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ON S-I-QUOTIENT MAPPINGS, S-I-cs-NETWORKS,

S-I-cs′-NETWORKS AND S-wcs′-NETWORKS

CARLOS GRANADOS1, §

Abstract. In this paper, we define and introduce the notions of S-I-quotient mappings,
S-I-cs-networks, S-I-cs′-networks and S-wcs′-networks, and study some characteriza-
tions of S-I-quotient mappings and S-I-cs′networks, especially S-J-quotient mappings
and S-J-cs-networks on an ideal J of N. With these notions, we get that if X is a S-J-
FU space with a point-countable S-J-cs′-network, then X is a meta-Lindelof space.
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1. Introduction

The notion of statistical convergence was originally introduced by H. Fast [7] and H.
Steinhaus [13], which is a generalization of the usual notion of convergence. It is doubtless
that the study of statistical convergence and its various generalizations has become an
active research area in the last few years (see [6, 9, 14]). In particular, P. Kostyrko, T.
Salat and W. Wilczynski [8] introduced two interesting generalizations of statistical con-
vergence by using the notion of ideals of subsets of positive integers, which were named
as I and I∗-convergence, and prove some properties of I and I∗-convergence in metric
spaces. Moreover, B.K. Lahiri and P. Das [10] discussed I and I∗-convergence in topo-
logical spaces. Some further results connected with I and I∗-convergence can be found in
[3, 4, 5]. It is well-known that mappings and networks are important tools of investigating
topological spaces. Continuous mappings, quotient mappings , pseudo-open mappings,
cs-networks, sn-networks, k-networks and so on are the most important tools for studying
convergence, sequential spaces, Frechet-Urysohn spaces [12] and generalized metric spaces.
Recently, I-quotient mappings and I-cs′-networks was defined in the topological spaces
[17] taking into account notions defined in [15] and [16].
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Taking into account mentioned above, this paper draws into S-I-quotient mappings and
S-I-cs′-networks for an ideal I on N by using the notion of S-I-convergence defined by
Guevara, Sanabria and Rosas [1]. Besides, we discus about some of their properties.

Throughout this paper, the letter X always denotes a topological space. The cardinality
of a set C is denoted by |C|. The set of all positive integers, the first infinite ordinal, and
the first uncountable ordinal are denoted by N, ω and ω1, respectively. Throughout this
paper, we write S-I instead of semi-I. Besides, a semi-I-open set is equal to a S-I-open
set and semi-I-continuous is equal to S-I-continuous.

2. Preliminaries

The notion of I-convergence of sequences in a topological space is a generalization of
statistical convergence which is based on the ideal of subsets of the set N of all positive
integers. Let A = 2N be the family of all subsets of N. An ideal I ⊂ A is a hereditary family
of subsets of N which is stable under finite unions [8]. An ideal I is said to be non-trivial
if I 6= ∅ and N /∈ I. A non-trivial ideal I ⊂ A is called admissible if {{n} : n ∈ N} ⊂ I. It
is well-known that every non-trivial ideal defines a dual filter FI = {A ⊂ N : N − A ∈ I}
on N.

Example 2.1. The following are admissible ideals on N.

(1) Let If be the family of all finite subsets of N. Then, If is an admissible ideal on
N.

(2) Let Iδ be the family of subsets A ⊂ N with δ(A) = 0. Then, Iδ is an admissible
ideal on N and the dual filer FIδ = {A ⊂ N : δ(A) = 1}. Here, δ(A) denotes the

asymptotic density of A which is denoted by δ(A) = lim
n→∞

1

n
|{w ∈ A : w ≤ n}|, if

the limits exists.

Definition 2.1. [1] A sequence {xn}n∈N in a topological space X is said to be S-I-
convergent to a point x ∈ X provided for any semi-open set U containing x, we have

{n ∈ N : xn /∈ U} ∈ I, which is denoted by S-I- lim
n→∞

xn = x or xn
SI−−−→ x, and the point

x is called the S-I-limit of the sequence {xn}n∈N.

Definition 2.2. [2] Let I be an ideal on N and X be a topological space. Then,

(1) A subset F ⊂ X is said to be S-I-closed if for each sequence {xn}n∈N ⊂ F with

xn
SI−−−→ x ∈ X, we have x ∈ F .

(2) A subset U ⊂ X is said to be S-I-open if X − U is S-I-closed.
(3) X is called an S-I-sequential space if each S-I-closed subset of X is closed.

Remark 2.1. Every open set is semi-open.

Remark 2.2. Each sequential space is a S-I-sequential space [2].

Definition 2.3. [2] Let I be an ideal on N, X and Y be topological spaces and f : X → Y
be a mapping.

(1) f is called preserving S-I-convergence provided for each sequence {xn}n∈N in X

with xn
SI−−−→ x, the sequence {f(xn)}n∈N S-I-converges to f(x).

(2) f is called S-I-continuous provided U is S-I-open in Y , then f−1(U) is S-I-open
in X.

