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INTEGRAL EQUATIONS FOR THE PROBLEM OF WAVE

DIFFRACTION ON A FLAT STRIP: ALTERNATIVE

REPRESENTATION

Z. BAZ 1∗, M. HELVACI 2, T. İKİZ 3 E.I. VELİEV 2’4 , §

Abstract. This study investigates an effective method for solving one class of integral

equations. It addresses various two dimensional problems related to do diffraction theory

by metal screens, which are reduced to these integral equations. A novel approach for

solving this class of integral equations is proposed. The study foceses on investigating

diffraction on a strip using a combination of analytical and numerical methods and the

results are obtained through simulation.
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1. Introduction

The development of numerical techniques for solving scattering problems has always

paralleled the advancement in computer technology. Although numerical methods may

be considered less complicated compared to analytical methods due to the matrix inver-

sion procedure for analysis computer capacity restricts the size of the problem that can

be handled. In general, numerical methods can provide accurate solutions for obstacles

with a maximum dimension of a few wavelengths. However, while integral equations are

usually solved using numerical methods, they can also be converted into a set of algebraic
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equations using certain analytical techniques. Subsequently, the this matrix equation can

be solved using standard matrix inversion algorithms. The time required to solve this

matrix equation is proportional to the size of the resultant matrix. Therefore, for large

bodies, particularly in RCS estimation, the computation time can be excessively long. To

address this issue, the size of the matrix must be minimized. Although there are several

powerful analytical techniques available, the main advantage of numerical techniques is

their applicability to scatterers of arbitrary shape, limited primarily by the size of the

scatterer. However, this limitation poses a practical problem. Theoretically, a set of linear

equations that describe the scattering problem can be generated, but the resulting set

may be too large to be solved. Fortunately, the development in computer technology has

made it possible to solve many electromagnetic problems with the desired degree of accu-

racy. The difficulty of the problem increases when dealing with complex-shaped bodies.

These difficulties can be overcome by utilizing a combination of analytical and numerical

methods. An alternative method was developed by Veliev et al. [7], where the solution

offers any desired level of accuracy. The scattered field was represented using the Fourier

transform of the corresponding surface current density, which offers several advantages for

constructing the solution to the problem. The scattering of electromagnetic waves from

geometric and physical discontinuities is one of the most important areas in electromag-

netic wave theory. Due to its simple geometry, the scattering problem related to a strip

has been extensively studied by many scientists. Various techniques have been suggested

for resolving the issues associated with a strip [1]. With the development of numerical

techniques for solving scattering problems and simultaneous advancements in computer

technology [6], it has become possible to solve many electromagnetic problems with the

required degree of accuracy. In this study, diffraction on a strip was investigated using

analytical and numerical methods, and the results were obtained through simulation.

2. MATERIAL AND METHODS

This study aims to address the two-dimensional thin strip diffraction problem with a

new method. The research objective is to develop and generalize an alternative and new

approach to the problem, as stated in the summary. The proposed method is expected to

offer simpler calculations, faster processing, and wider applicability to various materials

when compared to the existing methods in the literature. The problem considered in this

study is the diffraction of a plane H-polarized wave, as shown in Figure 1. To describe the

scattering properties of surfaces in various geometries, we utilize the integral boundary

condition, which corresponds to a boundary condition between the Dirichlet and Neumann

boundary conditions. The integral boundary condition is a generalization of the Dirichlet

and Neumann boundary conditions. In our study, we employ the hybrid method as pre-

sented in previous works. The hybrid method combines the advantages of both analytical

and numerical approaches to develop methods. While some implicit expressions can only

be obtained for the high-frequency regime, hybrid methods can calculate field expressions
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in wider frequency regimes, allowing the investigation of resonances for thin strip problems

with hybrid methods. To solve the problem presented in this study, we use the method of

orthogonal polynomials to tackle the diffraction problems. Firstly, in Figure 1, we define

the scattered area as an integral and employ Green and Fourier analysis to obtain this in-

tegral. The problem is then solved using an analytical approach. For the general solution,

the integral equation is expressed as the sum of the special orthogonal functions, taking

into account the current density on the strips, geometry, and other relevant conditions.

3. FORMULATION OF THE PROBLEMS

We will consider the problem of diffraction of a plane H-polarized wave in Figure 1.

Figure 1. The geometry of the problem

H0
z = e

ik
(
α0x+
√

1−α2
0y
)

(1)

On a flat strip (see Fig 1) Here, α0 = cos θ0, and θ0 is the angle of incidence. We assume

that the wavelength of the incident wave is commensurate with the size of the strip, and

the angle of incidence is not very small. Otherwise, the complex ray method developed in

[8], [9] can be used. Total magnetic field can be expressed as

Hz = H0
z +Hs (2)

Where the function Hs describes the scattered wave, which can be represented as [2],[3],[5].
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Here dimensionless coordinates η = x
a , ξ = y

a are entered, and H
(1)
0 is the Hankel function

of the first kind and zero order. In the representation Eq.3, the function describes the

surface current density function, which at the ends of the interval (-1,1) obeys the condition

