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A MULTI CRITERIA GROUP DECISION MAKING APPROACH

BASED ON FUZZY MEASURE THEORY TO ASSESS THE

DIFFERENT GENE REGIONS USED IN RODENT SPECIES

G. O. KARACAN1∗, M. ÜNVER2, M. I. PONTA3, §

Abstract. Many mitochondrial and nuclear gene regions are used in phylogenetic and
taxonomic studies to investigate the historical background of the species and to present
the hierarchy of the species. In this paper, we consider the problem of proposing a favor-
able gene region that determines the diversification of rodent species as a multi criteria
group decision making problem. We use fuzzy measure theory and fuzzy integrals to
get the results. We conclude with different fuzzy measures and fuzzy integral techniques
that COI gene region which is preferred in animal barcoding studies is more favorable.

Keywords: Multi criteria group decision making, fuzzy measure theory, DNA barcoding,
molecular markers.
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1. Introduction

Each organism has a unique genome containing different DNA sequences. We have
information of the biology of the organisms obtaining these differences in DNA sequences
[1]. The differentiation in these DNA sequences are applied in phylogenetic and taxonomic
studies to investigate the historical background of the species and to present the hierarchy
of the species. In particular, the Rodentia is the most diverse taxa among mammals, and it
is a key organism for biogeography, ecology and DNA evolution studies [2,3]. In addition,
although the Rodentia phylogeny contains contradictions in terms of morphological and
molecular approaches, it is still controversial even in molecular studies using different gene
regions. In this respect, the importance of using molecular markers in phylogenetic studies
has come in to question recently [4].
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There are many molecular systematic studies using mitochondrial DNA (mtDNA) and
nuclear DNA (eg IRBP, vWF etc.) [3, 5–8]. Among the genes coded by animal mtDNA,
the most preferred in phylogeny studies are: Cytochrome b (Cytb), Cytochrome c oxidase
I (COI), 12SrRNA and 16SrRNA. The most preferred IRBP (Interphotoreceptor Retinoid
Binding Protein) and vWF (von Willebrand Factor) genes for systematic studies are coded
by nuclear DNA [6,7, 9, 10].

Gene sites (which have fewer nucleotide changes) that are more conserved in the evolu-
tionary process may be insufficient to separate taxa that are close to each other. Therefore,
genes with a high substitution rate on mtDNA may be more suitable for differentiating
closer taxa. Besides, nuclear genes may be preferred to determine deeper taxonomic sta-
tus. Apparently, many types of markers including nuclear and organelle genomes can be
applied to differentiate between taxa, but it is important to decide which DNA region
or genome to use. Specifically, it is often problematic to identify the species or identify
differences between species of the same genus.

The determination of the ranking of the best regions to perform a taxonomic analysis
of the species corresponds to a decision problem with only one criterion. When using
more than one criterion to decide the best solution, this problem become a Multi Cri-
teria Decision Making problem (MCDM). Additionally, in a MCDM problem, if multiple
individuals suggests rankings based on their expertise, then the process is called Multi Cri-
teria Group Decision Making (MCGDM). MCDM and MCGDM have been widely used
in decision making processes in biology. In [11], authors use a multiple criteria decision
making model for DNA extraction method selection. In [12], authors uses several multiob-
jective decisions techniques for the phylogenetic inference problem. Furthermore, authors
in [13] compare methods for sample preservation and DNA extraction in swine feces using
a MCDM approach. Aenishaenslin et. al. evaluated a MCDM analysis model for lyme
disease [14]. A multi-criteria group decision analysis approach has been given by Alimi
et. al. to asses malaria risk in northern South America [15]. Moreover, a MCDM analysis
has been conducted as an innovative approach to manage zoonoses in [16]. Some further
applications and theoretical approaches on MCDM and MCGDM can be found in [17–26]
and references therein.

There are several sophisticated methods for the evaluation of alternatives with multi
criteria. One of them is to introduce concept of fuzziness into the theory. The difference
between a standard measure and a fuzzy measure is that, a fuzzy measure does not need to
be additive whereas a standard measure has to be even σ-additive. In this context, fuzzy
measure theory allows to model the interaction among conflicting criteria. MCDM and
MCGDM problems in fuzzy environment have been studied since Bellman and Zadeh [17]
introduced the concepts of decision making under fuzzy environments by considering both
fuzzy logic and fuzzy measure theory. The interaction of criteria in a MCDM or MCGDM
problem can be explained by using fuzzy measure in a more accurate way. Therefore,
fuzzy measures as well as fuzzy integrals are useful tools to determine the best alternative
among multiple and conflicting criteria. However, the identification of the measures of
exponentially growth number of subsets is a compelling process.

Fuzzy measure and set theories are very useful in MCDM and MCGDM environment.
They have various applications in many areas such as economy, business, medicine etc
(see, e.g., [27–31]). In MCDM environment a standard measure and Lebesgue integration
coincide with the weighted average over the finite subset of criteria. Sugeno integral is one
of the fuzzy integrals that has a different structure from Lebesgue integral and that uses
“maximum” and “minimum” operators that are denoted by “

∨
” and “

∧
”, respectively,

instead of algebraic operators to aggregate the alternatives. Another fuzzy integral is
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the Choquet integral that is a generalization of Lebesgue integral and a non-additive
generalization of the weighted arithmetic mean. Although, a fuzzy integral has more
complicated structure due to the lack of additivity in contrast to the additive integrals such
as Lebesgue integral, a fuzzy integral is more effective in the aggregation of alternatives.
In [32], it is shown that the Choquet integral model can represent significantly more orders
than the weighted arithmetic mean and that the difference becomes quite large when the
number of criteria is high. Moreover, it has been proved in [33] that when the number of
the criteria increases, the probability of getting more optimal ranking in Choquet integral
increases compared to the weighted arithmetic mean. Actually, fuzzy measures and fuzzy
integrals let us to incorporate considerations not included in the weights for the weighted
means [34]. However, the richness of a fuzzy integral has to paid by the complexity of the
model [35].