Remark 2.3. A mapping f : X → Y is S-I-continuous if and only if whenever F is
S-I-closed in Y , then f−1(F ) is S-I-closed in X [2].
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Lemma 2.1. [2] Let I be an ideal on N and X be a topological space. If a sequence
{xn}n∈N S-I-converges to a point x ∈ X and {yn}n∈N is a sequence in X with {n ∈ N :
xn 6= yn} ∈ I, then the sequence {yn}n∈N S-I-converges to x ∈ X.

Lemma 2.2. [2] Let I be and ideal on N. The following statements are equivalent for a
topological space X and a subset A ⊂ X.

(1) A is S-I-open.

(2) {n ∈ N : xn ∈ A} /∈ I for each sequence {xn}n∈N in X with xn
SI−−−→ x ∈ A.

(3) |{n ∈ N : xn ∈ A}| = ω for each sequence {xn}n∈N in X with xn
SI−−−→ x ∈ A.

Lemma 2.3. [2] Let X and Y be topological space and f : X → Y be a mapping, Then,
the following statements hold:

(1) If f is continuous, then f preserves S-I-convergence.
(2) If f preserves S-I-convergence, then f is S-I-continuous.

Definition 2.4. [2] Let A ⊂ X and {xn}n∈N be a sequence in X. If I is an ideal on N,
then {xn}n∈N is S-I-eventually in A if there is E ∈ I such that for all n ∈ N−E, xn ∈ A.

Remark 2.4. If A is a subset of X with the property that every sequence S-I-converging
to a point in A is S-I-eventually in A, then A is S-I-open. When we assume J to be a
maximal ideal, the following proposition shows that such sets must coincide with J-open
sets.

Proposition 2.1. [2] If J is a maximal ideal of N, then A ⊂ X is S-J-open if and

only if for each S-J-converging sequence {xn}n∈N with xn
SJ−−−→ x ∈ A, then {xn}n∈N is

S-J-eventually in A.

Remark 2.5. By Definition 2.2, the union of a family of S-I-open sets in a topological
space is S-I-open. Whenever J is a maximal ideal, the intersection of two S-J-open sets
is a S-J-open set.

Proposition 2.2. [2] If J is a maximal ideal of N and U, V are two S-J-open subsets of
X, then U ∩ V is S-J-open in X.

Remark 2.6. It is well known that the sequential coreflection sX of a space X is the
set X endowed with the topology consisting of sequentially open subsets of X. Let J be a
maximal ideal of N and X be a topological space. By Definition 2.2 and Proposition 2.2,
the family of all S-J-open subsets of X forms a topology of the set X. The S-J-sequential
coreflection of a space X is the set X endowed with the topology consisting of S-J-open
subsets of X, which is denoted by S-J-sX. The spaces X and S-J-sX have the same
S-J-convergent sequences. Besides, S-J-sX is a S-J-sequential space, further a space X
is a S-J-sequential space if and only if S-J-sX.

Throughout this paper, if no otherwise specified, we consider ideal I is always an admis-
sible ideal on N, all mappings are continuous and surjection; and all spaces are Hausdorff.

3. S-I-quotient mapping and its properties

In this section, we introduce the notion of S-I-quotient mappings, and obtain some
characterizations of S-I-quotient mappings, especially S-J-quotient mappings under a
maximal ideal of N.

Definition 3.1. Let I be an ideal on N and f : X → Y be a mapping. Then,
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(1) f is said to be S-I-quotient mapping provided f−1(U) is S-I-open in X, then U is
S-I-open in Y .

(2) f is said to be S-I-covering mapping if, whenever {yn}n∈N is a sequence in Y
S-I-converging to y in Y , there exist a sequence {xn}n∈N of points xn ∈ f−1(yn)

for all n ∈ N and x ∈ f−1(y) such that xn
SI−−−→ x.

Theorem 3.1. Every S-I-covering mapping is S-I-quotient.

Proof. Let X and Y be arbitrary topological spaces, and f : X → Y be a S-I-covering
mapping. Suppose that H is a non-S-I-closed in Y . Then, there exists a sequence

{yn}n∈N ⊂ H such that yn
SI−−−→ y /∈ H. Since f is S-I-covering, there exists a sequence

{xn}n∈N of points xn ∈ f−1(yn) for all n ∈ N and x ∈ f−1(y) such that xn
SI−−−→ x. We can

see that {xn}n∈N ⊂ f−1(H) and that x /∈ f−1(H). Therefore, f−1(H) is non-S-I-closed.
Hence, f is S-I-quotient. �

Lemma 3.1. The S-J-sequential coreflection S-J-sX is S-J-sequence space and the iden-
tity idX : S − J − sX → X is a semi-continuous and S-J-covering mapping .

