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EXACT CLOSED FORM SOLUTIONS OF COMPOUND KDV

BURGERS’ EQUATION BY USING GENERALIZED (G′/G)

EXPANSION METHOD

S. K. MOHANTY1, M. K. DEKA2, A. N. DEV3∗, §

Abstract. In this investigation, the compound Korteweg-de Vries (Kd-V) Burgers
equation with constant coefficients is considered as the model, which is used to de-
scribe the properties of ion-acoustic waves in plasma physics, and also applied for long
wave propagation in nonlinear media with dispersion and dissipation. The aim of this
paper to achieve the closed and dynamic closed form solutions of the compound KdV
Burgers equation. We derived the completely new solutions to the considered model us-

ing the generalized
(

G′

G

)
-expansion method. The newly obtained solutions are in form

of hyperbolic and trigonometric functions, and rational function solutions with inverse
terms of the trigonometric, hyperbolic functions. The dynamical representations of the
obtained solutions are shown as the annihilation of three-dimensional shock waves, pe-
riodic waves, and multisoliton through their three dimensional and contour plots. The
obtained solutions are also compared with previously exiting solutions with both analyt-
ically and numerically, and found that our results are preferable acceptable compared to
the previous results.
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1. Introduction

The nonlinear evolution equations are used as to express the complex physical phe-
nomenon in various fields of mathematical physics, mostly in fluid mechanics, solid state-
physics, plasma physics, plasma waves, nonlinear optics, chemical physics, quantum me-
chanics, optical fibers, electricity, geochemistry, meteorology, protein chemistry, chemical
reactive materials, in ecology, population model, heat flow, wave propagation, propagation
of shallow water waves, chemical kinematics, quantum field theory, bio physics, elastic me-
dia, electromagnetic, acoustics, material sciences, economics, control theory, mathematical
physics and so on [1, 15, 55, 25].

Analytical solutions of nonlinear evolution equations play an important role in un-
derstanding the inner mechanism of the physical phenomena. There are many analyti-
cal methods to study the traveling wave solutions of non-linear evolution equations such
as inverse scattering method [15], Backlund transformation method [55], Hirota method
[25], expansion method [66], Sine-Cosine function method [67], Tanh, Coth Function
method [18], Exp-function method [24], F-expansion method [68], Lie Symmetry method
[33, 34, 35, 36, 37, 38, 39, 40, 41, 52] and so on.

Apart form the above methods M Wang, et al. [66] proposed the
(
G′

G

)
-expansion method

and applied on Kd-V equation, modified Kd-V equation, Variant Boussinesq equations,

Hirota-Satsuma equations. The key idea behind the
(
G′

G

)
expansion method is that

the assumed solutions on the nonlinear evolution equations can be written of the form∑n
i=0 ai

(
G′

G

)i
where G = G (ξ) satisfies the second order linear differential equation

G′′ + λG′ + µG = 0, (1)

where ai(i = 0, 1, 2, · · · , n), an 6= 0, λ, µ are constants, and n is a positive integer.

Many researchers applied
(
G′

G

)
-expansion method on different nonlinear equations such

as G Ebadi, A Biswas [16] solved Kuramoto-Sivashinsky (KS) equation, B Agheli, R
Darzi and A Dabbaghian [2] solved time fractional seventh-order Lax equation, time
fractional seventh-order Sawada-Kotera-Ito equation, time fractional seventh-order Kaup-
Kupershmidt equation, A Kurt, O Tasbozan and D Baleanu [42] solved Conformable
Nizhnik-Novikov-Veselov System, F Kangalgil [26] solved the Perturbed Wadati-Segur-
Ablowitz equation, M A Ghabshi, E V Krishna and M Alquran [20] solved Klein-Gordon
system.