In this paper, we consider the identification of the most favorable gene region that
determines the diversification of species of selected rodent populations as a MCGDM
problem. For this purpose, we identify three fuzzy measures. First of all, using the
the analytic hierarchy process (AHP) we obtain the weights of singletons. Then using
some theoretical techniques which depend on an expert view (see section Section 3) we
construct these three fuzzy measures. As fuzzy measure identification is a computationally
expensive process, we use some known identification methods which simplify the process
by considering that the criteria have redundancy in our case study (see Sub-section 2.2).
In this context, the first fuzzy measure will be pre-subadditive fuzzy measure [36] and the
other two fuzzy measures will be constructed to be sub-additive λ-fuzzy measures (see,
e.g., [37–40]) in different λ levels. Finally, we rank the gene regions by applying fuzzy
integrals. In the literature, there are some studies that consider fuzzy measure theory
to analyse DNA sequences (see, [41–43]). In this study, we use fuzzy measure theory to
analysis the success of the gene regions in determination of rodent species.

We create a decision matrix using the approach described in Section 2. The values of
this decision matrix are normalized and the normalized values are considered as the value
of alternatives over the set of criteria, i.e., each alternative is considered as a function
defined over the set of criteria and which takes values over [0, 1]. Finally we use Sugeno
integral and Choquet integral to integrate these functions. Hence, we get six rankings
which support similar solutions.

In this paper, we test the proposed approach on four rodent species that have different
taxonomic status and habitat preference: Apodemus agrarius, Apodemus peninsulae, Mus
musculus and Allactaga elater. The goal is to identify the most preferred gene regions
(Cytb, COI, 12srRNA, 16srRNA, IRBP, vWF) to reveal differences between species.

The main contributions of this work are as follows.

• This is the first study that uses the fuzzy integral theory on the MCGDM problem
for identifying the most favourable gene region that determines the diversification
of species of selected rodent populations.
• This study aims to create a framework for the biologists focusing on diversification

of species. It ranks the gene regions with fuzzy integral theory with respect to
three different fuzzy measure identification methods, and the relation between the
results obtained by these methods is statistically evaluated. Moreover, the fuzzy
measure identification methods used in this study require relatively less effort.

The rest of the paper is organized as follows: Section 2 shows basic theoretical concepts
and it introduces the MCGDM problem; Section 3 describes the methodology used in this
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work and shows the application and evaluation of the fuzzy integral techniques on six gene
regions. Finally, Section 4 contains the conclusions and future work.

2. Theoretical background and the mcgdm problem

In this section, we give some basic notions of the fuzzy measure theory. Then, we
introduce the MCGDM problem.

2.1. Fuzzy measure and Fuzzy Integrals. Let X be a non-empty set and let 2X be
the class of all subsets of X. A set function µ : 2X → [0, 1] is called a fuzzy measure if:

i) µ(∅) = 0 and µ(X) = 1,
ii) µ(A) ≤ µ(B) whenever A ⊆ B ⊆ X (monotonicity).

A fuzzy measure µ is said to be:

i) additive if µ(A ∪B) = µ(A) + µ(B),
ii) super-additive if µ(A ∪B) ≥ µ(A) + µ(B),
iii) sub-additive if µ(A ∪B) ≤ µ(A) + µ(B),
iv) pre-subadditive if µ({x, y}) ≤ µ({x})+ µ({y})

whenever A ∩B = ∅ (see, [35, 36]).

The super-additivity of a fuzzy measure refers to the synergy among criteria and the
sub-additivity of it refers to the redundancy among criteria [35]. It is easy to see that
it suffices to determine the weights of singletons over a finite set X to determine all
combinations whenever the measure is additive. However; when we consider a fuzzy
measure, the measures of all subsets of X should be obtained separately. In this context,
besides its useful structure in MCDM and MCGDM problems, the identification of a fuzzy
measure is a complicated problem. Several authors have given methods to identify a fuzzy
measure [18,37,40,44–46].

A λ-fuzzy measure is constrained by a parameter λ that explains the degree of the
additivity among the criteria and it is very useful, as it possesses mathematical soundness
and modest degree of freedom (see, e.g., [38]) and it relieves the complexity of the process
of fuzzy measure identification.

Definition 2.1. [37] Let X be a finite set and λ ∈ (−1,∞). A fuzzy measure µ over X
is called a λ-fuzzy measure if for any A,B ⊆ X such that A ∩B = ∅ we have

µ(A ∪B) = µ(A) + µ(B) + λµ(A)µ(B).

It is clear from the definition that if −1 < λ < 0, then µ is sub-additive.
The first fuzzy measure that is constructed in this paper will be a pre-subadditive fuzzy

measure due to its construction and next two fuzzy measures will be λ-fuzzy measures.
Let X = {x1, x2, ..., xn} be a finite set and let µ be a fuzzy measure over X. Then

Sugeno integral of a function f : X → [0, 1] is defined by

(S)

∫
X

fdµ :=
n∨

k=1

(
f(x(k))

∧
µ
(
E(k)

))
where

{
x(k)

}
is a permuted sequence such that 0 =: f(x(0)) ≤ f(x(1)) ≤ ... ≤ f(x(n))

and E(k) :=
{
x(k), x(k+1), ..., x(n)

}
for each k = 1, 2, ...n [47]. It was proved that Sugeno

integral is a kind of median (see [48]). The Sugeno integral is a useful tool for decision in
MCDM and MCGDM. It is also useful to describe in a more transparent way the range
of aggregation operations it covers, so as to figure out the expressive power of the ordinal
approach [49].
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The Choquet integral (see, e.g., [50]) of f : X → [0, 1] is defined by

(C)

∫
X

fdµ :=

n∑
k=1

(
f
(
x(k)

)
− f

(
x(k−1)

))
µ(E(k)). (1)

Choquet integral of a function is a kind of distorted average of the finite sequence{
f(x(k))

}n
k=1

. In this context, Choquet integral can be considered as a generalization of
weighted arithmetic mean which considers the interaction between criteria. It means Cho-
quet integral with respect to a non-additive fuzzy measure allows to consider requirements
of decision maker by taking into account the interaction between criteria. Note here again
that alternatives in MCDM or MCGDM problem are consider as functions that will be
integrated.