Proof. Suppose that U is a semi-open subset in X. Since U is S-J-open in X, it is open
in S-J-sX, so idX : S− J − sX → X is semi-continuous. Now, suppose that {xn}n∈N is a
sequence in X which S-J-converges to a point x ∈ X. If V is a semi-open subset in S-J-sX
with x ∈ V , the set V is S-J-open in X. By Proposition 2.1, there is W ∈ J such that
for all n ∈ N −W , xn ∈ V , i.e., {n ∈ N : xn /∈ V } ⊂ W and thus {n ∈ N : xn /∈ V } ∈ J .

Hence, the sequence xn
SJ−−−→ x in S-J-sX. This means that the spaces X and S-J-sX

have the same S-J-convergent sequences. Therefore, idX : S − J − sX → X is a S-J-
covering mapping. For each A ⊂ X, by Proposition 2.1, A is S-J-open in S-J-sX if and
only if A is S-I-open in X if and only if A is semi-open in S-J-sX. Therefore, S-J-sX is
a S-J-sequence space. �

Definition 3.2. Let I be an ideal on N, X be a topological space and P ⊂ X. P is
called a S-I-sequential neighbourhood of x, if for each sequence {xn}n∈N S-I-converges

to a point x ∈ P , then {xn}n∈N is S-I-eventually in P , i.e., there is Ĩ ∈ I such that

{n ∈ N : xn /∈ P} = Ĩ.

Remark 3.1. Let J be a maximal ideal of N and A ⊂ X. By Proposition 2.1, A is
S-J-open in X if and only if A is S-J-sequential neighbourhood of x for each x ∈ A.

Proposition 3.1. Let J be a maximal ideal of N and A ⊂ X. If A is not a S-J-sequential

neighbourhood of x, then there is a sequence {xn}n∈N in X −A such that xn
SJ−−−→ x.

Proof. If A is not a S-J-sequential neighbourhood of x, then there is a sequence {yn}n∈N
in X such that yn

SJ−−−→ y, but {n ∈ N : yn /∈ A} /∈ J . Since J is a maximal ideal of N,

this means that {n ∈ N : yn ∈ A} ∈ J . Now, let {n ∈ N : yn ∈ A} = J̃ ∈ J . And since J
is a non-trivial ideal, it follows that A 6= X. Taking a point a ∈ X −A. Define a sequence
{xn}n∈N by xn = a if n ∈ J̃ ; xn = yn if n ∈ N− J̃ . Then, the sequence {xn}n∈N in X −A
and xn

SJ−−−→ x from Lemma 2.2. �

Theorem 3.2. Let I be an ideal on N. If f : X → Y is a S-I-quotient mapping, then for

each S-I-convergent sequence {yn}n∈N in Y with yn
SI−−−→ x, there is a sequence {xi}i∈N

in X such that {xi}i∈N ⊂ f−1({yn}n∈N) and xi
SJ−−−→ x /∈ f−1({yn}n∈N).
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Proof. Suppose that f : X → Y is a S-I-quotient mapping and {yn}n∈N is sequence in

Y with yn
SJ−−−→ y. Without loss of generality, we can assume that yn 6= y for each

n ∈ N. Now, let U = Y − {yn}n∈N. Then, U is not S-I-open in Y . Since f is a S-
I-quotient mapping, f−1(U) = f−1(Y − {yn}n∈N) = X − f−1({yn}n∈N) is not S-I-open
in X. Therefore, there is a sequence {xi}i∈N in X − f−1(U) = f−1({yn}n∈N) such that

xi
SJ−−−→ x /∈ f−1({yn}n∈N}). �

In the following theorem we discus about some properties by using quotient mappings
and S-I-quotient mappings.

Theorem 3.3. Let f : X → Y be a mapping. Then, the following statements hold:

(1) If X is a S-I-sequential space and f is quotient, then Y is a S-I-sequential space
and f is S-I-quotient.

(2) If Y is a S-I-sequential space and f is S-I-quotient, then f is quotient.
(3) X is a S-I-sequential space if and only if for an arbitrary topological space Y , if

f is quotient, then f is S-I-quotient.

Proof. (1) Let X be a S-I-sequential space and f be quotient. First, we will show
that the space Y is a S-I-sequential space, i.e., each S-I-open set in Y is open.
Now, assume that U is S-I-open in Y . Since f is a quotient mapping and X is
a S-I-sequential space, it suffices to show that f−1(U) is S-I-open in X. Taking

an arbitrary sequence {xn}n∈N ⊂ X such that xn
SI−−−→ x ∈ f−1(U) in X. Since

f is a quotient mapping from X onto Y , it follows that f(xn)
SI−−−→ f(x) ∈ U

is S-I-open in Y , it follows Lemma 2.2 that |{n ∈ N : f(xn) ∈ U}| = ω, i.e.,
|{n ∈ N : xn ∈ f−1(U)|} = ω. Therefore, f−1(U) is S-I-open in X. Next, suppose
that U ⊂ Y such that f−1(U) is S-I-open in X. Then, f−1(U) is open in X since
X is a S-I-sequential space, due to f is quotient, U is open in Y , furthermore U
is S-I-open in Y . Therefore, f is S-I-quotient.