The (G′/G) expansion method was improved by S Zhu [72] and called as the extended
(G′/G) expansion method, and applied on KdV equation, where the assumed solution was

of the form
∑n

i=−n ai

(
G′

G

)i
, ai(i = 0,±1,±2,±3, · · · ,±m) are constants but both a−n,

and an can not be zero at same time, and where G = G (ξ) satisfies (1), the extended
(G′/G) expansion method is generalized and improved by H Naher, et al.[47] and applied
on (3+1)-dimensional modified KdV-Zakharov-Kuznetsev equation, the method is known
as generalized and improved (G′/G) expansion method, where the assumed solutions was

written in the form
∑n

i=−n ai

(
d+ G′

G

)i
, ai(i = 0,±1,±2,±3, · · · ,±m), d, are constants

but both a−n, and an can not be zero at same time and where G = G (ξ) satisfies (1).
H. Naher and F. A. Abdullah first introduce the (G’/G) expansion and the general-

ized (G’/G) expansion methods [48] and solve nonlinear differential equations like KdV
equation. Further many researcher are used to the mention methods to solved nonlinear
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partial differential equations like Kadomtsev-Petviashivli-Benjamin-Bona Mahony (KP-
BBM) equation , modified KdV Zakharov-Kuznetsov (KdV-ZK) equation , Boussinesq
equation , potential Yu-Toda-Sasa-Fukuyama and Gardner KP equation , symmetric-
Regularized Long Wave equation, Burgers’ and ZK-BBM equations, Zhiber-Shabat and
Lioville equations, complex fractional Schrödinger equation, fifth order KdV and KdV-ZK

equations [4, 5, 6, 7, 57, 58, 3, 49, 31, 8]. In
(
G′

G

)
expansion method, the assumed solutions

of the nonlinear partial differential equations are of the form
m∑
j=0

aj

(
G′

G

)j

+

m∑
j=1

bj

(
G′

G

)−j
where , aj , bj , j = 0, 1, 2, · · · ,m, are constants and G = G(ξ) satisfies the ordinary differ-
ential equation of the form

P1GG
′′ − P2GG

′ − P3(G′)2 − P4G
2 = 0 (2)

where P1, P2, P3 and P4 are free parameters , and d is a constant. In the generalized
(
G′

G

)
expansion method, the assumed solutions of the nonlinear partial differential equations
are of the form

m∑
j=0

aj

(
d+

G′

G

)j

+
m∑
j=1

bj

(
d+

G′

G

)−j
, where aj , bj , j = 0, 1, 2, · · · ,m, and d are constants and satisfies the ordinary differential
equation of the form (2).

The compound Kd-V Burgers equation illustrates the propagation of ion acoustic waves
in plasma physics [28], and also used to explain the propagation of thermal pulse through
single crystal [50, 63] and applied as model for long wave propagation in nonlinear media
with dispersion and dissipation [64]. The compound Kd-V Burgers equation was solved
analytically by using, special truncated expansion method [22], He’s variation iteration
method [9] and by combination method [69]. It is also solved by two different form of(
G′

G

)
-expansion methods [70, 46], and also numerically solved by [54], [60].

We have used the generalized (G′/G) expansion method to study the analytical solutions
of the compound Kd-V Burgers equation. The paper is arranged as follows: in section
2, details about the (G′/G) expansion method is given. In section 3, generalized (G′/G)
expansion method is applied on the compound Kd-V Burgers equation. Results and graphs
of the some of the solutions are given in the section 4 and, in section 5 some comparison
of the obtained solutions are done by both analytic and numeric way and in section 6
contains some important results and conclusion respectively.

2. Generalized (G′/G) expansion Method

Let us consider the nonlinear partial differential equation of the form

W

(
u,
∂u

∂t
,
∂u

∂x
,
∂2u

∂t2
,
∂2u

∂x∂t
,
∂2u

∂x2
, · · ·

)
= 0 (3)

where u is a unknown function of x and t. The method follows the the following steps as:

Step-1. First of all we convert eq. (3) an ordinary differential equation by using wave
transformation X = x− kt, where k is a constant , as

R

(
u,
du

dX
,
d2u

dX2
, · · ·

)
= 0 (4)
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where u = u (X)
Step-2. Assuming the solutions of the Eq. (4) can be written as follows:[48]

u(X) =
m∑
j=0

aj

(
d+

G′

G

)j

+
m∑
j=1

bj

(
d+

G′

G

)−j
(5)

where either am or bm can be zero but both am and bm can not be zero at same
time, and aj (j = 0, 1, 2 · · ·m) and bj (j = 1, 2 · · ·m), and d are arbitrary constants
where G = G(X) satisfies Eq. (2).

