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MODIFIED BISECTION ALGORITHM IN ESTIMATING THE

EXTREME VALUE INDEX UNDER RANDOM CENSORING

M. R. KOUIDER1, N. IDIOU2∗, F. BENATIA3, §

Abstract. The Generalized Pareto Distribution (GPD) has long been employed in the
theories of extreme values. In this paper, we are interested by estimating the extreme
value index under censoring. Using a maximum likelihood estimator (MLE) and a nu-
merical method algorithm, a new approach is proposed to estimate the extreme value
index by maximizing the adaptive log-likelihood of GPD given censored data. We also
show how to construct the maximum likelihood estimate of the GPD parameters (shape
and scale) using censored data. Lastly, numerical examples are provided at the end of the
paper to show the method’s reliability and to better illustrate the findings of this research.
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1. Introduction

Recent research has concentrated on extreme values on both a theoretical and practical
level. These theories include a broad range of topics, intending to study rare events with a
small possibility of occurring, such as natural disasters, economic crises, and other occur-
rences. The studies of extreme values are related to the investigation of the distribution
function’s tail index. Since the distribution of generalized Pareto (GPD) is based on the
tail index. It is practically regarded, as useful distribution of extreme values, it has several
applications especially in the fields of hydrology, finance, biology, social sciences due to its
heavy tail properties. Let’s remember that the GPD’s cumulative distribution function
(CDF) is known as:

P (X ≤ x) = Fγ,σ (x) :=

{
1−

(
1 + γ

σx
)−1/γ

, for γ 6= 0
1− exp

(
− γ
σx
)
, for γ = 0

, (1)
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where γ is called the shape parameter and σ the scale parameter, which is positive. Then,
x is positive when γ ≥ 0 and 0 < x < |γ| /σ, when γ < 0.

Tail behavior is the assessment of the extreme value index, it has attracted a lot of
attention recently and there has been a great deal of interest in their application for
incomplete data. Specifies the issue of censored data, which was first noted as a problem by
Reiss and Thomas, (1997) [14]. Furthermore, in the context of censored data, Einmahl et
al. (2008), [6] adapted multiple conventional extreme value index estimators and proposed
a unified way to establish their asymptotic normality. In this context we can also cite the
article of Talha et al (2020) [20] which estimates location and scale paramters of the moyal
distribution model. Recall that there are a variety of numerical approaches for computing
the ML estimator for tail behavior utilizing maximum likelihood estimates (MLE) of the
GPD parameters based on full data (without censoring) (γ, σ) . The important classical
MLE of the GPD parameters (γ, σ) for CDF given in (1) are the algorithms of Hosking
and Wallis, 1987 [9] when −1/2 < γ < 1/2 Grimshaw, (1993) [7] and Kouider, (2019) [10]
when γ ≥ −1.

To investigate and improve this theory’s contribution. We propose an approach for
estimating the index of extreme values using the ML method and the shape and scale
parameters of the GPD distribution under random censoring. We use a numerical method
to estimate the GPD parameters under censored data with fewer conditions and without
needing additional calculations. For numerous roots, we apply the Modified Bisection
Algorithm (MBA), which is provided in section (3). In particular, we provide a detailed
description of our algorithm. The GPD parameters under censored data are also presented,
together with confidence intervals for the estimated parameters. In section(4), we illustrate
our achievements by a simulation study in two numerical examples. The first one is
generated by a sample that follows GPD parameters (the shape and the scale) under
censored data and the latter is given with real data.

Let Xi, Yi, i = 1 . . . , n two random variables (rv’s) independent and identically distribu-
tion (i.i.d) with continuous CDF F andG respectively. We said thatXi is right-censored by
Yi, i = 1 . . . , n if Xi > Yi., then we have δi = 0. As a result, the variable Zi = min (Xi, Yi)
is only observed when Xi ≤ Yi for i = 1 . . . , n, then δi = 1 equal to one which represents
the indicator function of censored data. Assuming now that H the cumulative distribu-
tion function of the observed variable Zi, for i = 1 . . . , n and τH = sup {x : H (x) < 1} the
supremum of H ′ssupport. Let’s call the attraction domains of an extreme value distri-
bution F and G, so the extreme value index for distribution function (df)of (Z, δ) exists
and we noted by γ where γ = γ1γ2/ (γ1 + γ2) , such that γ1 is the extreme value index for
df of X and γ2 is the extreme value index for df of Y . The adapted ML estimator with

censoring noted γ̂
(c,ML)
1 which defined by split γ̂(ML) the extreme value index estimator of

Zi for i = 1 . . . , n (without censoring) into p̂ the proportion of non-censored observation
in k , the number of Z’s over threshold t ( see, Einmahl et al (2008) [6]),