µ
(j)
E (η) ∼

(
1− η2

) 1

2
, η → ±1 (4)
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For the scattered field, we can write down the representation in Fourier domain of the

current density function, which will have the form

Hs
z
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= − ε

2π
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µ (ηj) =
ε

2π
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h (α)eiεαηdα (6)

For the current density function, we write the representation in the form of a series in

Gegenbauer orthogonal polynomials {Cνn}
∞
n=0 [2].
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2
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where, xn is unknown coefficient. When, ν = 1
2 ,C

ν+ 1
2

n (η)
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2
= Un (η) [5]. Note that

Un (η) is the Chebyshev polynomials of the second kind. Representation Eq.7 for the

current density function allows us to obtain the following representation for the Fourier

images
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Now using the Neumann boundary conditions on the surface of the strip[
∂

∂−→n
(
H0
z +Hp

z

)]
L

= 0 (9)

To determine the unknown coefficients x2k, we obtain a system of infinite algebraic equa-

tions of the form
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Where matrix elements dkn are of the form

d
(1)
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∞∫
0
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(11)
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where, γ (α) = 1 + i
|α|
√

1− α2

Now the values of the unknowns from Eq.10 substituting into the expressions for the

Fourier images, we obtain the following integral [4], equations for the Fourier images of

the form
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1

2
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After that, we obtain integral equation from the Fourier domain.
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The kernels of these equations have the form of a bilinear expansion through Bessel func-

tions Jn (x)
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These bilinear expansions in the form of infinite series in Bessel functions can be summed

up (see) [5]. In this case, sufficiently simple expressions for these kernels are obtained,

which have the form.
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Equations Eq.12 are the new integral equations with simple kernel. At the end, we present

expressions for the radiation pattern and cross-section of total scattering, which are ex-

pressed through unknown coefficients as follows, respectively:

Φ (Ψ) = − π sin (Ψ)

2ε cos (Ψ)

∞∑
n=0

(−i)
n

(n+ 1)x(1)n Jn+1 (ε cos (Ψ)) (17)



118 TWMS J. APP. ENG. MATH. V.14, N.1, 2024
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4. Results of Numerical Simulation

In this section the numerical results are presented based on above given algorithm.

Fig.2-7 show the near field distribution, the far field radiation pattern and the current

distribution, the far field radiation pattern and the current distribution at the given pa-

rameters.

Figure 2. a)Near Field Distrubition ε = ka = 5, θ0 = −π
2 , b)Far Field

Pattern ε = ka = 5, θ0 = −π
2 , c)Current Density ε = ka = 5, θ0 = −π

2

Figure 3. a)Near Field Distrubition ε = ka = 10, θ0 = −π
2 , b)Far Field

Pattern ε = ka = 10, θ0 = −π
2 , c)Current Density ε = ka = 10, θ0 = −π

2
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Figure 4. a)Near Field Distrubition ε = ka = 20, θ0 = −π
2 , b)Far Field

Pattern ε = ka = 20, θ0 = −π
2 , c)Current Density ε = ka = 20, θ0 = −π

2

Figure 5. a)Near Field Distrubition ε = ka = 5, θ0 = −3π
4 , b)Far Field

Pattern ε = ka = 5, θ0 = −3π
4 , c)Current Density ε = ka = 5, θ0 = −3π

4
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Figure 6. a)Near Field Distrubition ε = ka = 10, θ0 = −3π
4 , b)Far Field

Pattern ε = ka = 10, θ0 = −3π
4 , c)Current Density ε = ka = 10, θ0 = −3π

4

Figure 7. a)Near Field Distrubition ε = ka = 20, θ0 = −3π
4 , b)Far Field

Pattern ε = ka = 20, θ0 = −3π
4 , c)Current Density ε = ka = 20, θ0 = −3π

4
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5. Conclusion

In this article, the original theoretical background is given for diffraction problem solu-

tion by the strip. The electromagnetic scattering problem on a flat strip is analyzed using

the hybrid method as a comparison of the moments method and other methods. Here,

investigations are mainly done by boundary conditions and diffraction of strips at different

varying angles. Also, Dirichlet and Neumann boundary conditions are used to explain the

scattering in the integral boundary condition solution. The problems are two-dimensional

and are expressed in terms of the scattered wavelength integral, starting with the solu-

tion of the total magnetic field. Here, the integral is the Fourier transform of the current

density on the strip. The boundary condition is used to obtain the fractional integral

equation of the Hankel function with the Fourier transform, then the Fourier transform

of the current density on the strip needs to be determined. This is necessary to solve the

integral equation for which the current density is expressed in the sum of orthogonal poly-

nomials. Finally, the fourier transform of the current density is obtained. The unknown

expressions were obtained from the coefficients for the radiation model and cross-section

of the total scattering, and the analytical numerical results of the problem were analyzed

based on the algorithm given above. From Figure 2 to Figure 7, the near-field distribu-

tion, the far-field radiation model and the current distribution in the given parameters

were obtained numerically. Based on the theory the numerical calculations are done and

results are presented.
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