(2) Let Y be a S-I-sequential space and f be S-I-quotient. If f−1(U) is open in X,
then f−1(U) is S-I-open in X. Since f is S-I-quotient, U is S-I-open in Y . We
can see that Y is a S-I-sequential space, hence U is open in Y . Therefore, f is
quotient.

(3) By part (1) and (2) of this theorem, the necessity is obvious.
Sufficiency : If X is not a S-I-sequential space, then there exists a S-I-closed

subset H in X such that H is not closed in X. Now, Let Y = {0, 1}, define a
mapping f : X → Y by f(x) = 0 if x ∈ H; f(x) = 1, if x ∈ X −H. The topology
on Y is endowed the continuous quotient topology induced by f . Then, f is
quotient. We can check that f−1({1}) is not open in X, therefore {1} is not open
in Y . It follows that the constant sequence 0, 0, ..., 0, ... S-I-converges to 1 in Y ,
and hence {0} is not semi-I-closed in Y . But f−1({0}) = H is S-I-closed in X.
Therefore, f is not S-I-quotient.

�

The following example shows that there exists a continuous and S-I-covering mapping
which is not quotient.

Example 3.1. Let the space X = [0, ω1] be endowed the following topology: the only
non-isolated point ω1 has the semi-neighbourhoods of the usual ordered topology. Then
X is not discrete, and there is not any non-trivial convergent sequence in X. The set
Z = [0, ω1] is endowed the discrete topology. Taking h : Z → X is the identity mapping.
Obviously, g is continuous, but g is not quotient. Now, suppose that a sequence {xn}n∈N
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S-I-converges to x in X. Now, we will show that {n ∈ N : xn 6= x} ∈ I, i.e., {n ∈
N : xn /∈ {x}} ∈ I. Let {xn}n∈N be a sequence in X and x ∈ X, there exits a semi-

neighbourhood Ux of x in X with xn /∈ Ux for each xn 6= x. If the sequence xn
SI−−−→ x ∈ X,

then {n ∈ N : xn 6= x} = {n ∈ N : xn /∈ Ux} ∈ I. If the sequence {xn}n∈N satisfies
{n ∈ N : xn 6= x} ∈ I and U is a semi-neighbourhood of x in X, we can assume Ux ⊂ U ,
then {n ∈ N : xn /∈ U} ⊂ {n ∈ N : xn /∈ Ux} = {n ∈ N : xn 6= x} ∈ I. Therefore,

xn
SI−−−→ x in Z. Hence, h is S-I-covering.

Theorem 3.4. Let J be a maximal ideal of N and X be a topological space. Then, X is
a S-J-sequential space if and only if each S-J-quotient mapping onto X is quotient.

Proof. The necessity is obtained by Theorem 3.3(2). On the other hand, suppose that
every S-J-quotient mapping onto X is quotient. By Lemma 3.1 and Theorem 3.1 , the
identity idX : S − J − sX → X is a continuous and S-J-quotient mapping, thus it is a
quotient mapping. Since S-J-sX is a S-J-sequence space, it follows from Theorem 3.3(1)
that X is a S-J-sequential space. �

The following example shows that there exists a quotient mapping which is not S-I-
quotient.

Example 3.2. The space X = [0, ω1] is defined by Example 3.1. The set Y = {0, 1}
is endowed the topology {∅, {0}, Y }. Define a mapping f : X → Y by f([0, ω1]) = {0},
and f(ω1) = 1 . Then, f is a quotient mapping. On the other hand, by Example 3.1, the
set f−1({0}) = [0, ω1) is S-I-closed in X. Since the constant sequence 0, 0, ..., 0, ... S-I-
converges to 1 in Y , the set {0} is not S-I-closed in Y . Therefore, f is not S-I-quotient.

Definition 3.3. Let J be a maximal ideal of N and A ⊂ X. Denote,

(1) [A]JS = {x ∈ X : there is a sequence {xn}n∈N in A such that xn
SJ−−−→ x}.

(2) (A)JS = {x ∈ X : A is a S-J-sequential neighbourhood of x}.

Definition 3.4. Let J be a maximal ideal of N and A ⊂ X. A subset U ⊂ X is said to
be S-J-sequential neighbourhood of A if A ⊂ (U)JS .

Proposition 3.2. Let J be a maximal ideal of N and A ⊂ X. Then, [A]JS = X − (X −
A)JS .

Proof. Suppose that x ∈ [A]JS , then there is a sequence {xn}n∈N in A such that xn
SJ−−−→

x}. Thus, X −A is not a S-J-sequential neighbourhood of x in X. In indeed, if X −A is
a S-J-sequential neighbourhood of x in X, then {xn}n∈N is S-J-eventually in X −A, i.e.,
there is E ∈ J such that for all n ∈ N−E, xn ∈ X−A. Since J is an admissible ideal, this
contradicts to {xn}n∈N in A. Therefore, x /∈ (X −A)JS and further x ∈ X − (X −A)JS .

