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SOLUTION OF THE OPTIMAL PROGRAM TRAJECTORY AND

CONTROL OF THE DISCRETIZED EQUATION OF MOTION OF

SUCKER-ROD PUMPING UNIT IN A NEWTONIAN FLUID

F. A. ALIEV1∗, N. A. ALIEV1, A. F. RASULZADE2, N. S. HAJIYEVA1, §

Abstract. In this paper, the problem of construction of the optimal trajectory and
control for oscillatory systems with liquid dampers in the movement of the sucker-rod
pumping unit is considered. Firstly, the equation of motion is reduced to the second
order Volterra integral equation, this equation is discretized, odd and even indices are
generated for the solution. These indexes is collected in one solution. Then, the qua-
dratic functional is constructed and by means of extended functional the Euler-Lagrange
equations are obtained to construct the optimal program trajectory and control. The
solution of the problem is found from the obtained system of equations. An algorithm for
its calculation process is proposed. The obtained results are realized through an example.

Keywords: sucker-rod pumping unit, optimal program trajectory, control, fractional or-
der derivative, second order Volterra integral equation, Euler-Lagrange equations.
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1. Introduction

The role of fractional derivative is important in solving a number of problems, and they
are realized with differential equations that include fractional derivative [6, 7, 15, 25]:
sucker-rod pumping unit [23, 24], metal memory determination, oscillatory systems with
liquid dampers [1, 19, 22] and others [11, 16, 23], such problems are described by fractional
derivative [2, 3]. In the non-interruptible case the equation of the given problem is re-
duced to the second order Volterra integral equation [18, 29], discretized and the equation
of motion is described by difference equations [8, 20]. After that, the boundary conditions
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of Mathematics, 2023; all rights reserved.

1369



1370 TWMS J. APP. AND ENG. MATH. V.13, N.4, 2023

are given and these boundary conditions perform the construction for the periodic con-
tinuation of the problem [21, 24]. Then the process of discretization begins according to
the boundary and periodicity conditions [10, 12]. A functional and an extended functional
are constructed so that a solution that minimizes the value of this extended functional is
sought [23]. In finding this solution, a system of equations consisting of Euler-Lagrange
equations is established and the solution of the system is found [4, 14].

2. Problem Statement

Let the motion of oscillatory systems with liquid dampers during oil production by
sucker-rod pumping unit is described by the system of ordinary linear differential equations
with fractional derivatives [28] and boundary conditions as follows [17]:

m1ÿ(x) + aDαy(x) + by(x) = f(x), 0 < x0 < x < l + x0, (1){
y(l + x0 + 0) = y(l + x0 − 0),
ẏ(l + x0 + 0) = −ẏ(l + x0 − 0) + V1,

(2)

m2ÿ(x) + aDαy(x) + by(x) = f(x), l + x0 < x < 2l + x0, (3){
y(2l + x0) = y(2l + x0 − 0),
ẏ(2l + x0) = −ẏ(2l + x0 − 0) + V2,

(4)

where y(x ) is a required continuous function, a, b, V1, V2, are real numbers, f(x) is a con-
tinuous scalar function,α = p

q ∈ (1, 2), p, q are natural numbers.

Let we have the following boundary condition as periodical case{
y(2l + x0) = y(x0),
ẏ(2l + x0) = ẏ(x0).

(5)

If we discretize the problem (1)-(5) and take some notations, then we get [5,27]:

Wi+1 = ψiWi +AiW0 + Fi, i = 0, n− 1, (6)

Wj+1 = ψjWj +AjW0 + Fj , j = n, 2n− 1, (7)

( −1 1 )Wn = 0
( 1 0 ) (Wn+1 −Wn) = hV1
(− 1 1 )W2n = 0
(− 1 0 )W0 + ( 0 1 )W2n = 0
( −1 1 )(W0 +W2n) = hV2

(8)

where Wn =

(
y2n
y2n+1

)

Ai =

m−2∑
k=1

∑
1<i1<i2<...<ik≤m−2

k∏
j=1

ψik+1−j

ψ0 + ψ0

 , i = 0, n− 1 (9)