γ̂
(c,ML)
1 :=

γ̂(ML)

p̂
, (2)

where p̂ = r
k and r :=

n∑
i=1

δ[i,n]1Z[i,n]≥t (r is the number of censored observation in the

k largest Z’s), δ[1,n], δ[2,n], . . . , δ[n,n] the δ corresponding to Z[1,n], Z[2,n], . . . , Z[n,n] respec-
tively and Z[1,n] < Z[2,n] < · · · < Z[n,n] the order statistics of Zi for i = 1 . . . , n. While
γ divided by γ2/ (γ1 + γ2) is equal to γ1, then under (2), we conclude that p̂ estimate
γ2/ (γ1 + γ2) . As well, Pham et al [13] discussed the estimation of the GPD parameters
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(γ1, σ1) via MLE for CDF given in (1) under censoring data, that based on Grimshaw’s
estimation [7], for γ1 ≥ −1 with many mathematical operations. The sensitivity and speci-
ficity of their estimation method were also studied in detail and wonderfully by Pham,
Tsokos and Choi, (2019) [13]. The current study aims is to reduce count compression.
Based on [10], a new algorithm for MLE of the GPD parameters (γ1, σ1) is proposed to
estimate the extreme value index under censored data. Furthermore, using our MLE ap-
proach, we introduce a new tail behavior estimator under random censoring based on the

ML method, indicated γ̂
(c,KIB)
1 .

The remainder of the paper is organized as follows. The adapt likelihood equation of
GPD under random censoring was shown in section 2. In section 3, we propose a new
algorithm for MLE of GPD parameters (γ1, σ1) based on Kouider’s estimation (2019) (see
[10]) under censored data when γ1 ≥ −1. It will be used, to reduce account compression
for MLE for the parameters (γ1, σ1) of GPD under censoring, and a new MLE-based tail

behavior estimator γ̂
(c,KIB)
1 will also be introduced. In section 4, a simulation study is

carried out on the adaptive estimator of the GPD parameters (γ1, σ1) using two examples,
the first of which is based on censored data and the second of which is based on real data,
to better illustrate our outcomes.

2. The Adapt Likelihood Equation of GPD Under Random Censoring

Let (Zj , δj) be a sample from a couple of rv’s (Z, δ), and noted the concomitant of the
i-th order statistic by δ[i,n] = δj where Z[i,n] = Zj , 1 ≤ j ≤ n. In the case of censoring,
the ML estimator is an adaptation estimator for the extreme value index where the shape
parameter of the GPD as we defined in (2). In this paper, we use the likelihood approach
under censoring. This approach methodology is one of the most concepts in the statistics
of extremes value.

The likelihood approach, which is based on two works by Balkema [2] and Pickands [12],
uses GPD parameters to approximate the distribution of excesses Cj = Zj−t , given Zj > t
over a threshold t > 0 (sufficiently high) when t → τF , where τF is the supremum of the
support of F,. Noted the number of absolute excesses over t by k , wherein the asymptotic
setting k = kn is an intermediate sequence, that is, kn → ∞ and kn/n → 0 as n → ∞.
Under censoring, the maximum likelihood estimate strategy uses the maximization of an
adapt likelihood function (see [1]),

` (Cj , δj) =
k
Π
j=1

fγ1,σ1 (Cj)
δj (1− Fγ1,σ1 (Cj))

1−δj , (3)

where fγ1,σ1 (x) = (1/σ1) (1 + (γ1/σ1)x)−(1/γ1)−1 is the associated GPD density. As a
consequence, we estimate the unknown parameters γ1 and σ1 by the ML estimator if we
maximize (3). From equation (3) the log- likelihood given by:

log (` (Cj , δj)) =
k∑
j=1

(
δj log

(
1

σ1

)
−
(
δj +

1

γ1

)
log

(
1 +

γ1
σ1
Cj

))
. (4)

Then for any γ1 < −1 with Ck,k = max (Cj) for 1 ≤ j ≤ k,

lim
σ1
γ1
→C+

k,k

log (` (Cj , δj)) =

{
+∞ if δj = 1,
−∞ if δj = 0.
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From (4), the likelihood equations are given in terms of the partial:
∂ log(`(Cj ,δj))

∂γ1
=

k∑
j=1

((
1
γ1

)2
log
(

1 + γ1
σ1
Cj

)
−
(
δj + 1

γ1

)(
1
σ1
Cj

)(
1 + γ1

σ1
Cj

)−1)
∂ log(`(Cj ,δj))

∂σ1
=

k∑
j=1

1
σ1

(
−δj +

(
δj + 1

γ1

)(
γ1
σ1
Cj

)(
1 + γ1

σ1
Cj

)−1)
For γ1 = 0 , these concepts should be evaluated in terms of Taylor’s development,

therefore we have:
∂ log(`(Cj ,δj))

∂γ1

∣∣∣
γ1=0

=
k∑
j=1

(
−δj

(
Cj
σ1

)
+ 1

2

(
Cj
σ1

)2)
∂ log(`(Cj ,δj))

∂σ1

∣∣∣
γ1=0

=
k∑
j=1

(
−δj

(
1
σ1

)
+
(

Cj
(σ1)

2

)) (5)

From formulas (5), we find that σ1 = (k/r)C where C := (1/k)
k∑
j=1

Cj , and r :=
k∑
j=1

δj .