2.2. The MCGDM problem. MCGDM is considered as a complex decision-making
tool involving both quantitative and qualitative factors with multiple decision makers.
MCGDM processes is a common tool in decision making, especially in science. There are
several methods that are used in a MCGDM problem. Fuzzy measure theory is one of
these methods. Several authors have used the fuzzy measure theory in decision making
environment (see, e.g., [18, 35,36,51]).

2.3. Gene region selection as a MCGDM problem. Our aim is to decide which gene
region (Cytb, COI, 12SrRNA, 16SrRNA, IRBP and VwF) may be more useful to deter-
mine the diversification of rodent species. We consider 4 rodent species: Allactaga elater,
Apodemus peninsulae, Apodemus agrarius and Mus musculus. When deciding which gene
region could be more convenient in differentiating the species, we evaluated 3 different
expert views based on taxonomic, ecological and morphological differences of the species.
These species are species of the same genus ( Apodemus peninsulae and Apodemus agrar-
ius), different species belonging the same family (Apedomus sp. and Mus musculus) or
species belonging to different families (Allactaga elater and other species).

As we mentioned in the introduction, we consider genes regions 12SrRNA, 16SrRNA,
Cytb, COI, IRBP and VwF as alternatives. Since a gene region is used to measure diver-
sification, each binary combination (pair) of 4 rodent species is considered as a criterion.
Thus we have 6 pairs of rodents (see Table 1).

Table 1. The criteria

x1 Apodemus agrarius - Apodemus peninsulae
x2 Apodemus agrarius - Mus musculus
x3 Apodemus agrarius - Allactaga elater
x4 Apodemus peninsulae - Mus musculus
x5 Apodemus peninsulae - Allactaga elater
x6 Allactaga elater - Mus musculus

When a pair is chosen, by considering taxonomic, ecological and morphological differ-
ences as well as similarity of the species of this pair, an expert ranked each gene region
between 1 and 10 for this pair (see, Table 11, 12 and 13 in Appendix). To get a unique
matrix we calculated the geometric mean of these rankings which is not affected much
by alteration of the data and we normalized the values in [0, 1]. Thus, we get Table 2
that shows that the consistency of the gene regions are contradicting over different rodent
pairs that makes the decision of the most favorable gene region a difficult and important
biological problem. This problem can be solved using some new mathematical models.
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Table 2. Ranking of alternatives over criteria

x1 x2 x3 x4 x5 x6

Cytb 0.795 0.608 0.310 0.607 0.400 0.421
COI 0.886 0.723 0.594 0.686 0.580 0.493

12SrRNA 0.564 0.519 0.476 0.459 0.464 0.564
16SrRNA 0.564 0.391 0.564 0.363 0.500 0.531

IRBP 0.391 0.493 0.755 0.564 0.755 0.731
VwF 0.416 0.527 0.664 0.664 0.695 0.755

In this paper, we considered the determination of the most favorable gene region that
diversify some particular species of rodent populations as a MCGDM problem.

3. Methodology

In order to use the above concepts on the MCGDM problem we will follow the method-
ology shown in Figure 1.

Figure 1. Methodology schema. It has three stages: (1) fuzzy measure
identification, (2) computational analysis, and (3) results evaluation

3.1. Fuzzy measure identification. In this sub-section we construct three different
fuzzy measures to solve the proposed problem. Considering the redundancy among each
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pair of criteria (see, Table 1) we use sub-additive measures and in order to relieve the
difficulty of determining the measure of 26 subsets of X we use known sub-additive fuzzy
measure identification methods. Note that Criterion 2 and Criterion 4 gives similar ideas.
Therefore, measure of {x2, x4} shall be less than the sum of the measure of {x2} and mea-
sure of {x4}. To take advantage of this redundancy we use the fuzzy measure identification
process given in [36] to construct the first fuzzy measure. Then we construct two differ-
ent λ-fuzzy measures at different negative λ-levels which also considers the corresponding
redundancy.

Table 3. Aggregated pairwise comparison matrix

x1 x2 x3 x4 x5 x6

x1 1 2.289 4.932 2.466 4.932 4.481
x2 0.436 1 2.714 1 3.556 2.884
x3 0.202 0.368 1 0.232 1 1
x4 0.405 1 4.310 1 2.714 3.107
x5 0.202 0.281 1 0.368 1 1.259
x6 0.223 0.346 1 0.321 0.794 1

Firstly, we obtain the weight of each criterion by using Analytic Hierarchy Process
(AHP) that is introduced in [52]. Although, AHP is a decision making process already,
we use this tool to determine the weights of criteria and then we obtain the fuzzy measure
of each subset of the set of criteria given in Table 1: X := {x1, x2, ..., x6}. This process,
of course, is more delicate than weighted arithmetic mean or AHP, since it considers the
interaction of criteria at all level of subsets instead of pairs. The consistent aggregated
pairwise comparison matrix (consistency index of 0.013) (Table 3) is obtained by taking
the geometric mean of the entries of the consistent comparison matrices of three experts
in the corresponding field which are given in the Appendix (see, Table 14, 15 and 16). Ex-
pert views are formed by assessing the taxonomic and phylogenetic relationships between
species.

Using this comparison matrix we get the weights via AHP shown in Table 4.