Aj =

m−2∑
k=1

∑
1<j1<j2<...<jk≤m−2

k∏
g=1

ψjk+1−g

ψ0 + ψ0

 , j = n, 2n− 1 (10)
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ψ(n−1) =

 A
(n−1)
11

A
(n−1)
21

A
(n−1)
12

A
(n−1)
22

 ,

A
(n−1)
11 = 1− h

[
a
m1

(x2n−2−x2n−4)1−α

(1−α)! + b
m1

(x2n−2 − x2n−4)
]

+

2h
[
a
m1

(x2n−2−x2n−3)1−α

(1−α)! + b
m1

(x2n−2 − x2n−3)
]
,

A
(n−1)
12 = 2− h

[
a
m1

(x2n−2−x2n−3)1−α

(1−α)! + b
m1

(x2n−2 − x2n−3)
]

A
(n−1)
21 = −2− 2h

[
a
m1

(x2n−2−x2n−4)1−α

(1−α)! + b
m1

(x2n−2 − x2n−4)
]

+

4h
[
a
m1

(x2n−2−x2n−3)1−α

(1−α)! + b
m1

(x2n−2 − x2n−3)
]
−

h
[
a
m1

(x2n−1−x2n−4)1−α

(1−α)! + b
m1

(x2n−1 − x2n−4)
]

+

2h
[
a
m1

(x2n−1−x2n−3)1−α

(1−α)! + b
m1

(x2n−1 − x2n−3)
]

+

h2
[
a
m1

(x2n−1−x2n−2)1−α

(1−α)! + b
m1

(x2n−1 − x2n−2)
]
×

{[
a
m1

(x2n−2−x2n−4)1−α

(1−α)! + b
m1

(x2n−2 − x2n−4)
]
−

2
[
a
m1

(x2n−2−x2n−3)1−α

(1−α)! + b
m1

(x2n−2 − x2n−3)
]}

,

A
(n−1)
22 = 3− 2h

[
a
m1

(x2n−2−x2n−3)1−α

(1−α)! + b
m1

(x2n−2 − x2n−3)
]
−

h
[
a
m1

(x2n−1−x2n−3)1−α

(1−α)! + b
m1

(x2n−1 − x2n−3)
]

+

h2
[
a
m1

(x2n−1−x2n−2)1−α

(1−α)! + b
m1

(x2n−1 − x2n−2)
]
×

[
a
m1

(x2n−2−x2n−3)1−α

(1−α)! + b
m1

(x2n−2 − x2n−3)
]
,

(11)

ψ(k) =

(
A

(k)
11

A
(k)
21

A
(k)
12

A
(k)
22

)
k = 0, n− 2

A
(k)
11 = −2h

{[
a
m1

(x2n−2−x2k−2)
1−α

(1−α)! + b
m1

(x2n−2 − x2k−2)
]
−

2
[
a
m1

(x2n−2−x2k−1)
1−α

(1−α)! + b
m1

(x2n−2 − x2k−1)
]
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+
[
a
m1

(x2n−2−x2k)1−α
(1−α)! + b

m1
(x2n−2 − x2k)

]}
, k = 1, n− 2,

A
(0)
11 = −h

[
a
m1

(x2n−2−x0)1−α
(1−α)! + b

m1
(x2n−2 − x0)

]
,

A
(k)
12 = −h

{[
a
m1

(x2n−2−x2k−1)
1−α

(1−α)! + b
m1

(x2n−2 − x2k−1)
]
−

2
[
a
m1

(x2n−2−x2k)1−α
(1−α)! + b

m1
(x2n−2 − x2k)

]
+

[
a
m1

(x2n−2−x2k+1)
1−α

(1−α)! + b
m1

(x2n−2 − x2k+1)
]}

, k = 1, n− 2,

A
(0)
12 = 2h

[
a
m1

(x2n−2−x0)1−α
(1−α)! + b

m1
(x2n−2 − x0)

]
−

h
[
a
m1

(x2n−2−x1)1−α
(1−α)! + b

m1
(x2n−2 − x1)

]
A

(k)
21 = −h

{
2− h

[
a
m1

(x2n−1−x2n−2)1−α

(1−α)! + b
m1

(x2n−2 − x2n−2)
]}
−

{[
a
m1

(x2n−2−x2k−2)
1−α

(1−α)! + b
m1

(x2n−2 − x2k−2)
]
−

2
[
a
m1

(x2n−2−x2k−1)
1−α

(1−α)! + b
m1

(x2n−2 − x2k−1)
]