For γ1 6= 0 , the likelihood equations will given respectively by :

k∑
j=1

((
1

γ1

)
log

(
1 +

γ1
σ1
Cj

)
−
(
δj +

1

γ1

)(
γ1
σ1
Cj

)(
1 +

γ1
σ1
Cj

)−1)
= 0 (6)

and
k∑
j=1

((
δj +

1

γ1

)(
γ1
σ1
Cj

)(
1 +

γ1
σ1
Cj

)−1)
= r (7)

Then, we can simplified (6) by :

1

r

k∑
j=1

log

(
1 +

γ1
σ1
Cj

)
= γ1, (8)

and (7) by:

1

k

n∑
i=1

(γ1δj + 1)

(
1 +

γ1
σ1
Cj

)−1
= 1 (9)

Noted r-value for the case δj = 1 and m-value for the case δj = 0 equivalent to k = r+m
value for C1, C2, . . . , Ck to be a sequence of i.i.d. random variables. Therefore, the equation
(4) will be given by:

log (` (Cj , δj)) = r log

(
1

σ1

)
−

r∑
j=1

log

(
1 +

γ1
σ1
Cj,r

)
− 1

γ1

k∑
j=1

log

(
1 +

γ1
σ1
Cj,k

)
.

where δ1,k, δ2,k, . . . , δk,k the δ′ corresponding to C1,k, C2,k, . . . , Ck,k, respectively and C1,k <
C2,k < · · · < Ck,k the order statistics correspondence, such that σ1 > 0 for γ1 > 0 and
σ1 > −γ1Ck,k for γ1 < 0. Hence, if γ1 < −1 so there is no MLE. And, if we take γ1 = −1
with σ1 > Ck,k we obtain :

M = log (` (Cj , δj))|γ1=−1 = r log

(
1

σ1

)
+

m∑
j=1

log

(
1− Cj:m

σ1

)
(a)
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For m = k − r, in this case we are going to take Ck,k estimator of σ1 with γ1 = −1. Since
Ck,k = Cm,m is censored (not observed), M not exist. According to Jensen’s inequality, if

we consider C ′ := (1/m)
m∑
j=1

Cj:m then we can rewrite the formula (a) as

M1 ' r log

(
1

σ1

)
+m log

(
1− C ′

σ1

)
(b)

However, if Ck,k = Cr,r is observed so M exist. Then, with γ̂
(c)
1 = −1 we can find

σ̂
(c)
1 = Ck,k. We are already aware that the estimator the statistical analysis if one exists,

is lonely. In this situation, the problem is complicated because we use the optimization in
an open set under censored data. But there is no problem with the close-set. Hence, the

MLE of GPD parameters under random censoring, denoted by
(
γ̂
(c)
1 , σ̂

(c)
1

)
. We recognize

it in three cases as follows :
Case1: Ck,k is observed,

(
γ̂
(c)
1 , σ̂

(c)
1

)
is given by the local maximum if

log (` (Cj , δj)) > M |
σ̂
(c)
1 =Ck,k

,

and is given by the boundary maximum if log (` (Cj , δj)) < M |
σ̂
(c)
1 =Ck,k

,

Case2: Ck,k is censored,
(
γ̂
(c)
1 , σ̂

(c)
1

)
is given by the local maximum if

log (` (Cj , δj)) > M1|σ̂(c)
1 =Ck,k

, and is given by the boundary maximum if

log (` (Cj , δj)) < M1|σ̂(c)
1 =Ck,k

,

Case3: if no local maximum is found, then there is no MLE of parameters of GPD
under random censoring. In this situation, use an adaptive estimator via the use of the
alternative estimators given by Hosking and Wallis, (1987) [9] without censoring, to obtain
a finite maximum of the GPD log-likelihood under censored data as we defined in (2).

Consequently, the constraint γ1 ≥ −1 must be imposed for the existence of an ML-
estimator. We have to count the MLE of GPD parameters with random censoring is an op-
timization on the constrained space A = {γ1 > 0, σ1 > 0}∪{−1 ≤ γ1 < 0, σ1/γ1 < −Ck,k} .
Furthermore, in order to compute the MLE of GPD with censored data. We have to com-
pute two values of (γ1, σ1) that have to count together. The first is the local maximum
of the log-likelihood on the space A. And the second is at the boundary of A , where
γ1 = −1. Therefore from Eq. (8) and (9), the system likelihood equation can be simplified
as well:

ψ (θ1) = 1
k

k∑
j=1

[(
δj

(
1
r

k∑
j=1

log (1− θ1Cj)

)
+ 1

)
× (1− θ1Cj)−1

]
− 1 = 0, (10)

for θ1 = − (γ1/σ1) and 1 − θ1Cj,k > 0 , j = 1, 2, . . . , k , so it must be computed
numerically on space B = {θ1 < 1/Ck,k, θ1 6= 0} . For γ1 ∈ R and in terms of (Cj , δj), the
Eq (10) with the likelihood equations under censored data will be given by:

ψ (θ1) = CD +
1

k

k∑
j=1

(1− θ1Cj,k)−1 − 1 when γ1 6= 0

σ̂
(c)
1 = (k/r)C, when γ1 = 0
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where C =1
r

k∑
j=1

log (1− θ1Cj,k) and D = 1
k

r∑
j=1

(1− θ1Cj,r)−1. Then, the ML estimator

for the GPD parameters under censored data can be approximated in the following pro-
cedure :

• Find the root θ̂
(c)
1 of ψ (θ1) = 0 where:

ψ (θ1) = ((r/k) C)((k/r)D) +
1

k

k∑
j=1

(1− θ1Cj,k)−1 − 1, (11)

• Compute γ̂
(c)
1 by

1

r

k∑
j=1

log
(

1− θ̂(c)1 Cj

)
= γ̂

(c)
1 . (12)

• θ̂
(c)
1 = −

(
γ̂
(c)
1 /σ̂

(c)
1

)
then σ̂

(c)
1 = −

(
γ̂
(c)
1 /θ̂

(c)
1

)
.

Otherwise, we give a new algorithm for MLE of GPD parameters (γ1, σ1) based on
[10]. If we consider the case of uncensored data, where Cj = Zj − t and k = r which has
already been studied in many articles including the important works [7] and [10], the ML
estimator for the GPD parameters can be approximated in the following procedure:

• Find the root θ̂ of ψ (θ) = 0 where:

ψ (θ) =

1

k

k∑
j=1

log (1− θCj,k)

×
1

k

k∑
j=1

(1− θ1Cj,k)−1
+

1

k

k∑
j=1

(1− θ1Cj,k)−1−1, (13)

• Compute γ̂ by

1

k

k∑
j=1

log
(

1− θ̂Cj
)

= γ̂. (14)

• θ̂ = − (γ̂/σ̂) then σ̂ = −
(
γ̂/θ̂
)
.

We can find that θ̂
(c)
1 6= θ̂ because the zero of ψ (θ1) in (11) is different from ψ (θ) in

(13). As consequence, we cannot define γ̂
(c)
1 that is given in (12) as adapted ML estimator

in censoring which is defined previously in (2). Noted
(
γ̂
(c)
1 , σ̂

(c)
1 , θ̂

(c)
1

)
by(

γ̂
(c,KIB)
1 , σ̂

(c,KIB)
1 , θ̂

(c,KIB)
1

)
respectively. Refer to the previous procedure of the ML estimator for the GPD parame-

ters without censoring as Cj = Xj−t , for Xj > t and θ1 = − (γ1/σ1) it gives θ̂
(c,KIB)
1 6= θ̂1.

If θ̂
(c,KIB)
1 ≤ θ̂1 equivalent γ̂

(c,KIB)
1 ≤ γ̂1 and σ̂1 ≤ σ̂(c,KIB)

1 . Then we find the following
asymptotic behavior :

√
k
(
γ̂
(c,KIB)
1 − γ1

)
≤
√
k (γ̂1 − γ1) ,

where
√
k

(
σ̂
(c,KIB)
1
σ1

− 1

)
≥
√
k
(
σ̂1
σ1
− 1
)
, such that, the asymptotic

√
k (γ̂1 − γ1) and

√
k
(
σ̂1
σ1
− 1
)

is based on the X-sample (uncensored situation) for k = r (see [4]).
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When θ̂
(c,KIB)
1 ≥ θ̂1 we also have

√
k
(
γ̂
(c,KIB)
1 − γ1

)
≥
√
k (γ̂1 − γ1) with

√
k

(
σ̂
(c,KIB)
1
σ1

− 1

)
≤
√
k
(
σ̂1
σ1
− 1
)
. Now if θ̂

(c,KIB)
1 = θ̂1 the estimator γ̂

(c,KIB)
1 becomes

an adaptive estimator to censoring as we define in (2). The following theorem provides
some useful properties for obtaining the zeros of the function ψ (θ1) provided in section
(3) using the numerical method discussed in (11).

Theorem 2.1. Let’s the function ψ (θ1) given in (11) and defined on the space B. We
have:

(1) lim
θ1→1/C−k,k

ψ (θ1) = −∞.

(2) lim
θ1→0

ψ (θ1) = 0 (15)

(3) ψ (θ1) < 0 for all θ1 < (θ1)L =
2
(
C1,k − C

)
(C1,k)

2 . (16)

where C = 1
k

k∑
j=1

Cj , and C1,k = min (Cj) for j = 1, 2, . . . , k.

In formula (5) if γ1 → 0 then θ1 → 0 where σ1 = k
rC ; as a similar result, we obtain

γ1 = 10−s (Noted that s is a natural number). Consequently, if we take ε = 10−s/krC
around them, while the upper bound 1/Ck,k /∈ B , we can use 1/Ck,k − ε as the upper
bound and (θ1)L − ε for ε > 0 as lower bound. Therefore the space B will be define by:

B = {θ1 ∈ [(θ1)L ;−ε] ∪ [ε; (θ1)U ] , θ1 6= 0}, where (θ1)U = 1/Ck,k − ε, with ε = 10−s/krC
for s is a natural number.