On the other hand, assume that x ∈ X − (X − A)JS , then x /∈ (X − A)JS , and hence
X − A is not a S-J-sequential neighbourhood of x ∈ X. By Proposition 3.1, there is a

sequence {xn}n∈N in A such that xn
SJ−−−→ x. Therefore, x ∈ [A]JS . �

By Definition 2.2, Definition 3.3 and Proposition 3.2, the following proposition holds.

Proposition 3.3. Let J be a maximal ideal of N and A,B ⊂ X. Then,

(1) [∅]JS = ∅, Int(A) ⊂ (A)JS ⊂ A ⊂ [A]JS ⊂ Cl(A), where Int(A) and Cl(A) denote
interior and closure of A, respectively.

(2) A is S-J-open in X if and only if A = (A)JS .
(3) A is S-J-closed in X if and only if A = [A]JS .
(4) If B ⊂ A, then (B)JS ⊂ (A)JS and [B]JS ⊂ [A]JS .
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(5) (A ∩B)JS = (A)JS ∩ (B)JS and [A ∪B]JS = [A]JS ∪ [B]JS .

Proof. (1)-(4) are followed directly by the definitions, for that reason we only proof (5).
Since A ∩ B ⊂ A and A ∩ B ⊂ B, it follows that (A ∩ B)JS ⊂ (A)JS ∩ (B)JS . On

the other hand, assume that x ∈ (A)JS ∩ (B)JS . Then, for each sequence {xn}n∈N in X

with xn
SJ−−−→ x, there is E,F ∈ J , such that for each n ∈ N − E, xn ∈ A and for each

n ∈ N − F , xn ∈ B. Since E ∪ F ∈ J and for each n ∈ N − (E ∪ F ), xn ∈ A ∩ B. This
means that A∩B is a S-I-sequential neighbourhood of x in X. Therefore, x ∈ (A∩B)JS .

Now, if we replaceX−A withA andX−B withB, it follows that ((X−A)∩(X−B))JS =
(X −A)JS ∩ (X −B)JS . Hence, [A∪B]JS = X − (X − (A∪B))JS = X − ((X −A)∩ (X −
B))JS = X−((X−A)∩(X−B))JS ) = (X−(X−A)JS )∪(X−(X−B)JS ) = [A]JS∪[B]JS . �

Theorem 3.5. Let J be a maximal ideal of N and f : X → Y be a mapping. Then, the
following conditions are equivalent.

(1) For each S-J-convergent sequence {yn}n∈N in Y with yn
SJ−−−→ y, there is a se-

quence {xi}i∈N in X with xi
SJ−−−→ x ∈ f−1(y) and {xi}i∈N ⊂ f−1({yn}n∈N).

(2) For each A ⊂ Y , it has f([f−1(A)]JS ) = [A]JS .
(3) If y ∈ [A]JS ⊂ Y , then f−1(y) ∩ [f−1(A)]JS 6= ∅.
(4) If y ∈ [A]JS ⊂ Y , then there is a point x ∈ f−1(y) such that whenever V is a

S-J-sequential neighbourhood of x, y ∈ [f(V ) ∩A]JS .
(5) If y ∈ [A]JS ⊂ Y , then there is a point x ∈ f−1(y) such that whenever V is a

S-J-sequential neighbourhood of x, f(V ) ∩A 6= ∅.
(6) For each y ∈ Y , if U is a S-J-sequential neighbourhood of f−1(y), then f(U) is a

S-J-sequential neighbourhood of y.

Proof. (1) ⇒ (2) Suppose that x ∈ [f−1(A)]JS . Then, there is a sequence {xn}n∈N in

f−1(A) such that xn
SJ−−−→ x. Therefore, {f(xn)}n∈N ⊂ A and f(xn)

SJ−−−→ f(x). This
means that f(x) ∈ [A]JS . Hence, f([f−1(A)]JS ) ⊂ [A]JS .

On the other hand, assume that y ∈ [A]JS . Then, there is a sequence {yn}n∈N in A

such that yn
SJ−−−→ y. By hypothesis (1), there is a sequence {xi}i∈N in X with {xi}i∈N ⊂

f−1({yn}n∈N) ⊂ f−1(A) and xi
SJ−−−→ x ∈ f−1(y). Thus, x ∈ [f−1(A)]JS , therefore

y = f(x) ∈ f([f−1(A)]JS ), moreover [A]JS ⊂ f([f−1(A)]JS ).
(2) ⇒ (3) Let y ∈ [A]JS for each A ⊂ Y . By hypothesis (2), it follows that y ∈

f([f−1(A)]JS ). Therefore, f−1(y) ∩ [f−1(A)]JS 6= ∅.
(3)⇒ (4) Let y ∈ [A]JS ⊂ Y . By hypothesis (3), assume that x ∈ f−1(y) ∩ [f−1(A)]JS .