Table 4. Weights of criteria

w1 = 0.386 w2 = 0.199
w3 = 0.067 w4 = 0.207
w5 = 0.071 w6 = 0.068

where wi is the weight of the criterion xi for each i = 1, 2, ..., 6.
Now, we are ready to identify the promised fuzzy measures.
Fuzzy measure 1 (µ1): As we mentioned before we construct a fuzzy measure by

using the identification in [36] with the help of negative interaction coefficients λij that
model the redundancy among criteria. Positive interaction coefficients were also used
in [40] to model synergy among criteria. To determine the interaction indices, we can use
a linguistic scale of interdependence: “very weak, weak, strong, very strong”. Then, we
can associate a numerical scale to linguistic scale. For similar scales we refer [40, 53]. In
this work, we use the numerical scale shown in Table 5.

Note here that scale given in Table 5 strongly depends on the criteria of this study. For
different case studies, different negative interaction indices may be used. If we consider
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Table 5. Scale of interaction indices

Very weak −0.010
Weak −0.025
Strong −0.055
Very strong −0.070

taxonomic status of the rodent species and the structure of the problem we can create
Table 6 by considering the criteria in Table 1:

Table 6. Interaction indices of criteria

λ12 =st= −0.055 λ13 =vw= −0.010 λ14 =st= −0.055
λ15 =vw= −0.010 λ16 =vw= −0.010 λ23 =w= −0.025
λ24 =vs= −0.070 λ25 =w= −0.025 λ26 =w= −0.025
λ34 =w= −0.025 λ36 =vs= −0.070 λ46 =w= −0.025
λ35 =vs= −0.070 λ45 =w= −0.025 λ56 =vs= −0.070

Indeed, Criterion 2 and Criterion 4 gives similar ideas. Therefore, the dependence of
these two criteria is very strong (λ24 = −0.070). On the other hand, Criterion 1 and
Criterion 6 gives different ideas. Therefore, the dependence of these two criteria is weaker
(λ16 = −0.010).

Now, considering (2) from [36], we construct the promised fuzzy measure. First of all
we recall the following set function:
Let µ1 : 2X → R be a set function such that

µ1(xj) ≥ 0, for all 1 ≤ j ≤ 6

and

µ1(G) =
∑
xj∈G

µ1(xj) + min
xi,xj∈G,i 6=j

λij , for all G ∈ 2X with |G| ≥ 2 (2)

where {λij = λji : 1 ≤ i, j ≤ 6, i 6= j} ∈ [−1, 0]15.
We start with determining the measures of singletons using Remark 2.1 of [36]. For this

purpose we normalize the weights in Table 4 such that

6∑
i=1

µ1(xi) = 1− min
1≤i,j≤6

λij = 1.07

where µ1(xi) is the normalized version of wi and is considered as the measure of {xi} for
each i = 1, 2, ..., 6.

Table 7. Measures of singletons with respect to µ1

µ1(x1) = 0.414 µ1(x2) = 0.213
µ1(x3) = 0.072 µ1(x4) = 0.222
µ1(x5) = 0.076 µ1(x6) = 0.073.

The measures of singletons and interaction indices determine the set function µ1 in (2).
Before calculating the measures of each subset, we have to check the monotonicity of µ1
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by using Theorem 2.2 of [36] which yields that the function µ1 given in (2) is monotone if
and only if

µ1(xi) + λij ≥ 0

for any i = 1, 2, ..., 6 and any j 6= k. As min
1≤i≤6

µ1(xi) + min
1≤i 6=j≤6

λij = 0.072 − 0.070 > 0,

we immediately have that µ1 is monotone. Hence, it is a fuzzy measure over X. Now,
we are ready to calculate the measures of all subsets of X by using Table 6 and 7 (see,
Appendix).

Fuzzy measure 2 and 3 (µ2 and µ3): Due to the redundancy among criteria (Table 1)
we construct sub-additive λ-fuzzy measures by using negative λ values. As we mentioned
before a λ-fuzzy measure is sub-additive whenever 0 < λ < 1.

To identify a λ-fuzzy measure we have to be given either the value of λ and the weights
of the singletons [39] or measures of singletons (see, e.g., Formula 2 of [40]). Considering
the weights in Table 4 and negative λ values and using the input number standard method
of Section 5 of [54], which is the English version of [39], we construct the promised λ-fuzzy
measures. For λ = −0.75 and λ = −0.98 we can identify the fuzzy measures µ2 and µ3
given in the Appendix. Here, for the sake of completeness we keep the identification of
µ2 ({x3}). As 1 + λ = 0.25 we need the function φ0.25 : [0, 1] → [0, 1] (see, [54]) that is
defined by

φ0.25(u) :=
0.25u − 1

0.75
.

As

µ2 ({x3}) = φ0.25(w3 = 0.067) =
0.250.067 − 1

0.75
we get µ2 ({x3}) ∼= 118264 (see, [54]).

3.2. Computational Studies. In this sub-section, six solution approaches are generated
by considering three different sub-additive fuzzy measures and two different fuzzy integral
methods. We calculate the Sugeno integral and Choquet integral of the alternatives with
respect to the fuzzy measures µ1, µ2 and µ3 obtained in Sub-section 3.1. Thus, we get six
different approaches (methods) M1 −M6 given in Table 8.

Table 8. Approaches (methods)

M1 : Sugeno integral with respect to µ1
M2 : Choquet integral with respect to µ1
M3 : Sugeno integral with respect to µ2
M4 : Choquet integral with respect to µ2
M5 : Sugeno integral with respect to µ3
M6 : Choquet integral with respect to µ3

A fuzzy integral ranks alternatives by considering the interaction between conflicting
criteria. More higher value in a fuzzy integral indicates more favorable alternative (see
e.g., [55]). The rankings obtained by these approaches are showed in Table 9 and visualized
in Figure 1. We conclude that gene region COI is the most favorable gene region that
determines the diversification of species of rodent populations and Cytb is the second one
in each approaches. We get close scores for the rest of the alternatives.

