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HYPERBOLIC TYPE HARMONICALLY CONVEX FUNCTION AND
INTEGRAL INEQUALITIES

B. KODAMASINGH!, M. TARIQ%, S. K. SAHOO!, H. AHMAD?, J. NASIR?, §

ABSTRACT. In this paper, we define a new class of harmonic convexity i.e. Hyperbolic
type harmonic convexity and explore its algebraic properties. Employing this new defini-
tion, some integral inequalities of Hermite-Hadamard type are presented. Furthermore,
we have presented Hermite-Hadamard inequality involving Riemann Liouville fractional
integral operator. We believe the ideas and techniques of this paper may inspire further
research in various branches of pure and applied sciences.
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1. INTRODUCTION

In this section, we recall some basic concepts and results, which are useful in proving
our results.

Definition 1.1. Let K C R\ {0} be any interval and ¢ : K — R be any mapping, then
the function ¢ is said to be Harmonic convex function, if

o (g ) < (- 0ptay) + tolan )
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for alldy,dp € K, 0 € [0, 1].

Convexity theory provides powerful principles and techniques to study a wide class of
problems in both pure and applied mathematics. Convex functions are significant in the
hypothesis of numerical inequalities, some notable outcomes are immediate ramifications
of these functions. The ideas of different sorts of new convex functions are developed from
the basic definition of a convex function. During the last century, many researchers have
contributed in the theory of convexity. The theory of convexity and their generalizations
also play a magnificent role in the analysis of extremum problems. For the applications
and interesting literature about convex analysis readers refer to [2, 3, 4, 5, 6].

Hermite-Hadamard inequality, which was proved by Hermite in 1883 and Hadamard
in 1896 is extensively studied in the convex theory. The said inequality deals with a
necessary and sufficient condition for a function to be convex in nature. The classical
Hermite-Hadamard inequality is given as:

Consider ¢ : K C R — R be a convex function with d; < dg and dj,ds € K. Then

¢<d1+d2> < 1 /d2 @(x)dxgw, (2)

2 - d2_d]_ d; 2

i§can[1] proved the following Hermite-Hadamard type inequality for the harmonically con-
vex function.

Theorem 1.1. [1, Theorem 2.4, page 936] Let K C (0,00) be an interval and ¢ : K — R be
a harmonically convex function with d1 < dg and dy,ds € K. Then the Hermite-Hadamard
type inequality

<,0< 2d1do > < _Gido /:2 80($)d$ < ¢(d1) +<P(d2)' (3)

di +do/ — do—dq x2 B 2
holds.

Toplu[10] introduced the concept of Hyperbolic type convexity as follows,

Definition 1.2. A function ¢ : K C R — R is called hyperbolic type convex function if

for every d;,ds € K and ¢ € [0, 1],

sinh ¢ sinh 1 — sinh ¢
d —F p(d 4

sinhlgp( ks sinh 1 #(d2) (4)

Theorem 1.2. [10, Theorem 3.1, page 305.]Let ¢ : [d1,d2] — R be a hyperbolic type
convez function. If d; < da and ¢ € L[dy, da], then the following Hermite-Hadamard type
inequality holds.

e(252) < oty [ e < T e + St 6)

T de—dy Jg sinh 1 esinh 1 14

p(d; + (1 —0)da) <

Recently, many extensions/generalisations have been performed for the classical convex
functions see[8], [9], [10], [11], [12], [13], [14] and the references therein. Some parts of these
new ideas depend on expansion of the area of a convex function. Some newly developed
theories in this aspect are GA-convex functions, Hyperbolic type convex functions, tgs
convex functions, s-convex functions, invariant convex functions, M,A-convex functions,
n-polynomial convex functions, preinvex functions, (71, 72)-convex functions, h-convex
functions etc. As there are huge applications of Hermite-Hadamard type inequalities,
researchers put innovative ideas to study Hermite-Hadamard type inequalities involving
integer integrals as well as fractional integrals. Very Recently, Hermite-Hadamard inequal-
ities involving integrals have been obtained for different classes of convex functions; refer
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[15], [16], [17], [18], [19] out of which Hyperbolic type convexity [10] provides the clue to
develop the new concept of Hyperbolic type harmonic convexity.