+

[
a
m1

(x2n−2−x2k)1−α
(1−α)! + b

m1
(x2n−1 − x2k)

]}
−

h
[
a
m1

(x2n−1−x2k−2)
1−α

(1−α)! + b
m1

(x2n−1 − x2k−2)
]
−

2
[
a
m1

(x2n−1−x2k−1)
1−α

(1−α)! + b
m1

(x2n−1 − x2k−1)
]

+

+
[
a
m1

(x2n−1−x2k)1−α
(1−α)! + b

m1
(x2n−1 − x2k)

]}
, k = 1, n− 2,

A
(0)
21 = −h

{
2− h

[
a
m1

(x2n−1−x2n−2)1−α

(1−α)! + b
m1

(x2n−1 − x2n−2)
]}
×

[
a
m1

(x2n−2−x0)1−α
(1−α)! + b

m1
(x2n−2 − x0)

]
−

h
[
a
m1

(x2n−1−x0)1−α
(1−α)! + b

m1
(x2n−1 − x0)

]
,

A
(k)
22 (a, n, h) = −h

{
2− h

[
a
m1

(x2n−1−x2n−2)1−α

(1−α)! + b
m1

(x2n−1 − x2n−2)
]}
×

{[
a
m1

(x2n−2−x2k−1)
1−α

(1−α)! + b
m1

(x2n−2 − x2k−1)
]
−

(12)
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−2
[
a
m1

(x2n−2−x2k)1−α
(1−α)! + b

m1
(x2n−2 − x2k)

]
+

[
a
m1

(x2n−2−x2k+1)
1−α

(1−α)! + b
m1

(x2n−2 − x2k+1)
]
−

h
{[

a
m1

(x2n−1−x2k−1)
1−α

(1−α)! + b
m1

(x2n−1 − x2k−1)
]
−

2
[
a
m1

(x2n−1−x2k)1−α
(1−α)! + b

m1
(x2n−1 − x2k)

]
+

[
a
m1

(x2n−1−x2k−1)
1−α

(1−α)! + b
m1

(x2n−1 − x2k−1)
]
−

2
[
a
m1

(x2n−1−x2k)1−α
(1−α)! + b

m1
(x2n−1 − x2k)

]
+

[
a
m1

(x2n−1−x2k+1)
1−α

(1−α)! + b
m1

(x2n−1 − x2k+1)
]}

, k = 1, n− 2,

A
(0)
22 = h

{
2− h

[
a
m1

(x2n−1−x2n−2)1−α

(1−α)! + b
m1

(x2n−1 − x2n−2)
]}
×

{
2
[
a
m1

(x2n−2−x0)1−α
(1−α)! + b

m1
(x2n−2 − x0)

]}
−

[
a
m1

(x2n−2−x1)1−α
(1−α)! + b

m1
(x2n−2 − x1)

]
+ 2h

[
a
m1

(x2n−1−x0)1−α
(1−α)! + b

m1
(x2n−1 − x0)

]
−

h
[
a
m1

(x2n−1−x1)1−α
(1−α)! + b

m1
(x2n−1 − x1)

]
,

ψ(n−1) =

(
A

(n−1)
11

A
(n−1)
21

A
(n−1)
12

A
(n−1)
22

)
,

A
(n−1)
11 = 1− h

[
a
m2

(x2n−2−x2n−4)1−α

(1−α)! + b
m2

(x2n−2 − x2n−4)
]

+

2h
[
a
m2

(x2n−2−x2n−3)1−α

(1−α)! + b
m2

(x2n−2 − x2n−3)
]
,

A
(n−1)
12 = 2− h

[
a
m2

(x2n−2−x2n−3)1−α

(1−α)! + b
m2

(x2n−2 − x2n−3)
]

A
(n−1)
21 = −2− 2h

[
a
m2

(x2n−2−x2n−4)1−α

(1−α)! + b
m2

(x2n−2 − x2n−4)
]

