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AN EFFICIENT METHOD FOR SOLVING FRACTIONAL INTEGRAL
AND DIFFERENTIAL EQUATIONS OF BRATU TYPE

S. AYDINLIK'*, A. KIRIS?, §

ABSTRACT. In this paper, the fractional integral and differential equations of Bratu type,
which arise in many important physical phenomena, are investigated by an effective tech-
nique, Chebyshev Finite Difference Method with the help of fractional derivative in the
concept of Caputo. The effect of the fractional derivative in the outcomes has great
agreement with the nonlocality of the problem. The truncation and round off errors
and convergence analyzes of the present method are also given. Numerical solutions of
illustrative examples of the fractional integral and differential equations of Bratu type
are given to highlight the validity and performance of the method. The results of the
comparisons are very satisfied and show that the proposed technique is more effective
and highly accurate than the other methods.

Keywords: Chebyshev finite difference method, Fractional Bratu type equation, Frac-
tional Integro- Differential Equation, Collocation Method.
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1. INTRODUCTION

The use of the differential equations for fractional order reveals new non-local model
concepts in recent years [1-3]. Fractional analysis reflects physical facts better since it
brings some additions due to their definitions as well as resembling the general non-local
structure. Fractional analysis can be performed over the time variable in addition to use
it on spatial variables. This corresponds to memory, which states that the motion of the
material depends not only on the present time but also on the past. Since fractional
analysis of both spatial and time variables is much more realistic, studies are getting
popular [1-11]. Bratu type of problems occur in study of many physical and chemical
phenomena in applied sciences such as the fuel ignition model, chemical reaction theory,
Chandrasekhar model of the expansion of the universe, electro spinning process for the
manufacturing of the nano fibers, nanotechnology and others [12, 13]. In the last few
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years, studies on the solution of fractional-order Bratu-type equations along with classical
Bratu-type equations have become widespread [14-17]. To show the applicability and
efficiency of the present method, three fractional integral and differential of Bratu type
equations are investigated; the first two problems are given by

{ddy£$)+Aey<f):o, l<a<2 0<z<1 (1)
x
with initial conditions

y(0) = a1, y(0) =ay (2)
or with boundary conditions

y(0) = a3, y(1) = ayg, (3)

where A\ is real parameter and a;, i = 1,2,3,4 are constants. The fractional form of
Bratu-Type of equation (1) reflects the nonlocality of the problem without defining non-
local kernels.

The third problem (iii), which is an integral fractional Bratu-type equation is given as

(e

with initial condition

—i—)\/ fla,t) e¥Ddt +g(z) =0, 0<a<1, 0<z<1 (4)
0

y(0) =a (5)
where ) is a real parameter, a is constant, f(x,t) € L?([0,1] x [0,1]) and g(z) is an un-
known function.

In the solution of initial and boundary value problems, Chebyshev finite difference
method (CFDM) has some advantageous. Chebyshev polynomials are orthogonal and the
the polynomial approximation is valid throughout the entire interval, not just at certain
points of the interval as with many numerical techniques. The use of Chebyshev polyno-
mials [18-24] is advantageous over same-order polynomial approximations as they are the
best polynomial approximation that minimize the maximum error in a given interval.

The paper is structured as follows; The definition of Caputo Fractional derivative is
given in Section 2 and the Chebyshev Finite Difference Method is provided to deal with
fractional order integral and differential equations of Bratu-type in Section 3. In this
section, the convergence and the error analyzes of the method are also presented. In Section
4, three fractional Bratu type of equations are solved by using CFDM. The comparison
demonstrates that the suggested technique offers approximate global solution with high
accuracy and reduces computational costs.

2. CAPUTO FRACTIONAL DERIVATIVE

Ross [25] defined the criteria for fractional derivative and then Tarasov [26-28] pointed
out that some other properties must be satisfied;

e Fractional derivative operator is linear and fractional derivative of an analytical
function is also analytical.

e Fractional order derivative reduces to the integer order derivate while the order,
a — n, in consequence, the zero derivate of a function gives itself.

e The fractional derivative cannot be expressed as a finite series of integer derivatives.

e The Leibniz and chain rules do not hold.
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Some definitions such as conformable fractional derivative and the alternative fractional
derivative do not hold these criteria [28]. Therefore, they cannot be assumed as fractional
derivative [26, 27], Caputo definition [29] which satisfies all above is used here, it is

f(n) (s

DO f(x) = n=a) f sy n+1d$ n—1<a<n, (6)

xT dn
i f(x)v a=n,

where « >0, xz>aanda, z€R.