Motivated by the results of hyperbolic type convex functions, the main purpose of
the present paper is to establish new Hermite-Hadamard type integral inequalities for
hyperbolic type harmonic convex functions. We have also used fractional calculus to
prove Hermite-Hadamard type integral inequalities for Hyperbolic type harmonic convex
functions.

Inspired by the advancement of theory of fractional calculus, ongoing research and lit-
erature about integral inequality and convexity, the present paper is structured in the
following way, first in Section 1, we will give some necessary known definitions and liter-
ature. Second in Section 2, we will explore the concept of Hyperbolic type harmonically
convex function. In addition, some algebraic properties for the newly introduced definition
are elaborated. In Section 3, applying this we present Hermite-Hadamard type inequality
and its refinements . Further, in Section 4, we investigate some novel refinements of the
Hermite-Hadamard type inequality via Riemann-Liouville fractional integral operator.

2. HYPERBOLIC TYPE HARMONICALLY CONVEXITY

In this section, we introduce many new classes of hyperbolic type harmonic convex
function and some basic properties of the function.

Definition 2.1. Let K C R be an interval, then a real valued function ¢ : K — R is
called hyperbolic type harmonic convex function if for every di,ds € K and £ € [0,1], the
inequality

dids sinh ¢ sinh 1 — sinh /¢
> — (1) (6)

d
7 <€d1 +(1—-40)ad/) — sinhlgp( 2) + sinh 1
holds.

Definition 2.2. Let h: [0,1] — R and K C R be an interval, then a real valued function
v : K — R is called hyperbolic type harmonic h-convex function if for every di,ds € K
and ¢ € [0, 1], the inequality

dido sinh ¢ sinh 1 — sinh ¢
— | <h|—— d h| —m— d
7 <€d1 t(1- €)d2> = (sinh 1) Pldz) + < sinh 1 ) Pld1) @
holds.

Remark 2.1. If h(¢) = ¢ then Definition 2.2 reduces to Definition 2.1.
If h(¢) = £ in Definition 2.2, then we have the following definition.

Definition 2.3. Let K C R be an interval, then a real valued function ¢ : K — R is
called hyperbolic type harmonic s-convex function if for every di,de € K and ¢ € [0,1],
the inequality

didp sinh (') * sinh 1 —sinh £\ *
< d s L et d 3
(p<€d1+(1_€)d2> o (sinhl) P(d2) + ( sinh 1 ) ¢(d1) (8)
holds.

If h(¢) = ¢=* in Definition (2.2), then we have the following definition.

Definition 2.4. Let K C R be an interval, then a real valued function ¢ : K — R is called
hyperbolic type Godunova-Levin type harmonic s-convex function if for every di,ds € K
and ¢ € (0,1), the inequality

d;ds 1 1
@ () < s e(de) + oo e(dl) 9)
a1 -08) = [ @iy
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holds.
If h(¢) = ¢=1 in Definition (2.2) then we have the following definition,

Definition 2.5. Let K C R be an interval, then a real valued function ¢ : K — R is called
hyperbolic type godunova-Levin type harmonic convex function if for every di,ds € K and
¢ € (0,1), the inequality

d;do 1 1
< - do) + ———(d 10
¥ (ﬁdl ¥ (1 — E)dQ) :Irll}}:f SD( 2) Smhsilrﬁfinh[ 90( 1) ( )

holds.

Proposition 2.1. Consider ¢ and ¢ be two real valued hyperbolic type harmonic conver
functions and consider ¢, 1) : [d1,d2] — R, then

1. © 4+ 1 is hyperbolic type harmonic convex function.

it. For c € R (¢ >0), the function cp is hyperbolic type harmonic convex function.