+

h
[
a
m2

(x2n−2−x2n−3)1−α

(1−α)! + b
m2

(x2n−2 − x2n−3)
]
−

h
[
a
m2

(x2n−1−x2n−4)1−α

(1−α)! + b
m2

(x2n−1 − x2n−4)
]

+

(13)
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42h
[
a
m2

(x2n−1−x2n−3)1−α

(1−α)! + b
m2

(x2n−1 − x2n−3)
]

+

h2
[
a
m2

(x2n−1−x2n−2)1−α

(1−α)! + b
m2

(x2n−1 − x2n−2)
]
×

{[
a
m2

(x2n−2−x2n−4)1−α

(1−α)! + b
m2

(x2n−2 − x2n−4)
]
−

2
[
a
m2

(x2n−2−x2n−3)1−α

(1−α)! + b
m2

(x2n−2 − x2n−3)
]}

,

A
(n−1)
22 = 3− 2h

[
a
m2

(x2n−2−x2n−3)1−α

(1−α)! + b
m2

(x2n−2 − x2n−3)
]
−

h
[
a
m2

(x2n−1−x2n−3)1−α

(1−α)! + b
m2

(x2n−1 − x2n−3)
]

+

h2
[
a
m2

(x2n−1−x2n−2)1−α

(1−α)! + b
m2

(x2n−1 − x2n−2)
]
×

[
a
m2

(x2n−2−x2n−3)1−α

(1−α)! + b
m2

(x2n−2 − x2n−3)
]
,

ψ(p) =

(
A

(p)
11

A
(p)
21

A
(p)
12

A
(p)
22

)
p = n− 1, 2n− 2,

A
(0)
11 = −h

[
a
m2

(x2n−2−x0)1−α
(1−α)! + b

m2
(x2n−2 − x0)

]
,

A
(p)
12 = −h

{[
a
m2

(x2n−2−x2p−1)1−α

(1−α)! + b
m2

(x2n−2 − x2p−1)
]
−

2
[
a
m2

(x2n−2−x2k)1−α
(1−α)! + b

m2
(x2n−2 − x2p)

]
+

[
a
m2

(x2n−2−x2p+1)1−α

(1−α)! + b
m2

(x2n−2 − x2p+1)
]}

, p = n− 1, 2n− 2,

A
(0)
12 = 2h

[
a
m2

(x2n−2−x0)1−α
(1−α)! + b

m2
(x2n−2 − x0)

]
−

h
[
a
m2

(x2n−2−x1)1−α
(1−α)! + b

m2
(x2n−2 − x1)

]
,

A
(p)
21 = −h

{
2− h

[
a
m2

(x2n−1−x2n−2)1−α

(1−α)! + b
m2

(x2n−2 − x2n−2)
]}
−

{[
a
m2

(x2n−2−x2p−2)1−α

(1−α)! + b
m2

(x2n−2 − x2p−2)
]
−

2
[
a
m2

(x2n−2−x2p−1)1−α

(1−α)! + b
m2

(x2n−2 − x2p−1)
]

+

[
a
m2

(x2n−2−x2p)1−α
(1−α)! + b

m2
(x2n−1 − x2p)

]}
−

(14)
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h
[
a
m2

(x2n−1−x2p−2)1−α

(1−α)! + b
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(x2n−1 − x2p−2)
]
−

2
[
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m2

(x2n−1−x2p−1)1−α

(1−α)! + b
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(x2n−1 − x2p−1)
]

+

+
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(x2n−1−x2p)1−α
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m2
(x2n−1 − x2p)

]}
, p = n− 1, 2n− 2,
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(0)
21 = −h

{
2− h

[
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(x2n−1−x2n−2)1−α
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(x2n−1 − x2n−2)
]}
×
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]
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(x2n−1 − x2n−2)
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+
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(x2n−1−x2n−2)1−α
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−
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+
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It is required to find the minimum of the following quadratic functional [13]

J =

n−1∑
i=0

W ′iQWi +

2n−1∑
j=n

W ′jQWj +

2n−1∑
i=0

F ′iCF → min (15)

where Q = Q′ ≥ 0 is a symmetric matrix of dimension 2n × 2n, C ≥ 0 is a matrix of
dimension 2n× 2n, the prime means the transposition operation.