For the sake of completeness we keep the calculation of the Choquet integral (see, (1))
of f =Cytb with respect to µ1. Firstly, we need the permuted values obtained in the
Table 10.
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Table 9. Scores of the fuzzy integrals

M1 M2 M3 M4 M5 M6

Cytb 0.607 0.634296 0.608 0.686276 0.795 0.758633
COI 0.686 0.745877 0.723 0.789616 0.827469 0.853264
12SrRNA 0.519 0.520514 0.564 0.535812 0.564 0.55602
16SrRNA 0.500 0.477236 0.564 0.511201 0.564 0.549788
IRBP 0.493 0.504344 0.564 0.571198 0.603749 0.659413
VwF 0.527 0.538976 0.582075 0.594962 0.664 0.667087

Table 10. Values of function f and measures of permuted sets

x(1) = x3 x(2) = x5 x(3) = x6
x(4) = x4 x(5) = x2 x(6) = x1
f
(
x(1)

)
= 0.310 f

(
x(2)

)
= 0.400 f

(
x(3)

)
= 0.421

f
(
x(4)

)
= 0.607 f

(
x(5)

)
= 0.608 f

(
x(6)

)
= 0.795

µ1(E(1)) = 1 µ1(E(2)) = 0.928 µ1(E(3)) = 0.852

µ1(E(4)) = 0.779 µ1(E(5)) = 0.572 µ1(E(6)) = 0.414.

Considering the permuted values in Table 10 one can obtain

(C)

∫
X

fdµ1 :=

6∑
k=1

(
f
(
x(k)

)
− f

(
x(k−1)

))
µ1(E(k))

= 0.634296.

Figure 2. Visualization of the rankings of the alternatives according to six approaches
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3.3. Evaluation of the results. The main findings are:
• In Figure 1 we can see all approaches indentify COI as the most favorable alternative.
• It is interesting that the gene region Cytb is obtained as the second most favorable

alternative from all approaches.
• It is evaluated that the third most favorable alternative is found as the gene region

VwF from all approaches.
• It is worth to note that close rankings are obtained for the rest of the remain alter-

natives.
To review the correlations of the approaches we employ the Spearman’s rank correla-

tion coefficients [56] which assesses the ordinal or ranked variables. r(Mi,Mj) values are
considered as highly valid range r(Mi,Mj) ≥ 0.71 [56]. The values support strength of the
results in terms of statistics. Figure 3 shows the Spearman’s rank correlation coefficients
which show the consistency of our results.

Figure 3. The Spearman’s rank correlation coefficients

4. Conclusion

In this paper, we present an interesting application of fuzzy integrals and fuzzy measure
theory as tools for decision making in the context of choosing gene region. This study is
the first one in this practical perspective.

The biomolecule based reconstruction of ancient phylogenetic history first requires the
discovery and analysis of slowly evolving nucleotide or amino acid sequences. Not all
genes or macromolecules are suitable phylogenetic markers and not all marker molecules
are useful for the analysis of a given group of organisms [4].

Since mtDNA has a faster rate of evolution than nuclear genes, it is more preferred
to detect phylogenetic differences between closer taxa [4, 57–59]. In this study, COI gene
region on mtDNA was found to be the most effective marker to differentiate species.
Furthermore, COI gene has a slower evolution rate than other mtDNA genes, and has
a wide range of uses in molecular phylogeny [8, 60, 61]. COI is a gene region used in
barcoding, especially for animals [62–67]. The DNA barcoding is a system which reveals
species-specific DNA profiles, enables the identification of any organism at the species level
according to the differences in DNA sequence in small parts of the genomes of organisms
[68]. This study supports the effectiveness of COI as a barcode marker for rodent species.
The other most effective marker was Cytb. Cytb is more preferred for the separation of
relatively close taxa [4,69–74]. Although the cytochrome b gene provides phylogenetically
useful information, as the evolutionary depth increases, the efficiency of the gene may be
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reduced [4]. In this case, it may be necessary to increase the reliability of studying the
more conserved gene regions in the evolutionary process. In addition to the Cytb gene
region, COI, ribosomal RNA or nuclear DNA gene regions are used in many phylogenetic
studies. In this study, the 12SrRNA and 16SrRNA gene regions were not consistent to
differentiate the species. These genes, which have similar structures and functions in
all organisms ranging from bacteria to humans, also include numerous interspecies and
intraspecies nucleotide variations [75–79]. Even if ribosomal RNA is considered as the
best target for studying phylogenetic relationship because, it is universal and variable
domains, rRNA genes are evolving more slowly and can be effective for the phylogenetic
analysis of distantly related species [80–82]. Nuclear genes (IRBP and vWF) had the close
scores with rRNA genes because they have less substitution rates, are generally used to
detect deeper taxa (e.g. superordinal) [3, 83]. However, vWF was calculated as a more
useful gene region to display interspecific differentiation. Further studies are need to show
the segregation power of the nuclear genes in rodent species.

A fuzzy integral ranks alternatives by considering the interaction between conflicting
criteria. More higher value in a fuzzy integral indicates more favorable alternative. In this
study, we determine the most favorable gene region that determines the diversification of
species of selected rodent populations. The problem is considered as a MCGDM problem.
The pairs of rodent species given in Table 1 are considered as criteria and we use two
different fuzzy integral methods (Sugeno integral and Choquet integral) with respect to
three different fuzzy measures as aggregation tools. In six cases we get similar results.
Consequently, this study is a reference for the marker choice in phylogenetic studies as it
exposes that the effective markers to evaluate diversification among species are COI and
Cytb. This study also supports that the marker COI which is still used as a barcode gene
is the most effective marker for barcoding the rodent species.
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6. Appendix