Step-3. The degree of the polynomial m, which is a positive integer can be calculated by
homogeneous balancing between the highest order derivative terms with highest
order nonlinear terms appearing in Eq. (4).

Step-4. With the value of m substitute the value of Eq. (5) and Eq. (2) into Eq. (4), then

Eq. (4) becomes a polynomial of
(
d+ G′

G

)N
(N = 0,±1,±2, 3, · · · ), then collecting

the coefficients of the obtained same degree polynomial is equal to zero, yields a
system of algebraic equations for aj(j = 0, 1, 2, · · · ,m) and bj(j = 1, 2, 3, · · · ,m)
and k.

Step-5. To get the values of aj(j = 0, 1, 2, · · · ,m), bj(j = 1, 2, 3, · · · ,m) and k, solve the
resulted system of algebraic equations.
The general solutions of (2) are represented by five family with satisfying some
conditions. Let Ω = (P1 − P3), ∆ = P 2

2 + 4P4Ω, C1 and C2 are integration
constants, we have the following general solutions as follows:
Family-I when P2 6= 0 and ∆ > 0(

G′

G

)
=
P2

2Ω
+

√
∆

2Ω

C1 sinh
(√

∆
2Ω X

)
+ C2 cosh

(√
∆

2Ω X
)

C1 cosh
(√

∆
2Ω X

)
+ C2 sinh

(√
∆

2Ω X
)
 (6)

Family-II when P2 6= 0 and ∆ < 0

(
G′

G

)
=
P2

2Ω
+

√
−∆

2Ω

 C1 sin
(√
−∆
2Ω X

)
+ C2 cos

(√
−∆
2Ω X

)
C1 cos

(√
−∆
2Ω X

)
+ C2 sin

(√
−(∆)

2Ω X

)
 (7)

Family-III when P2 6= 0 and ∆ = 0(
G′

G

)
=
P2

2Ω
+

C2

C1 + C2X
(8)

Family-IV when P2 = 0 and ΩP4 > 0(
G′

G

)
=

√
ΩP4

Ω

C1 sinh
(√

ΩP4
Ω X

)
+ C2 cosh

(√
ΩP4
Ω X

)
C1 cosh

(√
ΩP4
Ω X

)
+ C2 sinh

(√
ΩP4
Ω X

)
 (9)

Family-V when P2 = 0 and ΩP4 < 0(
G′

G

)
=

√
−ΩP4

Ω

C1 sin
(√
−ΩP4
Ω X

)
+ C2 cos

(√
−ΩP4
Ω X

)
C1 cos

(√
−ΩP4
Ω X

)
+ C2 sin

(√
−ΩP4
Ω X

)
 (10)

Step-6. Substitute the value aj(j = 0, 1, 2, · · · ,m), bj(j = 1, 2, 3, · · · ,m) and k in Eq. (5)
and using (6), (7), (8), (9), (10), we get the desired solutions of Eq. (3).
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3. Solutions of the compound Korteweg-de Vries Burgers Equation

Consider the general form of the CKdV-B equation of the form [9]

∂u

∂t
+Au

∂u

∂x
+Bu2∂u

∂x
+ C

∂3u

∂x3
= D

∂2u

∂x2
(11)

where A, B are nonlinear coefficients, C is the dispersive coefficient, D is the dissipation
coefficient and u = u(x, t).
Now using the wave transformation X = x − kt where k is a constant. Then Eq. (11) is
converted into an ordinary differential equation of the form

−k du
dX

+Au
du

dX
+Bu2 du

dX
+ C

d3u

dX3
−D d2u

dX2
= 0 (12)

Integrating Eq. (12) once, we have

−ku+
1

2
Au2 +

1

3
Bu3 + C

d2u

dX2
−D du

dX
+ c = 0 (13)

where c is the integration constant, and u = u (X).