3. Method of solving the problem

For solving the problem (6)-(8), (15) we construct the extended functional as follows
[2, 9]:

J = α((−1 1)Wn) +β((1 0)(Wn+1−Wn)−V1) +γ((−1 1)W2n) + ξ((−1 0)W0 + (0 1)W2n)+

η((−1 1) (W0 +W2n − V2) +
1

2

(
n−1∑
i=0

W ′iQWi + λTi+1 (ψiWi +AiW0 + Fi −Wi+1)

)
+

2n−1∑
j=n

(
W ′jQWj + λTj+1(ψjWj +AjW0 + Fj −Wj+1)) +

2n−1∑
k=0

F ′kCFk

)
(16)

where α, β, γ, η, ξ are scalars, λi- is 1× 2 dimensional column vector.

∂J

∂W0
= 0,

∂J

∂Wn
= 0,

∂J

∂Wn+1
= 0,

∂J

∂W2n
= 0,

∂J

∂Wi
= 0,

∂J

∂Wj
= 0,

∂J

∂Fk
= 0

Then similarly [9] we get the Euler-Lagrange equation for the problem (6)-(8), (15) will
have the form [12]:(

Wi+1

λi

)
=

(
ψi −C−1
Q ψi

T

)(
Wi

λi+1

)
+

(
AiW0

α(−1 1)T − β(1 0)T

)
, i = 0, n− 1

(
Wj+1

λj

)
=

(
ψj −C−1
Q ψj

T

)(
Wj

λj+1

)
+
(
AjW0β(1 0)T + (γ + η) (−1 1)T + ξ(0 1)T

)
, j = n, 2n− 1

(17)
We can solve the system of equations [19, 21] (17) by means of the MATLAB software

package [26, 28].

4. Examples

1. Let consider the following example [17] applying the above method. Suppose the
problem is given in the following way:

y′′(x) + aDαy(x) = f(x), 0 < x0 < x < l + x0 (18){
y(l + x0) = y(l + x0 − 0),
ẏ(l + x0) = −ẏ(l + x0 − 0) + V,

(19){
y(l + x0) = y(x0),
ẏ(l + x0) = ẏ(x0).

(20)

After discretizing the problem (18)-(20) analogously (6)-(8) we get
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Wn = φn−1Wn−1 + PnW0 +Rn, n ≥ 2 (21) ( −1 1 )Wn = 0,
( 1 0 )W0 + ( 0 1 )Wn = 0,
( 1 −1 )(W0 +Wn) = 1,

(22)

It is required to find the minimum of the following quadratic functional

J =

n−1∑
i=0

W ′iWi +R
′
iRi → min (23)

Now let solve this problem:

1.n = 5,m1 = m2 = 1, a = 3, b = 1, α =
5

3
, Q =

(
1 0
0 1

)
, C =

(
1 0
0 1

)
, V = 1.

2. Ak, k = 0, n− 1 let’s calculate the values of the expressions.

3.Wi+1 = ψiWi + PiW0 +Ri, i = 0, n− 1

.

 ( −1 1 )Wn = 0,
( 1 0 )W0 + ( 0 1 )Wn = 0,
( 1 −1 )(W0 +Wn) = 1,

4. Extended functional:

J = α
(
( −1 1 )Wn

)
+ β

(
( 1 0 )W0 + ( 0 1 )Wn

)
+ γ

(
( 1 −1 )(W0 +Wn)− V

)
+

+1
2

∑n−1
i=0

(
W ′iWi +R

′
iRi + λTi+1 (ψiWi + PiW0 +Ri −Wi+1)

)
5. Then we get the Euler-Lagrange equation for the problem (21)-(23) will have the form

(
Wi+1

λi

)
=

(
ψi −C−1
Q ψTi

)(
Wi

λi+1

)
+

(
AiW0

β( 1 0 )T + γ( 1 −1 )T

)
, i = 0, n− 1

6. We can use the MATLAB program package to build the solution matrix of the problem
and find the unknowns. Then we calculate Jmin.
Now let plot the graph of dependence of the controller [22], general solution [26] for each
n in MATLAB:

Figure 1. Graph of dependence of yn on n and Graph of dependence of Rn on n.
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Steps l

