ

2
‖∂tu‖2 +

1

2
‖∇u(t)‖2 + (F(u), 1) +

ε

2
‖u(t)‖2 + ετ(∂tu, u) + (u, v) +

µ

2

∫
ω
u2dx

and ε > 0 is a parameter to be chosen below. Now we multiply the eqation (12) by ∂tv+ ε
bv

and obtain the equality

‖∂tv‖2 + (
d

2
+

ε

2b
)
d

dt
‖v(t)‖2 − b(∂tv, u) +

εd

b
‖v‖2 − ε(u, v) = 0 (16)
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Adding (15) and (16) then using the inequality

(1 + b)|(∂tv, u)| ≤ ‖∂tv‖2 +
1

4
(1 + b)2‖u‖2

we get

d

dt
Φε(t) + (1− ετ)‖∂tu(t)‖2 + ε‖∇u(t)‖2 + ε(f(u), u)

+
dε

b
‖v‖2 − 1

4
(1 + b)2‖u‖2 ≤ −µε

∫
ω
u2(x, t)dx, (17)

where

Φε(t) := Eε(t) + (
d

2
+

ε

2b
)‖v(t)‖2.

By using the condition(3) and the inequalities

ετ |(∂tu, u)| ≤ τ

4
‖∂tu‖2 + τε2‖u‖2,

|(u, v)| ≤ d

2
‖v‖2 +

1

2d
‖u‖2

we get the following estimate from below for Φε(t) :

Φε(t) ≥
τ

4
‖∂tu‖2 +

1

2
‖∇u(t)‖2 + a1

∫
G
|u(x, t)|p+2dx

+ (
ε

2
− r2 − τε2 −

1

2d
)‖u‖2 +

ε

2b
‖v‖2 +

µ

2

∫
ω
u2(x, t)dx. (18)

Adding to the left hand side of (17) δΦε(t)− δΦε(t) with some δ ∈ (0, ε) we can rewrite
it in the following form

d

dt
Φε(t) + δΦε(t) + (1− ετ − δτ

2
)‖∂tu‖2 + (ε− δ

2
)‖∇u‖2 + (

dε

b
− δd

2
− δε

2b
)‖v‖2

+ ε(f(u), u)− δ(F(u), 1)−
(

1

4
(1 + b)2 +

δε

2

)
‖u‖2 − εδτ(∂tu, u)− δ(u, v)

= −(µε− δµ

2
)

∫
ω
u2(x, t)dx (19)

By using the inequality (20)

ε(f(u), u)− δ(F(u), 1) ≥ −ε(r1 + r2)‖u‖2 (20)

that follows from (2) and the inequalities

δετ |(∂tu, u)| ≤ δετ

2
‖∂tu‖2 +

δετ

2
‖u‖2,

δ|(u, v)| ≤ δ

2λ1
‖∇u‖2 +

δ

2
‖v‖2.

we obtain from (19) that

d

dt
Φε(t) + δΦε(t) +

(
1− ετ − δτ

2
− δετ

2

)
‖∂tu‖2 +

(
ε− δ

2
− δ

2λ1
(ετ + 1)

)
‖∇u‖2

+

(
εd

b
− δ(d

2
+

ε

2b
)− δ

2

)
‖v‖2 − ε(r1 + r2)‖u‖2 ≤ −µ(ε− δ

2
)

∫
ω
u2(x, t)dx
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Choosing δ small enough we can get form the last inequality that

d

dt
Φε(t) + δΦε(t) +

1

4τ
‖∇u‖2 − 1

2τ
(r1 + r2 +

τ

4
)‖u‖2 ≤ − µ

4τ

∫
ω
u2(x, t)dx. (21)

According to the Lemma 1.1 if G \ ω is sufficiently thin, we can choose µ big enough
such that

‖∇u‖2 + µ

∫
ω
u(x, t)dx ≥ 2(r1 + r2 +

τ

4
)‖u‖2.

and

‖∇u‖2 + 2µ

∫
ω
u(x, t)dx ≥ (r2 +

1

2d
)‖u‖2.

By using these inequalities we get

d

dt
Φε(t) + δΦε(t) ≤ 0. (22)

and

Φε(t) ≥
τ

4
‖∂tu‖2 +

1

4
‖∇u‖2 + a1

∫
G
|u(x, t)|p+2dx+

1

4τb
‖v‖2 (23)

Taking into account (23) we deduce from (22) the follwing exponential decay estimate

τ

4
‖∂tu‖2 +

1

4
‖∇u‖2 + a1

∫
G
|u(x, t)|p+2dx+

1

4τb
‖v‖2 ≤ Φε(0)e−δt, ∀t > 0.

So we have proved the following

Theorem 2.1. If the nonlinear term satisfies the conditions (2), (3) and mes(G \ ω)
is small enough, then solution of the problem(11)-(14) tend to zero as t → ∞ with an
exponential rate.

Remark 2.1. Let us note that the existence and uniquennes of a solution to the problem
can be done by using the standard Faedo - Galerkin method (see, e.g., [10]).

3. Conclusions

We considered a modification of the FitzHug-Nagumo equations taking into account the
effects of relaxation and proved that the considered system can be exponentially stabilized
by a feedback controller acting on subdomain ω ⊂ G such that G \ ω is sufficiently thin.
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[3] A. J. V. Brandao, E. Fernández-Cara, P. M. D Magalhaes, M. A. Rojas-Medar, (2008), Theoretical
analysis and control results for the FitzHugh-Nagumo equation, Electr. J. Diff. Equations, No. 164, pp.
20.

[4] C. Collins, (1983), Diffusion dependence of the FitzHugh-Nagumo equations, Trans. Amer. Math. Soc.,
280, No. 2, pp. 833–839.

[5] S. L. Hollis and J. J. Morgan, (1992), Partly dissipative reaction-diffusion systems and a model of
phosphorus diffusion in silicon, Nonlinear Anal., 19, 1992, No: 5, pp. 427-440.

[6] A. Gawlik, V. Vladimirov, S. Skurativskyi, (2020), Existence of the solitary wave solutions supported
by the modified FitzHugh-Nagumo system, Nonlinear Anal. Model., Control 25, No. 3, pp. 482–501.

[7] D.E. Jackson, Existence and regularity for the FitzHugh-Nagumo equations with inhomogeneous
boundary conditions, Nonlinear Anal., 14, No.3, pp. 201-216.

[8] M. Marion, (1989), Finite-dimensional attractors associated with partly dissipative reaction-diffusion
systems, SIAM J. Math. Anal., 20, No. 4, pp. 816-844.



G. N. ALIYEVA: STABILIZATION OF HYPERBOLIC FITZHUGH-NAGUMO EQUATIONS ... 1271

[9] W. Likus and V. Vladimirov, (2015), Solitary waves in the model of active media, taking into account
effects of relaxation, Rep. on Math. Phys. 75, (2), pp. 213-230.

[10] J. L. Lions, (1969), Quelques methods de resolution de problemes aux limites non lineaires, Dunod,
Paris.

[11] G. A, Maugin, J. Engelbrecht, (1994), A Thermodynamical Viewpoint on Nerve Pulse Dynamics, J.
Non-Equilib. Thermodyn. 19, pp. 9-23

[12] L. Sapa, (2017), Global existence and uniqueness of a classical solution to some differential evolutionary
system, Rocky Mountain Journ. of Math., 47, (7), pp. 2351-2380.

[13] M. Schonbek, (1978), Boundary value problems for the Fitzhugh-Nagumo equations, J. Differential
Equations, 30, No. 1, pp. 119-147.
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