Proof. Results (1) and (2) are accurate.
The proof of Result (3). We can rewrite the function (11) as

ψ (θ1) =

1

r

k∑
j=1

log (1− θ1Cj,k) + 1

1

k

r∑
j=1

(
1

1− θ1Cj,r

)+

1

k

m∑
j=1

(
1

1− θ1Cj,m

)−1

(17)

Follows by using Jensen inequality 1
r

k∑
j=1

log (1− θ1Cj,k) ≤ k
r log

(
1− θ1C

)
for θ1 ∈ B and

since C1,r < Cj,r and C1,m < Cj,m for all j = 1, . . . , k respectively , and with θ1 < 0 we
have

1

k

r∑
j=1

(
1

1− θ1Cj,r

)
<
r

k

(
1

1− θ1C1,r

)
and

1

k

m∑
j=1

(
1

1− θ1Cj,m

)
<
m

k

(
1

1− θ1C1,m

)
For θ1 < 0 it follows that

ψ (θ1) ≤
(
k

r
log
(
1− θ1C

)
+ 1

)(
r

k

(
1

1− θ1C1,r

))
+
m

k

(
1

1− θ1C1,m

)
− 1,

then

ψ (θ1) ≤ log
(
1− θ1C

)( 1

1− θ1C1,r

)
+
r

k

(
1

1− θ1C1,r

)
+
m

k

(
1

1− θ1C1,m

)
− 1 < 0
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Since θ1 < 0 with C1,r < C1,m ( min (C1,m;C1,r) ) we have
(

1
1−θ1C1,m

)
<
(

1
1−θ1C1,r

)
,

we get

ψ (θ1) ≤ log
(
1− θ1C

)( 1

1− θ1C1,r

)
+

(
1

1− θ1C1,r

)
− 1 < 0,

then log
(
1− θ1C

)
+ 1 < (1− θ1C1,r), and 1− θ1C < exp (−θ1C1,r), hence

1− θ1C < 1 + (−θ1C1,r) + 1
2 (−θ1C1,r)

2.

Assuming that θ1 < (θ1)L, then,

(θ1)L =
2(C1,r−C)
(C1,r)

2 . By the way, if C1,m < C1,r ( min (C1,m;C1,r) ) we have(
1

1−θ1C1,r

)
<
(

1
1−θ1C1,m

)
and we get (θ1)L =

2(C1,m−C)
(C1,m)2

.

Knowing that C1,k := min (Cj ; δj) for all j = 1, . . . , k. this implies that:
1. if C1,r := C1,k that is mean is observed then:

(θ1)L =
2
(
C1,k − C

)
(C1,k)

2

2. if C1,m := C1,k that is mean is censored then:

(θ1)L =
2
(
C1,k − C

)
(C1,k)

2

This achieves the proof of (16).
�

3. Algorithm for the GPD maximum likelihood estimates under censored
data

Many numerical strategies for computing the MLE of GPD parameters (γ1, σ1) by
solving the ML-equations based on the full data have been proposed in the literature.
Among them, the reader is invited to see [10]. In this work, we use MBA to search the
multi-roots of ψ (θ1) given in (11) which proposed in [11], as the following steps:

Step 1: Separate the interval [α;β] into several intervals [αi;βi] by h = (β−α)/d where
d ∈ N is the number of intervals (for example d = 10), and β > α.

Step 2: For i = 1, . . . d, where α1 = αi, β1 = βi and f (αi) .f (βi) < 0.
Step 3: For n ≥ 1, calculate the middle of [αn;βn] by (θ1)

∗
n = (αn + βn) /2.

Step 4: Compute for a sub-interval [α∗n, β
∗
n] by:

[α∗n;β∗n] =

{
[αn; (θ1)

∗
n] , if f (αn) .f ((θ1)

∗
n) < 0

[(θ1)
∗
n ;βn] , if f ((θ1)

∗
n) .f (βn) < 0

Step 5: Compute the value of (θ1)n+1 by:

(θ1)n+1 = β∗n − f (β∗n)
β∗n − α∗n

f (β∗n)−f (α∗n)
or (θ1)n+1 = α∗n − f (α∗n)

β∗n − α∗n
f (β∗n)−f (α∗n)

Step 6: For tolerance 1× 10−7, if
∣∣(θ1)n+1 − (θ1)

∗
n

∣∣ < 1× 10−7, then

(θ1)n+1 = (θ1)
∗
n and stop the algorithm. Consequently, the zero is (θ1)n+1. Else[
α∗n+1;β

∗
n+1

]
=

{ [
α∗n; (θ1)n+1

]
, if f (α∗n) .f

(
(θ1)n+1

)
< 0[

(θ1)n+1 ;β∗n
]
, if f

(
(θ1)n+1

)
.f (β∗n) < 0

and set n = n+ 1, then come back to Step3. Inside some regularity conditions, the MLE
has a consistent estimator with the lowest variance. The inverse of the Fisher information
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matrix is used to estimate the estimators’ asymptotic variance covariance matrix of the

estimators
(
γ̂
(c,KIB)
1 , σ̂

(c,KIB)
1

)
. Which is given by: V ar

(
γ̂
(c,KIB)
1

)
Cov

(
γ̂c,KIB1 , σ̂c,KIB1

)
Cov

(
γ̂c,KIB, σ̂c,KIB

)
V ar

(
σ̂c,KIB1

)  =

 ∂2 log(`(Cj ;δj))