10−1 2.636643731144403e-01

10−2 4.625551306168188e-02

10−3 1.073514619372248e-02

10−4 1.035232859585342e-02

10−5 1.033074019816137e-02

10−6 1.032905426276624e-02

10−7 1.032860519396068e-02

Lets the problem is given in the following way:

m1ÿ(x) + aDαy(x) + by(x) = f(x), (24)

0 < x0 < x < l + x0

{
y(l + x0) = y(l + x0 − 0),
ẏ(l + x0) = −ẏ(l + x0 − 0) + V,

(25)

{
y(l + x0) = y(x0),
ẏ(l + x0) = ẏ(x0).

(26)

After discretizing the problem (24)-(26) analogously (6)-(8) we get

Wi+1 = ψiWi + PiW0 +Ri, i = 0, n− 1, (27)

 ( −1 1 )Wn = 0,
( 1 0 )W0 + ( 0 1 )Wn = 0,
( 1 −1 )(W0 +Wn) = 1,

(28)

It is required to find the minimum of the following quadratic functional

J =
n−1∑
i=0

W ′iWi +R
′
iRi → min, (29)

Now let’s solve this problem:

1.n = 5,m1 = m2 = 3, a = 7, b = 5, α =
7

5
, Q =

(
1 0
0 1

)
, C =

(
1 0
0 1

)
, V = 3.

2.Wi+1 = ψiWi + PiW0 +Ri, i = 0, n− 1n ≥ 2

 ( −1 1 )Wn = 0,
( 1 0 )W0 + ( 0 1 )Wn = 0,
( 1 −1 )(W0 +Wn) = 1,

3. After constructing extended functional, we get the Euler-Lagrange equation for the
problem (27)-(29) and we can use the MATLAB program package to build the solution
matrix of the problem.

Now let’s plot the graph of dependence of the controller, general solution for each n in
MATLAB:
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Figure 2. Graph of dependence of yn on n and Graph of dependence of Rn on n.

Let’s consider the following example applying the above method. Suppose the problem
is given in the following way:

m1ÿ(x) + aDαy(x) = f(x), 0 < x0 < x < l + x0, (30){
y(l + x0 + 0) = y(l + x0 − 0),
ẏ(l + x0 + 0) = −ẏ(l + x0 − 0) + V1,

(31)

m2ÿ(x) + aDαy(x) = f(x), l + x0 < x < 2l + x0, (32){
y(2l + x0) = y(2l + x0 − 0),
ẏ(2l + x0) = −ẏ(2l + x0 − 0) + V2,

(33)

And boundary condition as periodical case{
y(2l + x0) = y(x0),
ẏ(2l + x0) = ẏ(x0).

(34)

After discretizing the problem (30)-(34) analogously (6)-(8) [23,26] we get

Wi+1 = ψiWi + PiW0 +Ri, i = 0, n− 1, (35)

Wj+1 = ψjWj + PjW0 +Rj , j = n, 2n− 1 (36)

( −1 1 )Wn = 0
( 1 0 ) (Wn+1 −Wn) = hV1
(− 1 1 )W2n = 0
(− 1 0 )W0 + ( 0 1 )W2n = 0
( −1 1 )(W0 +W2n) = hV2

(37)

It is required to find the minimum of the following quadratic functional

J =

n−1∑
i=0

W ′iWi +R
′
iRi +

2n−1∑
j=n

W ′jWj +R
′
jRj → min, (38)

Now let’s solve this problem:

1.n = 4,m1 = 2,m2 = 3, a = 2, α =
5

4
, Q =

(
1 0
0 1

)
, C =

(
1 0
0 1

)
, V1 = 1, V2 = 2.
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2.Wi+1 = ψiWi + PiW0 +Ri, i = 0, n− 1,

Wj+1 = ψjWj + PjW0 +Rj , j = n, 2n− 1

( −1 1 )Wn = 0
( 1 0 ) (Wn+1 −Wn) = hV1
(− 1 1 )W2n = 0
(− 1 0 )W0 + ( 0 1 )W2n = 0
( −1 1 )(W0 +W2n) = hV2

3. After constructing extended functional, we get the Euler-Lagrange equation for the
problem (35)-(38) and we can use the MATLAB program package to build the solution
matrix of the problem.
Now let’s plot the graph of dependence of the controller, general solution for each n in
MATLAB:

Figure 3. Graph of dependence of yn on n and Graph of dependence of Rn on n.