Proof. (i) Let ¢ and ¢ be two hyperbolic type harmonic convex functions, then
dids B dids d;ds
(o) <€d1 (- g)d2> s <€d1 T (- E)d2> + (zdl (- z)d2>

sinh ¢ (dy) + sinh 1 — sinh ¢ (d1) + sinh€¢(d )+ sinh1 — sinhﬁw(d )
sinh 1 pic2 sinh 1 i sinh 1 2 sinh 1 !

_ sinhé[(p(dQ) +ab(da)] + w[w(dﬁ + 1p(d1)]
(¢ + ) (d1).

IN

sinh 1
sinh ¢ sinh1 — sinh ¢

= a1 P () e

(ii) Let ¢ be hyperbolic type harmonic convex functions and ¢ € R (¢ > 0), then

(cp) dids < sinh ¢ (d)+sinh1—sinh€ (dy)
N\t + 1 - 0dy ) = “\simn 17" sinhl 7 ot

sinh ¢ sinh1 — sinh /¢

- sinh 1 cp(dz) + sinh 1 cp(d)
sinh ¢ sinh1 — sinh ¢
= Snh1 (cp)(dz2) + W(CW)(dl)-

Proposition 2.2. If ¢ : K — K is a hyperbolic type harmonic convex and v : K — R
s a non-decreasing convex function , then ¥ o ¢ : K — R is a hyperbolic type harmonic
convex function.

Proof. For d1,ds € K and k € [0,1]

dids sinh ¢ sinh 1 — sinh &
2 ) = d —p(d
Vo (ml (- E)dg) v <sinh1‘0( Dt g A 1)>

sinh ¢ sinh1 — sinh &

<ok 1¢(@(d2)) + Wﬂ}(@(dl))
sinh ¢ sinh1 — sinh &

s ¥ © PRIt gy veeld)

<

<

Definition 2.6. Two functions u and v are said to be of similar ordered if

(u(dy) — u(da))(v(dy) — v(ds)) > 0, Vdy,ds € R.
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Proposition 2.3. let ¢ and ¢ be two similar ordered hyperbolic type harmonic convex
function, then the product is also hyperbolic type harmonic convex function.

Proof. Let ¢ and ¥ be two hyperbolic type harmonic convex function, then

dids dids
14 <€d1 + (1 — f)dg) ¥ <€d1 + (1 - f)dg)

sinh ¢ sinh 1 — sinh ¢ sinh ¢ sinh1 — sinh ¢
< - T - T
Linh 1 Pldz) + sinh 1 ( 1)] [sinh 1 lda) + sinh 1 1/1(d1)]
sinh £\ 2 sinh 1 — sinh £ 2
= (sinhl) @(d2)1p(d2) + (smhl) ¢(d1)(d1)

# () (B feabetan) + eauan)

sinh ¢ sinh1 — sinh ¢ sinh? sinh1 — sinh?¢
B [Sinh 1 P(d2)p(dz) + sinh 1 sa(dl)d)(dl)} [sinh 1 * sinh 1 ]
sinh ¢ sinh1 — sinh ¢
= Sinhl%(dz)ﬂ)(dz) + W@(dl)ﬁ)(dl)-

Hence it is proved that the product of two similarly ordered hyperbolic type harmonic
convex functions is also a hyperbolic type harmonic convex function. (|

3. HERMITE-HADAMARD TYPE INEQUALITIES

Theorem 3.1. Let 0 < d; < dg and ¢ : K CR — R be a hyperbolic type harmonic convex
function and dy,d2 € K. If ¢ € L[d1,ds], then the following inequality holds.