Table 11. Ranking of alternatives over criteria for Expert 1

x1 x2 x3 x4 x5 x6

Cytb 9 5 2 7 4 3
COI 6 9 6 4 7 5

12SrRNA 5 4 3 7 4 6
16SrRNA 5 4 4 4 5 6

IRBP 2 4 9 4 6 7
VwF 3 7 7 6 8 8
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Table 12. Ranking of alternatives over criteria for Expert 2

x1 x2 x3 x4 x5 x6

Cytb 8 5 3 8 4 5
COI 6 7 7 9 4 6

12SrRNA 6 7 6 5 5 6
16SrRNA 5 3 5 4 5 5

IRBP 6 5 8 5 8 8
VwF 4 3 7 7 6 9

Table 13. Ranking of alternatives over criteria for Expert 3

x1 x2 x3 x4 x5 x6

Cytb 7 9 5 4 4 5
COI 9 6 5 9 7 4

12SrRNA 5 5 6 5 5 5
16SrRNA 6 5 5 3 5 5

IRBP 5 6 6 9 9 7
VwF 6 7 6 7 7 6

Table 14. Comparison matrix for Expert 1

x1 x2 x3 x4 x5 x6

x1 1 1 4 1 4 3
x2 1 1 1 1 3 2
x3 0.25 1 1 0.25 1 1
x4 1 1 4 1 1 2
x5 0.25 0.33 1 1 1 1
x6 0.33 0.50 1 0.50 1 1

Table 15. Comparison matrix for Expert 2

x1 x2 x3 x4 x5 x6

x1 1 3 5 2 5 5
x2 0.33 1 4 1 3 3
x3 0.20 0.25 1 0.25 1 1
x4 0.33 1 4 1 4 3
x5 0.20 0.33 1 0.25 1 1
x6 0.20 0.33 1 0.33 1 1

Table 16. Comparison matrix for Expert 3

x1 x2 x3 x4 x5 x6

x1 1 4 6 5 6 6
x2 0.25 1 5 1 5 4
x3 0.16 0.20 1 0.20 1 1
x4 0.20 1 5 1 5 5
x5 0.16 0.20 1 0.20 1 2
x6 0.16 0.25 1 0.20 0.50 1
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Table 17. µ1 measures of sets of two elements

µ1(x1, x2) = 0.572 µ1(x1, x3) = 0.476 µ1(x1, x4) = 0.581
µ1(x1, x5) = 0.480 µ1(x1, x6) = 0.477 µ1(x2, x3) = 0.260
µ1(x2, x4) = 0.365 µ1(x2, x5) = 0.264 µ1(x2, x6) = 0.261
µ1(x3, x4) = 0.269 µ1(x3, x5) = 0.078 µ1(x3, x6) = 0.075
µ1(x4, x5) = 0.273 µ1(x4, x6) = 0.270 µ1(x5, x6) = 0.079

Table 18. µ1 measures of sets of three elements

µ1(x1, x2, x3) = 0.644 µ1(x1, x2, x4) = 0.779
µ1(x1, x2, x5) = 0.648 µ1(x1, x2, x6) = 0.645
µ1(x1, x3, x4) = 0.653 µ1(x1, x3, x5) = 0.492
µ1(x1, x3, x6) = 0.489 µ1(x1, x4, x5) = 0.657
µ1(x1, x4, x6) = 0.654 µ1(x1, x5, x6) = 0.493
µ1(x2, x3, x4) = 0.437 µ1(x2, x3, x5) = 0.291
µ1(x2, x3, x6) = 0.288 µ1(x2, x4, x5) = 0.441
µ1(x2, x4, x6) = 0.438 µ1(x2, x5, x6) = 0.292
µ1(x3, x4, x5) = 0.300 µ1(x3, x4, x6) = 0.297
µ1(x3, x5, x6) = 0.151 µ1(x4, x5, x6) = 0.301

Table 19. µ1 measures of sets of four elements

µ1(x1, x2, x3, x4) = 0.851 µ1(x1, x2, x3, x5) = 0.705 µ1(x1, x2, x3, x6) = 0.702
µ1(x1, x2, x4, x5) = 0.870 µ1(x1, x2, x4, x6) = 0.852 µ1(x1, x2, x5, x6) = 0.706
µ1(x1, x3, x4, x5) = 0.714 µ1(x1, x3, x4, x6) = 0.711 µ1(x1, x3, x5, x6) = 0.565
µ1(x1, x4, x5, x6) = 0.715 µ1(x2, x3, x4, x5) = 0.513 µ1(x2, x3, x4, x6) = 0.510
µ1(x2, x3, x5, x6) = 0.364 µ1(x2, x4, x5, x6) = 0.514 µ1(x3, x4, x5, x6) = 0.373

Table 20. µ1 measures of sets of five elements

µ1(x1, x2, x3, x4, x5) = 0.927 µ1(x1, x2, x3, x4, x6) = 0.924
µ1(x1, x2, x3, x5, x6) = 0.778 µ1(x1, x2, x4, x5, x6) = 0.928
µ1(x1, x3, x4, x5, x6) = 0.787 µ1(x2, x3, x4, x5, x6) = 0.586

Table 21. µ1 measures of entire set and empty set

µ1(X) = 1, µ1(∅) = 0

Table 22. µ2 measures of singletons

µ2(x1) = 0.553364 µ2(x2) = 0.322013
µ2(x3) = 0.118264 µ2(x4) = 0.33319
µ2(x5) = 0.125223 µ2(x6) = 0.120178
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Table 23. µ2 measures of sets of two elements

µ2(x1, x2) = 0.741734 µ2(x1, x3) = 0.622678 µ2(x1, x4) = 0.748272
µ2(x1, x5) = 0.626616 µ2(x1, x6) = 0.623665 µ2(x2, x3) = 0.411888
µ2(x2, x4) = 0.574734 µ2(x2, x5) = 0.416993 µ2(x2, x6) = 0.413167
µ2(x3, x4) = 0.422071 µ2(x3, x5) = 0.232585 µ2(x3, x6) = 0.227989
µ2(x4, x5) = 0.42712 µ2(x4, x6) = 0.423336 µ2(x5, x6) = 0.234113