It is clear that when o — n, the Caputo definition reduces to the n'® order ordinary

derivative

(n) a)(z—a)n—o z (r—g)n—o (n+1) LE
hm Dg f( )_ hm (%4‘1‘@ ( Iz(n7£+1) ( )dCE>

(7)
_f(n )+ 1O (2)de = fM(z). (n=1,2,..)

3. CHEBYSHEV FINITE DIFFERENCE METHOD

An approximation to a function, y(z), can be given as a sequence of Chebyshev poly-
nomials,

N
= Z by, an Ty, () (8)
n=0

where by = by = %, b, =1, (n = 1,2..., N — 1) and N indicates the approximation
polynomial order. The unknown coefficients can be found as

9 N
an = = 30 byy(a;) Tuay) 9)
§=0

y(™) () at the point xy, is given as

N
=S y(x)) (10)

J=0

where,
N

".‘ = 29] ZT z) T, .Z‘k) (11)

First two of the coefficients in (11) are given as follows [30]:

10, & s no
1 j n .
d](%; - W] Z Z q Tn(x])ﬂ(‘rk‘)’ k?] = 07 17 "'7Na (12)
n=0 =0
n+1) odd
N n—2
20, n(n?—12)46, .
oy =5 2 (Q)Tn@j)Tz(u), Ej=01,.,N (13)
n=0 =0
(n+1) even

where

cp=2, ¢=1 J=12,. ,N—-1, i>1 (14)

With the help of the polynomial approximation and its derivatives, the given problem is
converted into an (INV 4 1) algebraic equations. Any suitable root finding method can be
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used to solve this system to find (N + 1) unknowns of the approximation polynomials.
Here, Newton method is used.

Round off and truncation errors and convergence analyzes are given. The proofs of
theorems 4.1, 4.2 and 4.3 can be found in [31].

Theorem 3.1 (Convergence). If y(z) € L2(—1,1) and |y"(z)| < C, then its Chebyshev

expansion uniformly converges to y(x).

Theorem 3.2 (Round-off error). The rounding error effect on d,(glj). and d,(f]) is limited to
the following formulas [32],

V" — ) < 40;(5 - O(;0)) (A + 1) (15)
& g 2105 oLyt
k] k:j < (N2 )) ( 5 5)

Theorem 3.3 (Truncation error). Suppose the function y(x) is approached by Pyy =
N

> amTy. ForVy(x) € HJ'(—1,1), m > 0, the truncation error,

m=0

1y = Prnyllrs (—1,0) < C Nyl geon 2y 1 (16)

1s satisfied.

4. NUMERICAL EXAMPLES

In this section, three integral and differential fractional nonlinear problems are investigated
by using CEFDM. For each problem, the given interval (z € [0, 1]) is transformed to the
interval ¢t € [—1,1] by

(b—a), (b+a)

= t : 17
T =gty (17)

Example 1:
d®y(@) _ o ylz) —
{ i /2ey =0, 1<a<?2 0<z<1 (18)
y(0) =4'(0) = 0.
The exact solution for a = 2 is y(z) = —2In(cosx) .
By taking a = 2 and N =9, y(z) is obtained by using CFDM as
y(r) = 4.6629 x 10~z + 0.999922 + 0.00008z3 + 0.1645z* + 0.017725 (19)

—0.025625 + 0.143027 — 0.135728 + 0.06712°.

For N =9, the numerical solutions obtained by CFDM for different values of « and the
exact solution (o = 2) are given in Fig. 1.
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Fig. 1 The numerical solution by CFDM for different values of « and N = 9 for Example 1.

In Table 1, the comparison of the absolute errors of presented method (N = 9) with
the other methods is provided.

Table 1: Comparison of CFDM (N = 9) with the other methods in terms of maximum
absolute errors for @ = 2 for the Example 1.

x [33] [34] [17] (a) [17] (b) | Present
Method

0.1 2.98F — 4 141F -5 141E -5 |1.78E—7 | 7.53FE -9

02 |0 293EF -5 3.22FE -5 |450E—-7 | 1.TTE — 8

03 |1.69E -4 1.79E -5 0.12F =5 | 7T19E—-7 | 7.21E -8
04 |1.10E -4 1.19F — 4 7.14F -5 | 1.00E—6 | 5.35FE — 8

05 |0 6.509F — 4 928 -5 |1.31E—6 | 2.16E — 7

06 |0 221FE -3 1.17TE —4 | 1.66E—6 | 2.66FE — 7

0.7 |7.75FE —5 6.00F — 3 1.44F — 4 | 2.06E—-6 | 2.70E — 7

0.8 |0 1.43E — 2 1.77TE —4 | 2.25E—-6 | 1.15E — 6

09 |347E -3 3.13E — 2 217E —4 | 3.12E—6 | 2.21E —6

1 0 6.43F — 2 2.69F —4 |3.63E—6 | 39FE -5
Example 2:

d*y(x) (x) _
{ Y p2ev® =0, 1<a<2 0<2<1 (20)

y(0) = y(1) = 0

cosh(0.5(z—0.5)0)
R — ] , Where

The analytical solution of the problem for o = 2 is y(z) = —21In [
0 satisfies the equation 6 = v/2X cosh(¥).