∂2γ̂
(c,KIB)
1

∂2 log(`(Cj ;δj))

∂γ̂
(c,KIB)
1 ∂σ̂

(c,KIB)
1

∂2 log(`(Cj ;δj))

∂γ̂
(c,KIB)
1 ∂σ̂

(c,KIB)
1

∂2 log(`(Cj ;δj))

∂2σ̂
(c,KIB)
1

−1

As a result, given censored data, the second derivatives of the log-likelihood of the GPD
are computed for θ1 = − (γ1/σ1) by:

∂2 log(`(Cj ;δj))
∂2γ1

:=
(

1
γ1

)3 k∑
j=1

[
(1 + γ1δj) (A)2 − 2 log(R) + 2(A)

]
,

∂2 log(`(Cj ;δj))
∂2σ1

:=
(
θ1
γ1

)2 k∑
j=1

[
δj −

(
δj + 1

γ1

)
(2A)− (A)2

)
],

∂2 log(`(Cj ;δj))
∂γ1∂σ1

:= θ1
(γ1)

2

k∑
j=1

[(
δj + 1

γ1

)
(A)2 − δj(A)

]
.

When A =1 − 1
1−θ1Cj and R =1 − θ1Cj . In the data sets, we used investigating the

MLE of GPD that agree with the finding of [9], [7] and [10]. The results show that on
each interval, there are either no zeros, two zeros, or one zero. This is what their nu-
merical study indicates. We will use this advantage in order to present an algorithm for
computing the MLE for the parameters (γ1, σ1) of GPD under random censoring. First,
we look for multi-roots with the properties stated in Theoreme (2.1) in the roots of the
function given on 11) by the MBA. Next, for the function given on (11), we compute the
shape and scale parameters of each root finding. Then, for GPD parameter estimations,
we choose a maximum of local maximum likelihood. Lastly, using confidence intervals for
each estimator, we estimate their asymptotic variance-covariance matrix. The steps below
describe the procedure for computing the MLE of GPD with CDF given in (1) for the
parameters (γ1, σ1) under censoring:

A. Choose a value for ε close to zero enough, for example, let ε = 10−8/C.
B. Compute(θ1)L and (θ1)U the lower and upper bounds of ψ (θ1) respectively which

given by :

(θ1)L =
2
(
C1,k − C

)
(C1,k)

2 ; (θ1)U =
1

Ck:k
− ε.

C. To find the zero of ψ (θ1) = 0 given on (11) on the tow intervals [(θ1)L ;−ε] and
[ε; (θ1)U ] , it has to be used the MBA for multi-roots algorithm given in section(3) with
each interval.

D. For each value of (θ1)
(0)
s obtained from the previous step C , compute the value

of (γ1)s given by (γ1)s = 1
r

k∑
j=1

log
(

1− (θ1)
(0)
s Cj

)
for r :=

k∑
j=1

δj . And compute the value

of (σ1)s = −
(

(γ1)s / (θ1)
(0)
s

)
.

E. Let (γ1)s and (σ1)s denote the results of the previous step D which belongs on
space A, and if find a local maximum exists, the ML estimator of the GPD parameters is
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γ̂
(c,KIB)
1 , σ̂

(c,KIB)
1

)
which have a maximum log

(
`
(
Cj , δj ;

(
γ̂
(c,KIB)
1 , σ̂

(c,KIB)
1

)))
.

F. For
(
γ̂
(c,KIB)
1 , σ̂

(c,KIB)
1

)
compute all the second-order partial derivatives estima-

tors:

∂2 log(`(Cj ,δj))

∂2γ̂
(c,KIB)
1

,
∂2 log(`(Cj ,δj))

∂2σ̂
(c,KIB)
1

and
∂2 log(`(Cj ,δj))

∂γ̂
(c,KIB)
1 ∂σ̂

(c,KIB)
1

and the Jacobian determinant of the

second-order derivatives :

∂2 log(`(Cj ,δj))

∂2γ̂
(c,KIB)
1

× ∂2 log(`(Cj ,δj))

∂2σ̂
(c,KIB)
1

−
(

∂2 log(`(Cj ,δj))

∂γ̂
(c,KIB)
1 ∂σ̂

(c,KIB)
1

)2

.

G. Calculate 100(1− κ)% confidence intervals of (γ1, σ1) constructing by using

γ̂
(c,KIB)
1 −

+
tκ/2

√
V ar

(
γ̂
(c,KIB)
1

)
and σ̂

(c,KIB)
1 −

+
tκ/2

√
V ar

(
σ̂
(c,KIB)
1

)
respectively where

tκ/2 denotes the 1−κ/2 quantile of the standard normal distribution is symmetric about 0.