Table 24. µ2 measures of sets of three elements

µ2(x1, x2, x3) = 0.794309 µ2(x1, x2, x4) = 0.88957
µ2(x1, x2, x5) = 0.797295 µ2(x1, x2, x6) = 0.795057
µ2(x1, x3, x4) = 0.800265 µ2(x1, x3, x5) = 0.689421
µ2(x1, x3, x6) = 0.686732 µ2(x1, x4, x5) = 0.803219
µ2(x1, x4, x6) = 0.643109 µ2(x1, x5, x6) = 0.690315
µ2(x2, x3, x4) = 0.64215 µ2(x2, x3, x5) = 0.498427
µ2(x2, x3, x6) = 0.494941 µ2(x2, x4, x5) = 0.645979
µ2(x2, x4, x6) = 0.643109 µ2(x2, x5, x6) = 0.499586
µ2(x3, x4, x5) = 0.507654 µ2(x3, x4, x6) = 0.504206
µ2(x3, x5, x6) = 0.331799 µ2(x4, x5, x6) = 0.5088

Table 25. µ2 measures of sets of four elements

µ2(x1, x2, x3, x4) = 0.929006 µ2(x1, x2, x3, x5) = 0.844932 µ2(x1, x2, x3, x6) = 0.842892
µ2(x1, x2, x4, x5) = 0.931247 µ2(x1, x2, x4, x6) = 0.929568 µ2(x1, x2, x5, x6) = 0.84561
µ2(x1, x3, x4, x5) = 0.850329 µ2(x1, x3, x4, x6) = 0.848312 µ2(x1, x3, x5, x6) = 0.747459
µ2(x1, x4, x5, x6) = 0.851 µ2(x2, x3, x4, x5) = 0.707063 µ2(x2, x3, x4, x6) = 0.704448
µ2(x2, x3, x5, x6) = 0.57368 µ2(x2, x4, x5, x6) = 0.707933 µ2(x3, x4, x5, x6) = 0.582075

Table 26. µ2 measures of sets of five elements

µ2(x1, x2, x3, x4, x5) = 0.966979 µ2(x1, x2, x3, x4, x6) = 0.96545
µ2(x1, x2, x3, x5, x6) = 0.888953 µ2(x1, x2, x4, x5, x6) = 0.967488
µ2(x1, x3, x4, x5, x6) = 0.893864 µ2(x2, x3, x4, x5, x6) = 0.763511

Table 27. µ2 measures of entire set and empty set

µ2(X) = 1, µ2(∅) = 0

Table 28. µ3 measures of singletons

µ3(x1) = 0.827469 µ3(x2) = 0.590954
µ3(x3) = 0.258675 µ3(x4) = 0.605544
µ3(x5) = 0.271836 µ3(x6) = 0.261987
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Table 29. µ3 measures of sets of two elements

µ3(x1, x2) = 0.935464 µ3(x1, x3) = 0.874741 µ3(x1, x4) = 0.93813
µ3(x1, x5) = 0.877146 µ3(x1, x6) = 0.875347 µ3(x2, x3) = 0.698651
µ3(x2, x4) = 0.843067 µ3(x2, x5) = 0.70413 µ3(x2, x6) = 0.70003
µ3(x3, x4) = 0.709514 µ3(x3, x5) = 0.461062 µ3(x3, x6) = 0.45373
µ3(x4, x5) = 0.714804 µ3(x4, x6) = 0.710845 µ3(x5, x6) = 0.463485

Table 30. µ3 measures of sets of three elements

µ3(x1, x2, x3) = 0.955145 µ3(x1, x2, x4) = 0.981537
µ3(x1, x2, x5) = 0.956147 µ3(x1, x2, x6) = 0.955397
µ3(x1, x3, x4) = 0.95713 µ3(x1, x3, x5) = 0.911727
µ3(x1, x3, x6) = 0.910387 µ3(x1, x4, x5) = 0.958097
µ3(x1, x4, x6) = 0.957374 µ3(x1, x5, x6) = 0.91217
µ3(x2, x3, x4) = 0.886354 µ3(x2, x3, x5) = 0.782913
µ3(x2, x3, x6) = 0.77986 µ3(x2, x4, x5) = 0.888557
µ3(x2, x4, x6) = 0.886908 µ3(x2, x5, x6) = 0.783922
µ3(x3, x4, x5) = 0.79086 µ3(x3, x4, x6) = 0.787913
µ3(x3, x5, x6) = 0.603749 µ3(x4, x5, x6) = 0.791834

Table 31. µ3 measures of sets of four elements

µ3(x1, x2, x3, x4) = 0.989447 µ3(x1, x2, x3, x5) = 0.970544 µ3(x1, x2, x3, x6) = 0.969986
µ3(x1, x2, x4, x5) = 0.98985 µ3(x1, x2, x4, x6) = 0.989549 µ3(x1, x2, x5, x6) = 0.970728
µ3(x1, x3, x4, x5) = 0.971996 µ3(x1, x3, x4, x6) = 0.971458 µ3(x1, x3, x5, x6) = 0.937802
µ3(x1, x4, x5, x6) = 0.972174 µ3(x2, x3, x4, x5) = 0.920222 µ3(x2, x3, x4, x6) = 0.918995
µ3(x2, x3, x5, x6) = 0.84232 µ3(x2, x4, x5, x6) = 0.920627 µ3(x3, x4, x5, x6) = 0.84821

Table 32. µ3 measures of sets of five elements

µ3(x1, x2, x3, x4, x5) = 0.995637 µ3(x1, x2, x3, x4, x6) = 0.995412
µ3(x1, x2, x3, x5, x6) = 0.9814 µ3(x1, x2, x4, x5, x6) = 0.995711
µ3(x1, x3, x4, x5, x6) = 0.982477 µ3(x2, x3, x4, x5, x6) = 0.944099

Table 33. µ3 measures of entire set and empty set

µ3(X) = 1, µ3(∅) = 0



G. O. KARACAN, M. ÜNVER, M. I. PONTA: A MULTI CRITERIA GROUP DECISION ... 1685

References

[1] Sunnucks, P., (2000), Efficient genetic markers for population biology, Trends Ecol. Evol., 15 (5),
199-203.