Now balancing the term between u3 with d2u
dX2 in Eq. (13), we get m = 1. So the assumed

solution of Eq. (13) is of the form

u(X) = a0 + a1

(
d+

G′

G

)
+ b1

(
d+

G′

G

)−1

(14)

Now substitute the value of Eq. (14) into Eq. (13), we get a function of polynomial of(
d+ G′

G

)
, then taking the coefficient of same power of

(
d+ G′

G

)i
, (i = 0,±1,±2,±3), we

get a set of system of algebraic equations , then we solve the system of algebraic equations
by using Maple we get the following set of solutions.
Set-1

a0 = −

(
A
√
−6C

B P1 − 12CdΩ− 6CP2 − 2DP1

)
2BP1

√
−6C

B

, b1 =

√
−6C

B

(
d2Ω + P2d− P4

)
P1

,

k = −
(
3A2CP 2

1 + 6BC2∆ + 2BD2P 2
1

)
12P 2

1BC
, a1 = 0,

c =

(
3A3CP 2

1

√
−6C

B
+ 18ABC2∆

√
−6C

B
+ 6ABD2P 2

1

√
−6C

B

+72BC2D∆− 8BD3P 2
1

)
72B2CP 2

1

√
−6C

B

(15)
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Set-2

a0 = −

(
A
√
−6C

B P1 − 12CdΩ− 6CP2 − 2DP1

)
2BP1

√
−6C

B

, a1 =

√
−6C

B Ω

P1
, b1 = 0,

k = −
(
3A2CP 2

1 + 6BC2∆ + 2BD2P 2
1

)
12P 2

1BC
,

c =

(
3A3CP 2

1

√
−6C

B
+ 18ABC2∆

√
−6C

B
+ 6ABD2P 2

1

√
−6C

B

−72BC2D∆ + 8BD3P 2
1

)
72B2CP 2

1

√
−6C

B

(16)

Set-3

a0 = −

(
A
√
−6C

B + 2D

)
2B
√
−6C

B

, a1 =

√
−6C

B Ω

P1
, b1 =

√
−6C

B ∆

4ΩP1
,

k = −
(
3A2CP 2

1 + 24BC2∆ + 2BD2P 2
1

)
12P 2

1BC
, d = −P2

2Ω
,

c =

(
3A3CP 2

1

√
−6C

B + 72ABC2∆
√
−6C

B + 6ABD2P 2
1

√
−6C

B − 288BC2D∆ + 8BD3P 2
1

)
72B2CP 2

1

√
−6C

B

(17)

For Set-1:
Putting the value of Eq. (15) into Eq. (14), using (6) and the following simplified wave
solutions are obtained

u (x, t) = −

(
A
√
−6C

B P1 − 12CdΩ− 6CP2 − 2DP1

)
2BP1

√
−6C

B

+

√
−6C

B

(
d2Ω + P2d− P4

)
P1d+

P2

2Ω
+

√
∆

2Ω

C1 sinh
(√

∆
2Ω X

)
+ C2 cosh

(√
∆

2Ω X
)

C1 cosh
(√

∆
2Ω X

)
+ C2 sinh

(√
∆

2Ω X
)
−1

(18)

where X = x− (3A2CP 2
1 +6BC2∆+2BD2P 2

1 )
12P 2

1BC
t.

Putting the value of Eq. (15) into Eq. (14), using (7) and the following simplified wave
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solutions are obtained

u (x, t) = −

(
A
√
−6C

B P1 − 12CdΩ− 6CP2 − 2DP1

)
2BP1

√
−6C

B

+

√
−6C

B

(
d2Ω + P2d− P4

)
P1d+

P2

2Ω
+

√
−∆

2Ω

C1 sin
(√
−∆
2Ω X

)
+ C2 cos

(√
−∆
2Ω X

)
C1 cos

(√
−∆
2Ω X

)
+ C2 sin

(√
−∆
2Ω X

)
−1

(19)

where X = x− (3A2CP 2
1 +6BC2∆+2BD2P 2

1 )
12P 2

1BC
t.

Putting the value of Eq. (15) into Eq. (14), using (8) and the following simplified wave
solution is obtained

u (x, t) = −

(
A
√
−6C

B P1 − 12CdΩ− 6CP2 − 2DP1

)
2BP1

√
−6C

B

+

√
−6C

B

(
d2Ω + P2d− P4

)
P1

(
d+

P2

2Ω
+

C2

C1 + C2X

)−1

(20)

where X = x− (3A2CP 2
1 +2BD2P 2

1 )
12P 2

1BC
t.