2d;d d;d d2 hl1-—1 -1
90( 12>< — / (p(m)dx<L‘P(d2)+ : (d1). (11)

di+do/) ~ da—dy Jq 22 ~—  sinhl esinh1”

Proof. Since ’¢’ is hyperbolic type harmonic convex function putting k = % and choosing

did did -
T = éd1+(113£)d2 and y= (176)3‘111]{(12 m
Ty < sinh ¢ () + sinh 1 — sinh ¢ (2)
—(x
P \iz+r(1—0y) = smn1?V sinhl 2
we get
2d;do < sinh % didg sinh 1 — sinh % didg
d +dy )~ sinh 17\ (1 k)d; + kds sinhl 7 \fldy + (1—0)dy )

Integrating the above inequality with respect to k over [0, 1], we obtain
2d;d sinhi 1 dd
o 1dz ) _ sinhy / o 1do 20
d; +do sinh1 J, (1 - k)dl + kds
sinh1 —sinh % [} did
I} / ol —r2 N ar
sinh 1 0 a1 + (1 —4)dy

d;d d2
172 / SO(f)alac.

_dg—dl di i
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Now, using the property of Hyperbolic type harmonic convex function and letting x =
d1d then, we have

T+ (1-1)da
dids d2 go(a:) /1 dids
dr = —— | d/
do —d; /dl 22 v 0 14 fd; + (1 — €)d2

1 .. . .
sinh ¢ sinh1 — sinh ¢
< d —p(dy)d¥
- /0 sinhlso( 2) + sinh 1 wld1)
coshl—1 e—1
= —p(d d
sinh 1 p(d2) + esinhlw( 1)
where .
/ sinh #d¢ = cosh1 — 1
0
and
1 e—1
/ (sinh 1 — sinh ¢)dl = .
0 €

For our main results we need the following lemma.

Lemma 3.1. [1] Let ¢ : K C R\ {0} — R be a differentiable mapping on K° and d;,ds €
K with dg > dy If ¢’ € L[d1,ds], then the following identity holds:

o(d1) +p(da)  didy /d2 SO(x)d
— X
2 do — dy IL‘2
_ dida(ds — dy) /1 (1—20) o ( dids ) a0
2 o (dy+ (1 —0)a)2" \tdy+ (1—0)d, )

(12)

Theorem 3.2. Let ¢ : K C R — R be a differentiable mapping on K° and ¢ €
L ([d1,d2]), where [d1,d2] C K°. If |¢'| is hyperbolic type harmonic convex function on
[d1,d2], then the inequality

¢(d1) +¢(d2)  didg /d2 o(x) dida(dz —d1) [|¢'(d1)] |/ (d2)|
— < B (1

2 4y — d; 22 0 s 9 sont 2t Gant €0 )
holds, where

11— 20
A= / (ta+ (1= 0a 2™

|1 — 2¢|sinh ¢
0 sinh 1(fd2 + (1 — f)d1)2
Y11 —2/| (sinh 1 — sinh )
o sinh 1(£d2 + (1 - g)d1)2

B = al

C = dr.

Proof. From Lemma 3.1 , we get

p(di) +¢(d2)  didp /d2 p(2) ,
2 do — dg x2

dldg(dg — d1) 1 1-2¢ , dids
: 2 /0 [(ﬁdz + (10— 0a)2” <(€d2 +(1- €)d1)>] “

Now, using the concept of Hyperbolic type harmonic convexity of ¢/,

X
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’@(dl) +p(d2) d1d2 /d2 p(2) ,

x
dl ZE2

dyda( dg —d;) 1 |1 — 2/ sinh? | , sinh1l —sinh?¢ |

< d _ d
0 Edg—i— 1—/4)d;)? sinhl‘cp( 1)“— sinh 1 }SO( 2)‘ d

< dyda( dQ—dl 1 |1 — 2¢|sinh ¢ +g0'(d2) /1 11— 2¢] (sinhl—sinhﬁ)dg
- smh 1 (Ldy + (1 —£)dy)? sinh 1 (fdg + (1 —£)d1)?

dyda( d2 —dp) [l¢'(d1)] |<P (d2)|c
- smhl sinh 1 '

O

Theorem 3.3. Let ¢ : K C R — R be a differentiable mapping on K° and ¢ €
L([d1,ds]), where [d1,d2] € K°. If |¢'|? is hyperbolic type harmonic convexr function
on [d1,ds] for g > 1, then the inequality

p(d1) + p(do)  didy /d2 p(z)
2 d2 — d1 1'2

dida(d2 —dy)
2

A [Blg (@) + Cli ()] 7
(14)

l" <
holds.