Then, there is a sequence {xn}n∈N in f−1(A) such that xn
SJ−−−→ x. If V is a S-J-sequential

neighbourhood of x, then there is E ∈ J such that xn ∈ V for all n ∈ N− E. Therefore,

f(xn) ∈ f(V ) ∩ A for all n ∈ N− E and f(xn)
SJ−−−→ f(x). Taking a point a ∈ f(V ) ∩ A.

Define a sequence {yn}n∈N by yn = f(xn) if n ∈ N − E; yn = a if n ∈ E. Then,

{yn}n∈N ⊂ f(V ) ∩A and yn
SJ−−−→ f(x) = y from Lemma 2.1. Hence, y ∈ [f(V ) ∩A]JS .

(4)⇒ (5) It is obvious.
(5) ⇒ (6) Let y ∈ Y and U be a S-J-sequential neighbourhood of f−1(y). If f(U) is

not a S-J-sequential neighbourhood of y, then y ∈ Y − (f(U))JS = [Y − f(U)]JS . By
hypothesis (5), it follows that f(U) ∩ (Y − f(U)) = ∅, which is a contradiction.

(6) ⇒ (3) Let y ∈ [A]JS ⊂ Y . Now, suppose that f−1(y) ∩ [f−1(A)]JS = ∅. Then,
f−1(y) ⊂ X − [f−1(A)]JS = (X − f−1(A))JS , This means that X − f−1(A) is a S-
J-sequential neighbourhood of f−1(y). By hypothesis (6), y ∈ (f(X − f−1(A)))JS =
(Y −A)JS = Y − [A]JS , which is a contradiction.
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(3) ⇒ (1) Let {yn}n∈N be a S-J-convergent sequence in Y with yn
SJ−−−→ y. Now,

put A = {yn}n∈N, then A ∈ [A]JS . By hypothesis (3), there is x ∈ f−1(y) ∩ [f−1(A)]JS .
Therefore, there is a sequence {xi}i∈N in X with {xi}i∈N ⊂ f−1(A) ⊂ f−1({yn}n∈N) and

xi
SJ−−−→ x ∈ f−1(y). �

Remark 3.2. One of the above six conditions can deduce that f is a S-J-quotient mapping.
In indeed, let U be non-S-I-closed in Y . Then, there is a sequence {yn}n∈N in U S-J-
converging to y ∈ Y − U . Thus y 6= yn for each n ∈ N. By the assumption of the
condition (1), there is a sequence {xi}i∈N in X such that {xi}i∈N ⊂ f−1({yn}n∈N) ⊂
f−1(U) and xi

SJ−−−→ x ∈ f−1(y) /∈ f−1(U). This implies that f−1(U) is non-S-J-closed
in X. Therefore, f is a S-J-quotient mapping.

Remark 3.3. If the maximal ideal J is replaced by If in Theorem 3.5, then (1)⇔ (2)⇔
(3)⇔ (4)⇔ (5)⇔ (6)⇔ f is a S-If -quotient mapping. But the following example shows
that there exist a T1 space X, an ideal I of N and a S-S-quotient mapping f such that f
does not satisfy the condition (6) of Theorem 3.5.

Example 3.3. Let I = {A ⊂ N : A contains at most only finite odd positive integers
}. Then, I is an admissible ideal of N. Now, Let Y be the set ω which is endowed
with the finite complement topology. Then, Y is a first-countable T1-space. Now, putting
X0 = Y − {0} and X1 = {2k : k ∈ ω} as the subspaces of the space Y and X = X0

⊕
X1.

A mapping f : X → Y is defined by the natural mapping. It can see that the mapping
f is a continuous quotient mapping. Since X0 and X1 are first-countable space, X is a
first-countable space. Hence, X is a S-I-sequential space. By Theorem 3.3, it follows that
f is a S-I-quotient mapping.

Next, note that the set X1 is open in X and f−1(0) ⊂ X1 and hence X1 is a S-I-
sequential neighbourhood of f−1(0). For each open neighbourhood U of 0 in Y , {n ∈ N :
n /∈ U} is a finite subset, therefore {n ∈ N : n /∈ U} ∈ I. This means that the sequence

{n}n∈N in Y satisfies n
SI−−−→ 0 ∈ f−1(y). But, {n ∈ N : n /∈ f(X1)} = {2k+1, k ∈ ω} /∈ I.

Thus f(X1) is not a S-I-sequential neighbourhood of 0 in Y .

Open Problem 3.1. For some maximal ideal J of N and an S-J-quotient mapping f ,
does it satisfy the condition (6) of Theorem 3.5?

Remark 3.4. Theorem 3.2 is different from Theorem 3.5(1). In Theorem 3.5(1), xi
SJ−−−→

x ∈ f−1(y). But we do not know whether the S-I-limit point x in f−1(y) or not in Theorem
3.2.

4. On spaces with S-I-cs-networks, S-I-cs′-networks and S-wcs′-networks

In this section, we introduce the notions of S-I-cs-networks, S-I-cs′-networks and S-
wcs′-networks for a space X; and obtain that if X is an S-J-FU space with a point-
countable S-J-cs′-network, then X is a meta-Lindelof space, for an ideal J of N.