[2] Wilson, D. E. and Reeder, D. M., (Eds.). (2005), Mammal species of the world: a taxonomic and
geographic reference (Vol. 1), JHU Press.

[3] Huchon, D., Catzeflis, F. M., and Douzery, E. J., (1999), Molecular evolution of the nuclear von
Willebrand factor gene in mammals and the phylogeny of rodents, Mol. Biol. Evol., 16 (5), 577-589.

[4] Patwardhan, A., Ray, S. and Roy, A., (2014), Molecular markers in phylogenetic studies-a review. Mol.
Phylogenet. Evol., 2 (2), 131.

[5] Michaux, J., Bellinvia, E. and Lymberakis, P., (2005), Taxonomy, evolutionary history and biogeogra-
phy of the broad-toothed field mouse (Apodemus mystacinus) in the eastern Mediterranean area based
on mitochondrial and nuclear genes, Biol. J. Linn. Soc., 85 (1), 53-63.

[6] Suzuki, H., Filippucci, M. G., Chelomina, G. N., Sato, J. J., Serizawa, K. and Nevo, E., (2008), A
biogeographic view of Apodemus in Asia and Europe inferred from nuclear and mitochondrial gene
sequences, Biochem. Genet., 46 (5-6), 329.

[7] Montgelard, C., Matthee, C. A., and Robinson, T. J., (2003), Molecular systematics of dormice (Ro-
dentia: Gliridae) and the radiation of Graphiurus in Africa, Proc. R. Soc. Lond., Series B: Biological
Sciences, 270 (1527), 1947-1955.

[8] van Riemsdijk, I., Arntzen, J. W., Bogaerts, S., Franzen, M., Litvinchuk, S. N., Olgun, K. and Wielstra,
B., (2017), The Near East as a cradle of biodiversity: a phylogeography of banded newts (genus
Ommatotriton) reveals extensive inter-and intraspecific genetic differentiation, Mol. Phylogenet. Evol.,
114, 73-81.

[9] Michaux, J. R., Chevret, P., Filippucci, M. G. And Macholan, M., (2002), Phylogeny of the genus
Apodemus with a special emphasis on the subgenus Sylvaemus using the nuclear IRBP gene and two
mitochondrial markers: cytochrome b and 12S rRNA, Mol. Phylogenet. Evol., 23 (2), 123-136.

[10] Boratynski, Z., Brito, J. C. and Mappes, T., (2012), The origin of two cryptic species of African desert
jerboas (Dipodidae: Jaculus), Biol. J. Linn. Soc., 105 (2), 435-445.

[11] Pakpour, S., Olishevska, S. V., Prasher, S. O., Milani, A. S. and Chénier, M. R., (2013), DNA
extraction method selection for agricultural soil using TOPSIS multiple criteria decision-making model,
Am. J. Mol. Biol., 3 (4), 215.

[12] Villalobos-Cid, M., Vega-Araya, D. and Inostroza-Ponta, M., (2017), Application of different multi-
objective decision making techniques in the phylogenetic inference problem, In 2017 36th International
Conference of the Chilean Computer Science Society (SCCC), 1-9, IEEE.

[13] Pakpour, S., Milani, A. S. and Chénier, M. R., (2012), A multi-criteria decision-making approach for
comparing sample preservation and DNA extraction methods from swine feces, Am. J . Mol. Biol. 2,
159-169.

[14] Aenishaenslin, C., Gern, L., Michel, P., Ravel, A., Hongoh, V., Waaub, J. P. and Bélanger, D., (2015),
Adaptation and evaluation of a multi-criteria decision analysis model for Lyme disease prevention,
PLOS ONE, 10 (8), e0135171.

[15] Alimi, T. O., Fuller, D. O., Herrera, S. V., Arevalo-Herrera, M., Quinones, M. L., Stoler, J. B. and
Beier, J. C., (2016), A multi-criteria decision analysis approach to assessing malaria risk in northern
South America, BMC Public Health, 16 (1), 221.
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[18] Ünver, M., Özçelik, G. and Olgun, M., (2018), A fuzzy measure theoretical approach for multi criteria
decision making problems containing sub-criteria, J. Intell. Fuzzy Systems, 35 (6), 6461-6468.

[19] Ye, J., (2011), Cosine similarity measures for intuitionistic fuzzy sets and their applications, Math.
Comput. Model., 53 (1-2), 91-97.

[20] Du, S., Ye, J., Yong, R. and Zhang, F., (2020), Simplified neutrosophic indeterminate decision making
method with decision makers’ indeterminate ranges, J. Civ. Eng. Manag., 26 (6), 590-598.

[21] Garg, H., (2020), Neutrality operations-based Pythagorean fuzzy aggregation operators and its appli-
cations to multiple attribute group decision-making process, J Ambient Intell Humaniz Comput, 11,
3021–3041.



1686 TWMS J. APP. AND ENG. MATH. V.13, N.4, 2023

[22] Garg, H., (2020), Exponential operational laws and new aggregation operators for intuitionistic mul-
tiplicative set in multiple-attribute group decision making process, Inf. Sci., 538, 245-272.

[23] Pohekar, S. D. and Ramachandran, M., (2004), Application of multi-criteria decision making to sus-
tainable energy planning a review, Renew. Sustain. Energy Rev., 8 (4), 365-381.

[24] Wang, J. J., Jing, Y. Y., Zhang, C. F. and Zhao, J. H., (2009), Review on multi-criteria decision
analysis aid in sustainable energy decision-making, Renew. Sustain. Energy Rev., 13 (9), 2263-2278.
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