Proof. From Lemma 3.1 and using the Holder’s inequality, we get

‘@(dl) +p(d2)  didy /d2 plz) .

2 _d2_d1 .%'2

= dldQ(dzrdl) </o1 (fdy + (1 — 4>d1)2d4>1

" </ gl (@t ) qu)z,

(fda + (1 — £)dy)?
Now using the concept of Hyperbolic type harmonic convexity of |¢'|7, we get

’@(dl) +p(d2)  didp /d2 ¢(z)

2 dQ — d1 I‘Q

dydy(dg — dy) (/1 11— 2¢| d€> =
2 0 (fdg + (1 — f)dl)Q
1
! 11— 2¢| sinh?¢ | , q¢ sinhl—sinh? |, q a
</0 (fdgy + (1 — £)d;)? [sinhl [#'(@)[*+ sinh 1 [¢(42)] ] dé)

< 0l ) )15 (it @)+ Ol @)l

1
q

11— 2/

daz‘

X

Qe

0

Theorem 3.4. Let ¢ : K C R — R be a differentiable mapping on K° and ¢ €
L ([d1,d2]), where [dl,dg] C K°. If |¢'|* is hyperbolic type harmonic convex function
on [dy,dy] for ¢ >1,% —|— 2 =1 then the inequality.
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¢(di) +¢(d2)  didp /d2 pe) .
2 dy — dg

12

Q=

<dmx®—dn< ! )i@ﬂ¢waW—w«@w

q
= 2 p+1 sinh 1 ' (a2) "L dl’dz)) - (19)

Where,

smh 4
D= dl
/ (tdy + (1 — £)dy)2a

Proof. From Lemma 3.1 and using the Holder’s Integral inequality, we get

p(d1) +p(d2)  didy [ p(x)
‘ 2 B dy —d; / x du

ety

" (/01 (fd2 + (1 — 0)d; )% , ((ng +d(11d2_ E)d1)> qd€> ; .

Now using the concept of Hyperbolic type harmonic convexity of |¢’|?, we obtain

3 =

2 do —d;

‘@(dl) +p(d2)  didy /d2 pla)

x

1
cdido(dr—di) (1 NP ()] — |¢ ()|
= 2 p+1 sinh 1

1
1 sinh /¢ q rl 1 q
a0+ o (d / d€>

X/O (lds + (1 — )y )% + |¢'(d2)] . (s + (1= 0)ay)

:dmﬂ®—dﬁ< 1>i<DW@ﬂq—W@ﬂF

q
L72(4y,4d )
2 p+1 sinh 1 +¢'(@)|"L 55 (1, 62)

Q=

0

Theorem 3.5. Let ¢ and v be two real valued hyperbolic type harmonic convex function,
then

didz [ p(u)g(u)

do — dy / u2 du (16)
4—42—1 _4+83—82—8 +5

§<;%£m1>“®W@ﬁ+(e I )wmwmn

8e2 sinh? 1
et —4ed +4e? +4e — 1
+( F et otanvtan) + pleavian].
8e?sinh” 1
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Proof. Considering ¢ and v be two hyperbolic type harmonic convex function, then

dids dids
v <€d1 + (1 — f)dg) ¢ (fdl + (1 — f)dg)

< sinh ¢ (ds) + sinh1 — sinh ¢ (d1) Sinhéd}(d )+ sinh1 — sinh ¢
sinh 1 pide sinh 1 14 sinh 1 2 sinh 1