H. After calculating the confidence intervals of γ1 and σ1 respectively is the final of
our algorithm as we presented in the following figure:

Figure 1. Algorithm for the GPD maximum likelihood estimates under
censored data Process.
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4. Simulation and Illustrative Example

4.1. Simulation . Example 1
A simulation study is carried out, using the generalized Pareto distribution under cen-

sored data. We generate Xi sample of size 15 which follows the GPD distribution with
parameters γ1 = 0.5 and σ1 = 25. A second sample is indeed generated Yi with the same
size as the first and with parameters γ2 = 0.8, σ2 = 20. The 15 value are ranked in the
following table:

36.330 4.903 0.078 70.547 5.377
13.065 16.349 4.321 11.689 6.322
0.226 6.552 22.814 6.004 58.550

Table 1. Z-sample of 15 size generated with the GPD parameters under censoring

The observed data r = 9 (the data were uncensored at different times 36.330, 4.903,
5.377, 13.065, 4.321, 6.322, 0.226, 22.814 and 58.550 respectively ), and the censored data
m = 6 with Z15,15 is censored.

When the data is uncensored, our algorithm produces gives GPD maximum likelihood
estimates (based on full data ), such that r = n = 15 and m = 0, (In this situation, the
algorithm is similar to the classic MLE of GPD given in [10]). Then, the extreme value

index which based on (Zn;n ≥ 1) is γ :=
(
γ1γ2
γ2+γ1

)
= 0.30769 with θ = − (γ/σ).

The boundaries are calculated ε = 3.42×10−9 and θL = −6.81×102 , θU = 1.42×10−2

, to apply MBA for multi-roots on the intervals [ε; θU ]and [θL;−ε], where ψ (θ) given in

(13). Then, we find θ
(0)
1 = −0.024207 and θ

(0)
2 = 0.013466.

Noted Zj = Cj We determine which values correspond to θ
(0)
1 and θ

(0)
2 . The following

table illustrates these results:

θ
(0)
1 = −0.024207 γ∗1 = 0.3049 σ∗1 = 12.5956 log (` (Cj ; 1; (γ∗1 , σ

∗
1))) = −57.5737

θ
(0)
2 = 0.013466 γ∗2 = −0.44494 σ∗2 = 33.04180 log (` (Cj ; 1; (γ∗2 , σ

∗
2))) = −60.79249

Table 2. An account of the values (γ∗1 ;σ∗1) and (γ∗2 ;σ∗2) .

Now, we have γ∗1 > 0, σ∗1 > 0 and σ∗2/γ
∗
2 < −70.457, where Z15,15 := 70.457 the local

maximum of the GPD log-likelihood into A. The boundary maximum for γ̂ = −1 and
σ̂ = 70.457 given by log (` (Cj ; 1; (−1, 70.457))) := −63.84419, in (a) or (b), where m = 0.

So if we consider log (` (Cj ; 1; (γ∗1 , σ
∗
1))) > log (` (Cj ; 1; (γ∗2 , σ

∗
2))), then the GPD maxi-

mum likelihood estimates obtained for uncensored data are: γ̂ML = 0.3049, σ̂ML = 12.5956

and θ̂ML = −0.024207.

The algorithm given in section(3) uses ε = 3.42× 10−9 and the bounds
(θ1)L = −6.81× 102 where (θ1)U = 1.42× 10−2. It will search for either two root of ψ (θ1)
given in (11) on the intervals [ε; (θ1)U ] and [(θ1)L ;−ε] respectively.

On the interval [(θ1)L ;−ε] using the MBA for multi-roots, as explained in section (3)

converges to θ̂
(c,KIB)
1 = −0.0241. Then, the root θ̂

(c,KIB)
1 correspond to the estimated
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γ̂
(c,KIB)
1 = 0.506 and σ̂

(c,KIB)
1 = 21.014 with log

(
`
(
Cj ;
(
γ̂
(c,KIB)
1 , σ̂

(c,KIB)
1

)))
= −39.108.

Then, we find γ̂
(c,KIB)
1 > 0 and σ̂

(c,KIB)
1 > 0 the local maximum of the GPD log-likelihood

under censoring into A.

As Zn,n is failure time we get the boundary maximum γ̂
(c,KIB)
1 = −1 and σ̂

(c,KIB)
1 =

70.457 given in (b) by: log (` (Cj ; (−1, 70.457))) := −40.136, but on the interval [ε; (θ1)U ],
so no zero of ψ (θ1) exists. By the way, for this particular censored data, the MLE for

GPD is: γ̂
(c,KIB)
1 = 0.506 , σ̂

(c,KIB)
1 = 21.014 and θ̂

(c,KIB)
1 = −0.0241. And their cor-

responding 95% confidence intervals of γ1 and σ1 exist when −1.08 < γ1 < 2.09 with
−2.08 < σ1 < 44.09.