For a« = 2 and N = 16, the solution y(x) is obtained by using CFDM as

y(z) = —1.9872 x 10714 + 1.24812 — 0.99992% — 0.416023 + 0.0368z*
40.13402° + 0.044125 — 0.02932" — 0.02442°% — 0.01512° + 0.04292'° (21)
—0.0521z' +0.07262'2 — 0.07112' + 0.03982'* — 0.011821° + 0.001426.

The numerical solutions of Example 2 by CFDM for different values of a are given in Fig.
2.
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Fig. 2 The numerical solution by CFDM for N = 9 and different values of o for Example
2.

The comparison of the absolute errors of present with the other methods is provided in
Table 2.

Table 2: Comparison of CEDM (N = 16 and o = 2) with the other methods in terms of
maximum absolute errors for Example 2.

x [35] [36] (37 [15] Present
Method
0.1 2.12F — 3 1.71E -5 4.03F -6 |4.08E—13 | 1.21FE—14
0.2 |420E -3 3.25FE -5 5.710FE —6 | 8.04E—-13 | 7.20E—-14
0.3 |6.18E -3 4.48E -5 0.22F —6 | 1.18E—-12 | 1.62E —14
0.4 |8.00E -3 5.28E —5 3.07TEF —6 |1.52F—12|5.44F —14
0.5 |959E -3 5.26FE —5 145E -6 |1.83E—12 | 2.78E—14
0.6 |1.09E —2 9.28E —5 3.04E -6 |2.08£—-12 | 541F—-14
0.7 | 1.19FE -2 448F — 5 5.19F —6 | 2.28FE—12 | 1.60F —14
0.8 |1.23FE -2 3.20FE -5 0.67TE —6 | 242E—-12 | 7.14E—-14
0.9 |1.08FE —2 1.711E -5 4.01F -6 |250FE—12|1.25FE—14
Example 3:
{ CUD 4wt - L) evVdt + g(x) =0, 0<z<1 (22)
y(0)=0
where g(z) = —Flzg,)))a:m + Frﬁ))) 205 -2 (612_96 - 1). The exact solution is y(z) = 2% — .

(
The numerical solution for N =9, y(z) is obtained by using CFDM as

y(z) = —4.9960 x 10716 — 0.9999x + 0.999922 + 1.7240 x 10~ 823
—1.0453 x 10~ 72* 4 3.4324 x 107 72% — 6.4836 x 10~ "6 (23)
+7.0450 x 107727 — 4.0927 x 107728 + 9.8505 x 10827,

The absolute error of the present method is given in Fig. 3.
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Fig. 3 The absolute error (Err(z)) of the CFDM (N = 9) in (a) and its logarithmic value
on base 10(log;o(Err(z))) in (b) for Example 3.
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The comparison of absolute errors of presented method with the other methods is given
in Table 3.

Table 3: The comparison of CFDM (NN = 9) with the other methods in terms of maximum
absolute errors for Example 3.

x [38] [17] (a) | [17] (b) | Present
Method

0 [591E-3 |6.30E-3]0 0

& |861E—3 [1.98E—3|1.56E—3 | 7.59E — 14

2 |925E—3 [1.57E—3[4.03E—4 [8.09E —13

5 |17T4E-3 [1.22E-3[4.97TE—4[1.24E-13

¢ |314E-3 [1.18E—3[246E-3 [ 7.7T3E—13

2 [371E-2 [110E-3|5.73E—3 | 1.30E — 13

5. CONCLUSIONS

CFDM is used to obtain the numerical solutions of the integral and differential fractional
order Bratu-Type of equations. Some theorems are given for the convergence and the error
analyzes of the presented method. The effect of the fractional derivative in the outcomes
has great agreement with the nonlocality of the problem. Moreover, It can be easily seen
from the Fig 1 and Fig 2, the solutions of fractional order Bratu type of equations get
close to the classical result when (o — 2). The numerical outcomes prove that the CFDM
is more accurate, less computational and highly efficient technique for solving this type of
equations.
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