_ <Si““ >2<ﬂ(d2)1/1(d2) ; (M)del)w(dﬂ

Y(d1)

sinh 1 sinh 1
sinh ¢ sinh 1 — sinh ¢
sinh 1 sinh 1

[1h(d2)p(d1) + @(d2)(d1)] -
Integrating both the sides with respect to £ over [0, 1], one has

didy /d2 p(w)i(u)

d2 —d1 Jqg, u?
do)th(da) [ dy)y(d) 1
< %ﬁ“) / (sinh ¢)%d¢ + Mﬁ(l) / (sinh 1 — sinh ¢)?d¢
sinh” 1 0 sinh“ 1 0
dy )1h(d do)p(dr) (1
+ P 2.) —1-290( 2)¥(d) / sinh ¢(sinh 1 — sinh ¢)d¢
sinh” 1 0
_ p(d2)9(da) (' —4e* = 1) | p(d1)y(d)
sinh? 1 Se? sinh? 1
8e2sinh? 1 — 16€? cosh 1sinh 1 + e* — 4e? — 1 _
X 32 + 2sinh 1
n [cp(dl)i/z(dg? —i—;p(dg)w(dl)] 8e%cosh1sinh1 — e + 4e? + 1 _ sinh1
sinh“ 1 8e?
et —4e? — 1 —e* 4+ 8¢ —8e2 —8e +5
= p(d d ——— | +p(d d
plaa)(an) (ot ) +elanuen (S R TR T)
et —4e3 + 4e? + 4e — 1
+lolan)(an) + etenvia)] e,
8e? sinh” 1

4. FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES

Definition 4.1. Let ¢ € L[d1,ds] The Riemann-Liouwville integrals K3} o and KJ!, ¢ of
order m > 0 are defined as
1 r 1
m m—
Kl o) = F()/ (@ = 0" p(O)dl, x = dy

dy

and
- I m—
Ko@) = o [ €= o0tz <
T

For our results on fractional integrals we need the following lemma.

Lemma 4.1. [7] Let ¢ : I C (0,00) — R be a differentiable function on I° such that
¢ € L[dy,ds] , where di,dy € T with d3 < dy. Then the following equality for fractional
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integral holds:

p(d1) +¢(d) T(m+1) [ didg \" [ 1 m 1
2 2 dy — dy J{WM d, +J{¢°U d;

_didp(dp—dy) [T M —(1-O™ dydy
S 2 /0 (ldy + (1= 0)a)z? <ed1 (- e)d2> dt. (17)

Theorem 4.1. Let ¢ : I — R be a differentiable mapping on I°, where dy,ds € I° with
0<d; <dy and ¢ € L[d1,ds]. If |¢'|? is hyperbolic type harmonic convex function, then
the following inequality for fractional integral holds

p(d1) +(da) T(d+1) [ didp \"f 1 m 1
2 2 dy — dy J{(poa dy +‘]{(pog d

< dida(dy —dy) .1-1/q
= 1
2
Where

(d1, d2) (€2(ds, o)l (do)]7 + &5 (ds, d)| (d2)[7) (18)

-,
§1(d1,do) = /0 (fdy + (1 — E)dz)th
Loy @a—om inht
ot M (1— 0™ [sinhl — sinht

§a(ds, dz) _/0 (ld + (1= O)dp)? [ sinhl

Proof. Using lemma 4.1 , Well known Power mean Inequality and |¢’|? as hyperbolic type
harmonic convexity

©(di) +¢(d2) T(m+1) [ dido \" [ . 1 m 1
2 T &) P00\ ) P e ooy

¢ (an) ] a

_ 1 m o _\m
< d1d2(d2 d1) / l (1 f) go' < dids > a0
2 o |(fdi+ (1—£)d2)? dy + (1 = {)dz
(1= g

) W (/01 (¢d; + (1 — £)dz)? de)l_l/q
R
< 2 </0 (fdy + (1 — £)d2)2dt)