In other side, we have γ̂
(c,KIB)
1 = 0.506 and the adaptive ML estimator:

γ̂
(c,ML)
1 =

γ̂(ML)

p̂
= 0.50817 where γ̂ML = 0.3049 and p̂ =

9

15
,

then, we obtain σ̂ML

σ̂
(c,KIB)
1

= 8.99909 ' 9 which is the number of observed data given in this

simulation study. To compare and evaluate the performance of two distinct estimation
methods for determining the extreme value index, a simulation study is carried out based
on bias and RMSE of γ1 where n =

{
15th, 50th, 100th, 200th, 500th

}
. The outcomes of

utilizing the GPD method with censored data are reported in table (3).

σ1 = 25, γ2 = 0.8, σ2 = 25

γ1 n r̂ Methods γ̂
(c,.)
1 Bias (γ1) MSE (γ1) RMSE (γ1)

15 9 Adaptive ML 0.508 0.008 0.000128 0.01131371
KIB-Estimator 0.506 0.006 7.2× 10−5 0.008485281

50 30 Adaptive ML 0.97 0.47 0.4418 0.6646804
KIB-Estimator 0.499 −0.001 2× 10−6 0.001414214

0.5 100 53 Adaptive ML 0.696 0.196 0.076832 0.2771859
KIB-Estimator 0.488 −0.012 0.000288 0.01697056

200 98 Adaptive ML 0.757 0.257 0.132098 0.3634529
KIB-Estimator 0.508 0.008 0.000128 0.01131371

500 251 Adaptive ML 0.641 0.114 0.025992 0.1612203
KIB-Estimator 0.51 0.01 2× 10−4 0.01414214

Table 3. Bias and RMSE of extreme value index estimates using the GPD method.

The focus of this part of simulation is to compare γ̂
(c,KIB)
1 with γ̂

(c,ML)
1 . We note that

the bias and RMSE of γ̂
(c,KIB)
1 are lower than γ̂

(c,ML)
1 . Because the amount of data points

observed is also estimated , γ̂
(c,KIB)
1 is a virtual estimator that is both efficient and ro-

bust. These results show that our method provides a robust tailed behavior estimator
under random censoring.

4.2. Example 2. We apply the extreme value model, with Peak-Over-Threshold (POT).
We take the tensile-strength fiber data which is given in [10]. The data is gathered from
tensile-strength testing for a random value that exceeds the threshold C1, C1, . . . , C15 of 15
nylon carpet fibers, listed in an increasing order in table (4), (Only the fact that we have
not yet given us the test’s threshold value is known due to proprietary considerations).
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0.011 0.030 0.051 0.056 0.092
0.100 0.140 0.184 0.200 0.286
0.338 0.365 0.518 0.561 0.876

Table 4. A Random Sample of n = 15 Nylon Carpet Fibers.

In his study, he found that the GPD (MLE) were γ̂ML = −0.1176979 and also
σ̂ML = 0.283040 for no censoring data (r = k = 15) .

Considering now a censored individual sample (a right censored data with test cessation
after the 13th test unit failure). We employ our algorithm, which produces GPD maximum

likelihood estimates from censored data γ̂
(c,KIB)
1 = −0.214426 and

σ̂
(c,KIB)
1 = 0.350239.
Their corresponding 95% confidence intervals are −0.933661 < γ1 < 0.504809 and

0.0537193 < σ1 < 0.6467594. So, if we compare them with those were reported in [10],
we find that our interval estimation still covering as [10]’s results. The P-P interaction

graph of C-sample with GPD
(
γ̂
(c,KIB)
1 , σ̂

(c,KIB)
1

)
, and their histogram are shown in the

following figures respectively.

Figure 2. P-P plot of Exceedance (in kg/mm2) of the Testing Threshold
in Tensile-Strength Tests for a Random Sample of n = 15 Nylon with GPD(
γ̂
(c,KIB)
1 , σ̂

(c,KIB)
1

)
.

Figure 3. Histogram of Exceedance (in kg/mm2) of the Testing Threshold
in Tensile-Strength Tests for a Random Sample of n = 15 Nylon with GPD(
γ̂
(c,KIB)
1 , σ̂

(c,KIB)
1

)
.
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5. Conclusion

In this study, we propose a new algorithm for MLE of the GPD parameters (γ1, σ1) with
CDF given in (1) and shape parameter γ1 ≥ −1 to estimate the extreme value index under
censored data, based on [10]. Hence, we can use our MLE of the GPD under censored
data with γ1 ≤ 1 because the aim of this present study is to reduce the compressing of
counts. Therefore, our algorithm is satisfied without a sign of γ1 (i.e γ1 ≤ 1 or γ1 ≥ −1 ).
Furthermore, we define a new tail behavior estimator under random censoring based on

ML method by our MLE algorithm denoted γ̂
(c,KIB)
1 .

Since the proportion of non-censored observation in the k largest Z’s is estimated in (2)

(denoted p̂ ), we find that γ̂
(c,KIB)
1 is not adapted estimator (see table(3)). However, is

adapted if θ̂
(c)
1 := θ̂, in this case we get the adaptive estimator of the two GPD parameters

(γ1, σ1) under censored data (Section(4)).

As an outcome, in future research, we investigate the properties of this adaptive esti-
mator when the data is censored. This is the following research subject, and the idea has
indeed been established in a new paper which is in the final stages.
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