Definition 4.1. Let I be an ideal on N, X be a topological space and P be a cover of X.

(1) [11] P is a network of X if whenever x ∈ U with U open in X, then x ∈ P̃ ⊂ U

for some P̃ ∈ P .
(2) P is a S-network of X if whenever x ∈ U with U semi-open in X, then x ∈ P̃ ⊂ U

for some P̃ ∈ P .
(3) P is called S-I-cs-network of X if whenever {xn}n∈N is a sequence in X S-I-

covering to a point x ∈ U with U semi-open in X, then {xn}n∈N is S-I-eventually

in P̃ and x ∈ P̃ ⊂ U for some P̃ ∈ P .
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(4) P is called S-I-cs′-network of X if whenever {xn}n∈N is a sequence in X S-I-

covering to a point x ∈ U with U semi-open in X, then there is P̃ ∈ P and some
n0 ∈ N such that {x, xn0} ⊂ P̃ ⊂ U .

(5) P is called S-I-wcs′-network of X if whenever {xn}n∈N is a sequence in X S-I-

covering to a point x ∈ U with U semi-open in X, then there is P̃ ∈ P and some
n0 ∈ N such that {xn0} ⊂ P̃ ⊂ U .

By Definition 4.1, we have the following diagram:

S-I-cs-networks =⇒ S-I-cs’-networks =⇒ S-I-wcs’-networks =⇒ S-networks.

Proposition 4.1. Every S-network is a network.

Proof. Let P be a S-network and U be an open subset of X containing x. Then, U is
semi-open in X. Since P is a S-network for X, there is some P ∈ P such that x ∈ P ⊂ U .
Thus P is a network for X. �

Definition 4.2. Let J be a maximal ideal of N and X be a topological space. U is said to
be S-J-sn-cover of X, if {(Ũ)JS : Ũ ∈ U} is a cover of X.

Theorem 4.1. Each S-I-cs-network is preserved by a S-I-covering mapping.

Proof. Let f : X → Y be a S-I-covering mapping and P be a S-I-cs-network of X. Now,
suppose that {yn}n∈N is a sequence S-I-converging to a point y ∈ U with U semi-open in
Y . Since f is a S-I-covering mapping, there exist a sequence of points xn ∈ f−1(yn) for

all n ∈ N and x ∈ f−1(y) such that xn
SI−−−→ x. Since P is a S-I-cs-network of X, there is

some P̃ ∈ P such that {xn}n∈N is S-I-eventually in P̃ and x ∈ P̃ ⊂ f−1(U). Thus there

is E ∈ I such that {n ∈ N : xn /∈ P̃} ⊂ E. Note that {n ∈ N : yn /∈ f(P̃ )} ⊂ {n ∈ N : xn /∈
P̃} ⊂ E , hence yn ∈ f(P̃ ) for all n ∈ N − E, i.e. {yn}n∈N is S-I-eventually in f(P̃ ) and

y ∈ f(P̃ ) ⊂ U . This means that f(P ) = {f(P̃ ) : P̃ ∈ P} is a S-I-cs-network of Y . �

Corollary 4.1. Each S-I-cs′-network is preserved by a S-I-covering mapping.

Proof. Proof follows from Theorem 4.1. �

Theorem 4.2. Each S-I-wcs′-network is preserved by a S-I-quotient mapping.

Proof. Let f : X → Y be a S-I-quotient mapping and P be a S-I-wcs′-network of X. Now,
suppose that {yn}n∈N is a sequence S-I-converging to a point y ∈ U with U semi-open
in Y . Since f is a S-I-quotient mapping, there exist a sequence {xi}i∈N in X such that

{xi}i∈N ⊂ f−1({yn}n∈N) and xi
SI−−−→ x ∈ f−1({yn}n∈N). And because P is a S-I-wcs′-

network of X, there is some P̃0 ∈ P and i0 ∈ N such that {xi0} ⊂ P̃0 ⊂ f−1(U). And hence

{f(xi0)} ⊂ {yn0} ⊂ f(P̃0) ⊂ U for some n0 ∈ N. This implies that f(P ) = {f(P̃ ) : P̃ ∈ P}
is a S-I-wcs′-network of Y . �

Lemma 4.1. Let J be maximal ideal of N and P be a family of subsets of X. Then, P
is a S-J-cs′-network of X if and only if, whenever U is a semi-open set containing x,⋃
{P̃ ∈ P : x ∈ P̃ ⊂ U} is a S-J-sequential neighbourhood of x.

Proof. Necessity : Let U be a semi-open set containing x. If
⋃
{P̃ ∈ P : x ∈ P̃ ⊂ U}

is not a S-J-sequential neighbourhood of x, then there is a sequence {xn}n∈N such that

xn
SJ−−−→ x and xn /∈

⋃
{P̃ ∈ P : x ∈ P̃ ⊂ U}. Since P is a S-J-cs′-network of X, there is

P̃0 ∈ P and n0 ∈ N such that {x, x0} ⊂ P̃0 ⊂ U , which is a contradiction.