L em+ (1 —0™ [sinht, sinhl — sinht 1/q
A )9+ 7 T G (g9 de
" </0 (fds + (1 = £)dy)? Lmhﬂ(p( )l + sinhl )l ] )

q 1/q
d€>

O

Theorem 4.2. Let p : K C R — R be a function such that ¢ € L[d;,ds], whered;,dg € K
with d1 < dg. If ¢ is a hyperbolic type harmonic conver function on [d1,ds] , then the
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following inequalities for fractional integrals hold.

sinh 1 2d1dso dids m 1
o - L(m+1)J7 —
sinh {SO <d1+d2> <d2—d1> (m+1) dl1_(9000)<d2>}
dide \™ 1 1
< r 1)qJ7 — |- Jr -
B (dz—d1> (m+ ){Jdlﬁ(g}oa) <d1> Jdll_(wog)<d2)}

< plan)+ (e 2 (322) n + 0T _ooo)(1 ). (19

2 — U1 a1

8=

where o (z) =

Proof. Since ¢ is hyperbolic type harmonic convex function putting £ = % and choosing

did did .
T = éd1+(113£)d2 and Y= (17@)1d12+£dg mn
Ty sinh/ sinh1 — sinh/
< i —
4 <£$ +(1— E)y) - sinhl(p(y) * sinhl (@),
we get

2didy ) _ sinh} dids N sinhl — sinh} dids
P\a +dr) = sinh1 (1 = 0)a; + fds sinhl " \ld + (1—0)dz )

Multiplying both the sides by £™~! and Integrating with respect to k over [0, 1],

2d;do /1 _1 sinh% /1 dido _1

e < — | "l
90(011+<12> 0 = sinht J, P\ (1= 0)d; + ld,
inhl — sinhd /1 did

n sin ' sinh3 / o 1do 1y

sinh1 0 d; + (1 - f)dg

Hence, we obtain

2d1d2 Sinh% dids m 1
= r 1)Jm 1
SD<d1—|—d2> ~ sinhl \dy — d; (m+1) %4_(9000') a4

sinhl — sinhl did m 1

2 142 m

I’ 1HJ —

T n (dQ—d1> (m+1) dﬁ(¢00)<d)

Consequently,

Sinhl 2d1d2 d1d2 m 1
< r 1J7T =
Slnhégp<d1+d2> - <d2_d1> (m+ ) %_'_(SOOO') d1

sinhl —sinh? / didy \™ 1
+ 2 I'(m+1)J7 oo)|l —
Sinh% <d2—d1> ( ) ﬁf(so )<d2>

sinh1 2d;ds dids \™ 1
= — 'm+1)J7T —
sinh% {<p <d1+d2> <d2—d1> (m+1) dll_(gpoa)(cb)}

< (djl_‘ifil>mr(m+ 1) {Jz+(¢oa)<i> —J:{f_(gooa)<dl2>}. (20)

For the second part of the proof, let ¢ be a hyperbolic type harmonic convex function.
Then

¢(d1)

dids sinh¢ (dy) + sinh1l — sinh/
14 d; 4+ (1—=0)da) — sinhlsp 2 sinh1
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and

dids sinh?¢ sinh1l — sinh/
—————¢(d2).

d
4 (Edg +(1-40a, )~ sinhl('p( 0+ sinhl
Adding both the above inequalities,

dida dids
c(mrtns) ¢ (art ae) <ea)+ow)

Multiplying both the sides by £™~1 and Integrating with respect to £ over [0,1], we get

<djl_d’;>mr(m +1) {Jz+(<po J)<dll> _J:f—(*"oa)(dlz)}

< plan) +pla) ~2 (12 ) T+ DI (oo ). (2)

Combining (20) and (21) we get (19). O

5. CONCLUSIONS

In this paper, a new definition of generalized harmonic convexity is introduced and some
refinements of the Hermite-Hadamard inequality for hyperbolic type functions which are
harmonic convex in nature are presented as well. We have also proved two result using
Riemann -Liouville fractional integral operator. Similar method can be applied to different
type of convex functions to obtain many refinements of Hermite-Hadamard, Ostrowski,
Fejér type inequalities. We believe the results of this article will attract future researchers
in this field.
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