Putting the value of Eq. (15) into Eq. (14), using (9) and the following simplified wave
solutions are obtained

u (x, t) = −

(
A
√
−6C

B P1 − 12CdΩ− 2DP1

)
2BP1

√
−6C

B

+

√
−6C

B

(
d2Ω− P4

)
P1d+

√
ΩP4

Ω

C1 sinh
(√

ΩP4
Ω X

)
+ C2 cosh

(√
ΩP4
Ω X

)
C1 cosh

(√
ΩP4
Ω X

)
+ C2 sinh

(√
ΩP4
Ω X

)
−1

(21)

where X = x− (3A2CP 2
1 +24BC2P4Ω+2BD2P 2

1 )
12P 2

1BC
t.

Putting the value of Eq. (15) into Eq. (14), using (10) and the following simplified wave
solutions are obtained

u (x, t) = −

(
A
√
−6C

B P1 − 12CdΩ− 2DP1

)
2BP1

√
−6C

B

+

√
−6C

B

(
d2Ω− P4

)
P1d+

√
−ΩP4

Ω

C1 sin
(√
−ΩP4
Ω X

)
+ C2 cos

(√
−ΩP4
Ω X

)
C1 cos

(√
−ΩP4
Ω X

)
+ C2 sin

(√
−ΩP4
Ω X

)
−1

(22)

where X = x− (3A2CP 2
1 +24BC2P4Ω+2BD2P 2

1 )
12P 2

1BC
t.

For Set-2:
Putting the value of Eq. (16) into Eq. (14), using (6) and the following simplified wave
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solutions are obtained

u (x, t) = −

(
A
√
−6C

B P1 − 12CdΩ− 6CP2 − 2DP1

)
2BP1

√
−6C

B

+

√
−6C

B Ω

P1d+
P2

2Ω
+

√
∆

2Ω

C1 sinh
(√

∆
2Ω X

)
+ C2 cosh

(√
∆

2Ω X
)

C1 cosh
(√

∆
2Ω X

)
+ C2 sinh

(√
∆

2Ω X
)
 (23)

where X = x− (3A2CP 2
1 +6BC2∆+2BD2P 2

1 )
12P 2

1BC
t.

Putting the value of Eq. (16) into Eq. (14), using (7) and the following simplified wave
solutions are obtained

u (x, t) = −

(
A
√
−6C

B P1 − 12CdΩ− 6CP2 − 2DP1

)
2BP1

√
−6C

B

+

√
−6C

B Ω

P1d+
P2

2Ω
+

√
−∆

2Ω

C1 sin
(√
−∆
2Ω X

)
+ C2 cos

(√
−∆
2Ω X

)
C1 cos

(√
−∆
2Ω X

)
+ C2 sin

(√
−∆
2Ω X

)
 (24)

where X = x− (3A2CP 2
1 +6BC2∆+2BD2P 2

1 )
12P 2

1BC
t.

Putting the value of Eq. (16) into Eq. (14), using (8) and the following simplified wave
solution is obtained

u (x, t) = −

(
A
√
−6C

B P1 − 12CdΩ− 6CP2 − 2DP1

)
2BP1

√
−6C

B

+

√
−6C

B Ω

P1

(
d+

P2

2Ω
+

C2

C1 + C2X

)
(25)

where X = x− (3A2CP 2
1 +2BD2P 2

1 )
12P 2

1BC
t.

Putting the value of Eq. (16) into Eq. (14), using (9) and the following simplified wave
solutions are obtained

u (x, t) = −

(
A
√
−6C

B P1 − 12CdΩ− 2DP1

)
2BP1

√
−6C

B

+

√
−6C

B Ω

P1d+

√
ΩP4

Ω

C1 sinh
(√

ΩP4
Ω X

)
+ C2 cosh

(√
ΩP4
Ω X

)
C1 cosh

(√
ΩP4
Ω X

)
+ C2 sinh

(√
ΩP4
Ω X

)
 (26)

where X = x− (3A2CP 2
1 +24BC2P4Ω+2BD2P 2

1 )
12P 2

1BC
t.