Sufficiency : Suppose thatxn
SJ−−−→ x ∈ U ∈ τX and

⋃
{P̃ ∈ P : x ∈ P̃ ⊂ U} is a S-J-

sequential neighbourhood of x. Then {xn}n∈N is S-J-eventually in
⋃
{P̃ ∈ P : x ∈ P̃ ⊂ U}
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. Hence there exists n0 ∈ N such that xn0 ∈
⋃
{P̃ ∈ P : x ∈ P̃ ⊂ U}. And hence there is

P̃0 ∈ P such that xn0 ∈ P̃0 and x ∈ P̃0 ⊂ U . Thus {x, x0} ⊂ P̃0 ⊂ U . This means that P
is a S-J-cs′-network of X. �

Theorem 4.3. Let J be a maximal ideal of N and a space X be of a point-countable
S-J-cs′-network. Then each open cover of X has a point-countable S-J-sn refinement.

Proof. Suppose that P is a point-countable S-J-cs′-network for a space X. Now, let
U = {Ũα}α<γ be a semi-open cover of X, where γ is an ordinal. For each α < γ, put

Vα =
⋃
{P̃ ∈ P : P̃ ⊂ Ũα, P̃ * Ũβ if β < α}.

It is clear that Vα ⊂ Ũα. Next we shall show that the family V = {Vα}α<γ is a point-

countable S-J-sn-cover of X. For each x ∈ X, let α(x) = min{α < γ : x ∈ Ũα}. Then

x ∈ Ũα(x) and

⋃
{P̃ ∈ P : x ∈ P̃ ⊂ Ũα(x)} ⊂

⋃
{P̃ ∈ P : P̃ ⊂ Ũα, P̃ * Ũβ if β < α(x)}.

Since P is an S-J-cs′-network for a space X, it follows from Lemma 4.1 that

x ∈ (
⋃
{P̃ ∈ P : x ∈ P̃ ⊂ Ũα(x)})JS

⊂ (
⋃
{P̃ ∈ P : P̃ ⊂ Ũα, P̃ * Ũβ if β < α(x)})JS

= (Vα(x))JS .

This means that V = {Vα}α<γ is a S-J-sn-cover of X.
We claim that V is point-countable. Consider, to the contrary i.e., there exists a point

x ∈ X and an uncountable subset Ω of γ such that x ∈ Vα for each α ∈ Ω. Therefore, there
is Pα ∈ P such that x ∈ Pα ⊂ Uα and Pα * Uβ for β < α. Since P is a point-countable
family and Ω is an uncountable set, there are α, β ∈ Ω with α 6= β such that Pα = Pβ.
Suppose that β < α, then Uβ ⊇ Pβ = Pα * Uβ, which is a contradiction. �

Definition 4.3. [2] A space X is called S-I-Frechet-Urysohn (or shortly S-I-FU space)
if for each A ⊂ X and each x ∈ Cl(A), there exists a sequence in A S-I-converging to the
point x in X. Here, Cl(A) denotes closure of A.

Definition 4.4. [11] A space X is called a meta-Lindelof space if each open cover of X
has a point-countable open refinement.

Corollary 4.2. Let J be a maximal ideal of N. If X is a S-J-FU space with a point-
countable S-J-cs′-network, then X is a meta-Lindelof space.

Proof. X is a S-J-FU if and only if Cl(A) = [A]JS , for each A ⊂ X if and only if
Int(A) = (A)JS for each A ⊂ X. �

Remark 4.1. In the last corollary, Int(A) denotes interior of A.

Theorem 4.4. Let J be a maximal ideal of N. The following are equivalent for a space
X.

(1) S-J-sX is a S-J-Frechet-Urysohn space.
(2) ClS-J-sX(A) = [A]JS , for each A ⊂ X.
(3) [A]JS is S-J-closed in X, for each A ⊂ X.
(4) (A)JS is S-I-open in X, for each A ⊂ X.
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Proof. Since the spaces X and S-J-sX have the same S-J-convergent sequences, by the
Definitions 4.3 and 4.4; and Proposition 3.2, it follows that (1) ⇔ (2) and (3) ⇔ (4).
Hence, it suffices to show that (2) ⇔ (3). If ClS-J-sX(A) = [A]JS , then [A]JS is closed in
S-J-sX, and hence [A]JS is S-J-closed in X, for each A ⊂ X. On the other hand, if [A]JS
is S-J-closed in X, then [A]JS is closed in S-J-sX, and further Clsemi-J-sX(A) = [A]JS ,
for each A ⊂ X. �

5. Conclusion

In this paper, we have introduced the notion of S-I-quotient mappings, S-I-cs-networks
and some of their applications. For future works, these properties could be studied by
applying the concept of P-I-convergence and b-I-convergence, and see if these properties
are satisfied, and even find relationships between them.
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