Compare. Let compare the result of the given discrete case with the continuous case [17]
using the following table. In the tablel = ‖xi − y(li)‖, where xi is the phase coordinate
of the object in continuous case and y(li) is the phase coordinate of the object in discrete
case. The table shows that the obtained results differ from each others 10−2 order.

5. Conclusions

In this paper the optimal program trajectory and control for oscillatory systems with
liquid dampers by periodic boundary condition in discrete case, where the second term
contains fractional order derivative have been constructed. After discretizing the equation
and boundary conditions the extended functional has been constructed and the Euler-
Lagrange equations have been found. Then the obtained Euler-Lagrange equations have
been solved by means of the MATLAB software package. At the end the numerical ex-
amples are proposed, the graphs of optimal program trajectory and control have been
shown.



F. A. ALIEV, N. A. ALIEV, A. F. RASULZADE, N. S. HAJIYEVA: SOLUTION OF THE ... 1381

References

[1] Aliev, F.A., Aliyev, N.A., Hajiyeva, N.S., Mahmudov, N.I., (2021), Some Mathematical Problems and
Their Solutions for the Oscillating Systems with Liquid Dampers: a Review Applied and Computational
Mathematics, 20, (3), pp. 339-365.

[2] Aliev, F.A., Larin, V.B., (1998), Optimization of Linear Control Systems: Analytical Methods and
Computational Algorithms, Amsterdam: Gordon and Breach Sci.

[3] Aliev, F.A., Larin, V.B., Velieva, N.I., (2022), Algorithms of the Synthesis of Optimal Regulators,
USA, Outskirts Press.

[4] Aliev, F.A., Mutallimov, M.M., Tunik, A.A., Velieva, N.I., Rasulova, U.Z., Mirsaabov, S.M., (2022),
Constructing an optimal controller for maneuver of quadrotor in 3-D space, Constructing an optimal
controller for maneuver of quadrotor in 3-D space, TWMS J. Pure Appl. Math., 13, (2), pp. 211-221.

[5] Aliev, N.A., Velieva, N.I., Gasimova, K.G., Resulzade, A.F., (2019), Discretization Method On Move-
ment Equation Of The Oscillating System With Liquid Dumpers, Proceedings of IAM, 8, (2), pp.
211-228. (in Russian)

[6] Aliev, F.A., Aliev, N.A., Hajiyeva, N.S., Ismailov, N.A., Magarramov, I.A., Ramazanov, A.B., Abdul-
layev, V.C., (2021), Solution of an oscillatory system with fractional derivative including to equations
of motion and to nonlocal boundary conditions, SOCAR Proceedings, 4, pp. 115-121.

[7] Aliev, F.A., Aliyev, N.A., Hajiyeva, N.S., Safarova, N.A., Aliyeva, R., (2022), Asymptotic method for
solution of oscillatory fractional derivative, Computational Methods for Differential Equations.

[8] Aliev, F.A., Hajieva, N.S., Namazov, A.A., Safarova, N.A., (2019), The identification problem for
defining the parameters of discrete dynamic system, Int. Applied Mechanics, 55, pp. 110-116.

[9] Aliev, F.A., (1989), Methods for Solving Applied Problems of Optimization of Dynamic Systems, Elm,
Baku.

[10] Andreev, Yu.I., (1976), Control of Finite-dimensional Linear Objects, Nauka, Moscow.
[11] Ashpazzadeh, E., Lakestani, M., Fatholahzadeh, A., (2021), Spectral Methods Combined with Op-

erational Matrices for Fractional Optimal Control Problems: A Review, Applied and Computational
Mathematics, 20, (2), pp. 209-235.

[12] Bonilla, B., Rivero, M., Trujillo, J.J., (2007), On systems of linear fractional equations with constant
coefficients. Appl. Math. Comp., 187, pp. 68-76.

[13] Bryson, A., Ho, Yu.Sh., (1972), Applied Theory of Optimal Control, Mir, Moscow.
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