Putting the value of Eq. (16) into Eq. (14), using (10) and the following simplified wave
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solutions are obtained

u (x, t) = −

(
A
√
−6C

B P1 − 12CdΩ− 2DP1

)
2BP1

√
−6C

B

+

√
−6C

B Ω

P1d+

√
−ΩP4

Ω

C1 sin
(√
−ΩP4
Ω X

)
+ C2 cos

(√
−ΩP4
Ω X

)
C1 cos

(√
−ΩP4
Ω X

)
+ C2 sin

(√
−ΩP4
Ω X

)
 (27)

where X = x− (3A2CP 2
1 +24BC2P4Ω+2BD2P 2

1 )
12P 2

1BC
t.

For Set-3:
Putting the value of Eq. (17) into Eq. (14), using (6) and the following simplified wave
solutions are obtained

u (x, t) =−

(
A
√
−6C

B + 2D

)
2B
√
−6C

B

+

√
∆
√
−6C

B

2P1

C1 sinh
(√

∆
2Ω X

)
+ C2 cosh

(√
∆

2Ω X
)

C1 cosh
(√

∆
2Ω X

)
+ C2 sinh

(√
∆

2Ω X
)


+

√
−6C

B

√
∆

2P1

C1 sinh
(√

∆
Ω X

)
+ C2 cosh

(√
∆

2Ω X
)

C1 cosh
(√

∆
2Ω X

)
+ C2 sinh

(√
∆

2Ω X
)
−1

(28)

where X = x− (3A2CP 2
1 +24BC2∆+2BD2P 2

1 )
12P 2

1BC
t.

Putting the value of Eq. (17) into Eq. (14), using (7) and the following simplified wave
solutions are obtained

u (x, t) =−

(
A
√
−6C

B + 2D

)
2B
√
−6C

B

+

√
−6C

B

√
−∆

2P1

 C1 sin
(√
−∆
2Ω X

)
+ C2 cos

(√
−∆
2Ω X

)
C1 cos

(√
−∆
2Ω X

)
+ C2 sin

(√
−(∆)

2Ω X

)


+

√
−6C

B ∆

2P1

√
−∆

 C1 sin
(√
−∆
2Ω X

)
+ C2 cos

(√
−∆
2Ω X

)
C1 cos

(√
−∆
2Ω X

)
+ C2 sin

(√
−(∆)

2Ω X

)

−1

(29)

where X = x− (3A2CP 2
1 +24BC2∆+2BD2P 2

1 )
12P 2

1BC
t.

Putting the value of Eq. (17) into Eq. (14), using (6) and the following simplified wave
solution is obtained

u (x, t) = −

(
A
√
−6C

B + 2D

)
2B
√
−6C

B

+

√
−6C

B Ω

P1

(
C2

C1 + C2X

)
(30)

where X = x− (3A2CP 2
1 +2BD2P 2

1 )
12P 2

1BC
t.

Putting the value of Eq. (17) into Eq. (14), using (9) and the following simplified wave
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solutions are obtained

u (x, t) = −

(
A
√
−6C

B + 2D

)
2B
√
−6C

B

+

√
−6C

B

P1

−P2

2
+
√

ΩP4

C1 sinh
(√

ΩP4
Ω X

)
+ C2 cosh

(√
ΩP4
Ω X

)
C1 cosh

(√
ΩP4
Ω X

)
+ C2 sinh

(√
ΩP4
Ω X

)


+

√
−6C

B P4

P1

−P2

2Ω
+

√
ΩP4

Ω

C1 sinh
(√

ΩP4
Ω X

)
+ C2 cosh

(√
ΩP4
Ω X

)
C1 cosh

(√
ΩP4
Ω X

)
+ C2 sinh

(√
ΩP4
Ω X

)
−1

(31)

where X = x− (3A2CP 2
1 +96BC2P4Ω+2BD2P 2

1 )
12P 2

1BC
t. Putting the value of Eq. (17) into Eq. (14),

using (10) and the following simplified wave solutions are obtained

u (x, t) = −

(
A
√
−6C

B + 2D

)
2B
√
−6C

B

+

√
−6C

B

P1

−P2

2
+
√
−ΩP4

C1 sin
(√
−ΩP4
Ω X

)
+ C2 cos

(√
−ΩP4
Ω X

)
C1 cos

(√
−ΩP4
Ω X

)
+ C2 sin

(√
−ΩP4
Ω X

)


+

√
−6C

B P4

P1

−P2

2Ω
+

√
−ΩP4

Ω

C1 sin
(√
−ΩP4
Ω X

)
+ C2 cos

(√
−ΩP4
Ω X

)
C1 cos

(√
−ΩP4
Ω X

)
+ C2 sin

(√
−ΩP4
Ω X

)
−1

(32)

where X = x− (3A2CP 2
1 +96BC2P4ω+2BD2P 2

1 )
12P 2

1BC
t.

4. Results and Discussion

In this section, we show the three-dimensional surface plots and corresponding three-
dimensional contour plots, as well as kink and anti-kink waves, multi-soliton structures,
periodic solitons , dynamics of the solutions of the compound Kd-V Burgers equation.



S. K. MOHANTY, M. K. DEKA, A. N. DEV: SOLUTIONS OF COMPOUND KDV BURGERS’ 1347

Figure 1. (a) and (a′) are 3D plot and contour plot of (18) respectively,
where P1 = 40, P2 = 1, P3 = 2, P4 = 1, d = 2, C1 = 1, C2 = 0. Here
the 3D plot of anti-kink solutions and contour plot are drawn within the
interval −20 ≤ x ≤ 20 , −10 ≤ t ≤ 10 and −10 ≤ x ≤ 10 , −10 ≤ t ≤ 10
respectively.

Figure 2. (b) and (b′) are 3D plot and contour plot of (19) respectively,
where P1 = 25,P2 = 1,P3 = 1,P4 = −1,d = 2,C1 = 10,C2 = 20,
within the interval −50 ≤ x ≤ 50 and −20 ≤ t ≤ 20.



1348 TWMS J. APP. AND ENG. MATH. V.13, N.4, 2023

Figure 3. (c) and (c′) are 3D plot and contour plot of (20) respectively,
where P1 = 3, P2 = 4, P3 = 5, P4 = 2, d = 2, C1 = 1, C2 = 1.Here the
3D graph and contour plot are drawn within the interval −20 ≤ x ≤ 20 ,
−10 ≤ t ≤ 10 and −10 ≤ x ≤ 10 , −10 ≤ t ≤ 10 respectively.

Figure 4. (d) and (d′) are 3D plot and contour plot of (22) respectively,
where P1 = 3, P2 = 0, P3 = 2, P4 = −1, d = 2, C1 = 1, C2 = 0, within the
interval −20 ≤ x ≤ 20 and −10 ≤ t ≤ 10.
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Figure 1-4 show the kink waves or shock waves and traveling wave profiles of the com-
pound Kd-V Burgers equation with constant coefficients by using the generalized expan-
sion method approach through three-dimensional surface plots and corresponding three-
dimensional contour plots. The obtained solutions are in trigonometric, hyperbolic , and
rational forms. For graphical representation of the solutions of the CKdV-B equation for,
Figure 1-4 the arbitrary values of the coefficients, are taken as A = 10, B = −3, C = 2,
D = 10. In Figure 1 the annihilation of surface plot and contour plot of solution (18)
represents the of anti-kink solitons, and similar type of dynamic structures of anti-kink/
kink solitons also exists for the solutions (21), (23), (26), (28). As seen from the figure
1, with time there is a smooth transition of the shock region which clearly resembles to
a typical classical shock wave formation in non-linear dynamics. Figure 2 provides the
information about the multisoliton structures of (19), similar waves will exists for the
solutions of (27), (29). A clear train of soliton propagating with varying amplitude over a
well defined span of space and time is seen. Figure 3 shows a typical formation of double
layer type structure for such solution. The same double layer structure also exists for the
solutions of (20), (25), and the typical double layer structure with a sharp transition from
zero to positive potential and negative to zero potential over the specified time interval is
seen which is interesting, as the solutions apart from giving soliton or shock profile, a also
admit a double layer solution.

Figure 4 shows that the wave profile of the multisoliton with periodic structures of (22)
similarly, it is interesting to see that these all admit both compressive as well as rarefactive
solitary structure. In all the cases of soliton propagation e.g. Figure 2 and Figure 4, and
for their respective solutions as mentioned above, we can see the propagation of both
compressive as well as rarefactive soliton with distinctive contour plots.

5. Analytical and numerical comparison of the obtained solutions.

Nahar et. al. [70] investigated that the solutions of the compound KdV-Burger’s

equation are of the form u(x, t) = a0 +a1

(
G′

G

)
, where a0, a1 are constants, and G = G(ξ)

satisfies the ordinary differential equation of the form (1) where ξ = x − kt, where k is
a constant. On the other hand for the same form of differential equation as mentioned
in equation number (1), above, Zayed and Gepreel [13] found that the solutions of the

compound KdV-Burgers equation are of the form u(x, t) = a0 + a1

(
G′

G

)
, and of the form

u(x, t) = a0 + b1

(
G′

G

)−1
where a0, a1, and b1 are constants, and G = G(ξ) satisfies the

ordinary differential equation of the form (1) , where ξ = x − kt, where k is a constant.
In our results the solutions of compound Kd-V Burgers equation are of the form u(x, t) =

a0+a1

(
d+ G′

G

)
, u(x, t) = a0+b1

(
d+ G′

G

)−1
, and of the form u(x, t) = a0+a1

(
d+ G′

G

)
+

b1

(
d+ G′

G

)−1
, where a0, a1, d, and b1 are constants, and G = G(ξ) satisfies the ordinary

differential equation of the form (2), where ξ = x − kt, where k is a constant. It is to
be noted that the values of a0, a1, b1 are different for each different set of solutions. It
is to be noted that solutions mentioned in eq. no.s (28), (29), (31), (32) in the present
Manuscript are of completely new forms.

We have tried to validate our mathematical and analytical findings with the available
existing literature. For example, pan et. al [54], investigated the solution of compound
Kd-V Burgers equation and they reported (Fig. 2 of Example 4.1) that their numerical
solution obtained by using the classical Crank- Nicolson scheme and Alternating Segment
Crank Nicolson difference scheme, admitted shock type travelling wave. The analytical
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solution as mentioned in equation number (18) of the present Manuscript and its graph-
ical output (mentioned in Fig.1) quite resemble to the typical shock wave type solution
mentioned by pan et. al. So, we can conclude that the newly introduced methodology
of finding solutions of the non-linear partial differential equations like compound Kd-V
Burgers equation discussed in the present manuscript should be quite useful and effective
to the real-world phenomenon where in this case arise.

6. Conclusion

In this paper, we have successfully obtained the new type of solitary wave solution
as mentioned in Eq. No. (18)) and also other completely new forms of solutions of
compound Kd-V Burgers with constant coefficients as mentioned in equation numbers (28),

(29), (31), and (32). By using the generalized
(
G′

G

)
-expansion method,it is found that

the newly obtained closed-form solutions are of trigonometric, hyperbolic, rational forms.
The obtained solutions are also verified by back substituting it with Maple. By using
Maple, the three-dimensional surface plots and corresponding three-dimensional contour
plots are provided to understand the importance of the obtained solutions, the solutions
of dynamical structures of waves are helpful in numerical and theoretical studies of the
governing equations. The methods used and the solutions obtained may be useful to study
the propagation characteristics of solitary waves/shock waves especially in degenerate
plasma medium which are prevalent and well established/studied in astrophysical compact
objects, e.g., non-rotating white dwarf stars, neutron stars, black holes [59, 32, 12, 13, 51,
43] etc. as well as to study the femtosecond dynamics of electron gas confined in metallic
and semiconductor plasma, ultra-intense laser plasma interaction [17, 65, 61, 11, 23, 45].
The generalized method can be used further to study the nonlinear partial differential
equations, which exists in different domains of classical as well as quantum plasma physics
and mathematical physics.
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