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ANALYZING THE EFFECTS OF TEMPERATURE AND HUMAN

MOVEMENT ON MALARIA DISEASE TRANSMISSION DYNAMICS

GANGA RAM PHAIJOO1, §

Abstract. Vector borne diseases like malaria are spreading worldwide. They have be-
come a major cause of morbidity and mortality. Malaria cases are increasing due to the
human movement from one place to the other. Changing temperature level has signif-
icant impact on the life cycle, biting behavior and death rates of the mosquitoes which
can transmit the disease. In the present work, a multi-patch SEIRS - SEI deterministic
compartmental model for malaria disease is developed to study the disease transmission
dynamics. The impact of temperature and human movement in transmission dynamics
is investigated. Both global and local basic reproduction numbers are computed for two
patches and local stability is discussed. Numerical results show that the prevalence of
the disease can be reduced by managing human movement between the patches and the
temperature affects the transmission of malaria disease.

Keywords: Compartmental model, human movement, temperature, basic reproduction
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1. Introduction

Malaria is a vector borne disease which is caused by the protozoan parasites of genus
Plasmodium. The World Health Organization estimates that about 36% of the world
population is exposed to the risk of malaria. There were 228 millions of cases and 405000
deaths due to malaria worldwide in 2018. Malaria has a wide distribution of endemicity
that extends from South Asia and South-east Asian countries [40]. The disease is trans-
mitted to humans by infected Anopheles mosquitoes.

Malaria is one of the oldest vector borne infectious diseases which has been studied for a
long time from different aspects. Different modeling approaches are helpful in guiding dif-
ferent stages of the disease through synthesizing available information and extrapolating
it. Sir Ronald Ross was one among the first to publish a series of papers using mathe-
matical functions to study transmission of malaria in early 1900 [33, 35]. He developed
a simple model, now known as Ross model [34] which explained the relationship between
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the number of mosquitoes and incidence of malaria in humans. Mathematical models
are useful tools for studying the transmission dynamics of infectious diseases. Kermack
and McKendrick developed an epidemiological compartmental model [16, 17] to study
transmission dynamics of infectious diseases. They divided the total populations into the
subpopulations of susceptibles, infecteds and recovereds. These models have been modi-
fied to investigate transmission dynamics of infectious diseases like dengue, malaria, zika,
COVID 19 etc [5, 9, 10, 11, 19, 22, 26, 25, 29, 30, 14].

Malaria disease is sensitive to the climate change. Both increase and fluctuation in tem-
perature are affecting vectors and parasites of malaria disease. This can cause reduced
prevalence of the disease in some areas, while it may increase in other [23, 29, 32, 36].
A number of research works have been carried out to observe the impact of climatic
changes on transmission dynamics of malaria disease. One of the principal determinants of
mosquitoes’ survival is temperature which has been associated with seasonal changes. So,
mathematical studies have been made to understand the role of temperature in transmis-
sion dynamics of malaria disease. Lou and Zhao [21], Zhon et al. [42] studied the relation
between climate variability and malaria disease. The researchers in [1, 8, 24, 27, 28, 41]
carried out the researches to oberve the impact of temperature on the malaria disease
transmission.

Human movement between endemic and non endemic areas are causing the huge burden
of morbidity and mortality worldwide. It contributes to increasing the geographic spread
of the diseases. Many mathematical works have been proposed to observe the impacts of
the human movement on the transmission of the human infectious diseases. Arino and
Driessche (2003) proposed multicity epidemic model [2]. Multi-patch models of the infec-
tious diseases are studied by [6, 15, 18, 20, 31, 38, 39]. Arino et al. [3, 4] discussed the
spreading of disease in metapopulations. Cosner et al. [12] focused their research on the
effects of human movement on the persistence of vector borne diseases.

In the present work, both human movement and temperature are incorporated using multi-
patch SEIRS - SEI model of malaria disease. Different temperature levels and human
movement rates are considered to observe their impact on malaria disease transmission.
Basic reproduction number of individual patches (local) and combined (global) basic re-
production number are computed and the local stability of the disease free equilibrium
point of the model is studied.

2. Model Formulation and Description

We consider SEIRS - SEI multi - patch model with n patches which are connected by
human movement. The total human (host) population in each patch is denoted by Hi, i =
1, 2, 3, · · · , n. Human population in each patch is subdivided into the four epidemiological
classes: Susceptible Shi , Exposed Ehi , Infectious Ihi and Recovered Rhi . The total mosquito
(vector) population Mi in each patch is subdivided into the three epidemiological classes:
Susceptible Svi , Exposed Evi and Infectious Ivi , i = 1, 2, 3, · · ·n. Due to the short life span
of the mosquitoes, the recovered class in the mosquito population is not considered in the
model.

The recruitment rate of host population is ζhi in the patch i. The natural death rate for
the host population is µhi . bi is the biting rate of mosquitoes (average number of bites per
mosquito per day). So, the number of bites by Mi mosquitoes per day is biMi and the

number of bites per day per human is bi

(
Mi
Hi

)
. The probability that mosquito is infectious
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is
Ivi
Mi

. So, the number of potentially infectious bites given by mosquito per human per day

is
(
bi
Mi
Hi

)(
Ivi
Mi

)
. Let βhi be the probability that a bite from infected mosquito will result

in the transmission of malaria disease. Then, the force of infection from mosquitoes to

humans is βhi

(
biMi
Hi

)(
Ivi
Mi

)
i.e., βhi

biI
v
i

Hi
. There are Shi susceptible humans, so the infectious

mosquitoes can infect
biβ

h
i I

v
i

Hi
Shi humans.

Also, the exposed hosts either die due to the natural cause at the rate of µhi or move the
the infectious class at the rate νhi after showing the clinical symptoms of malaria disease.
Infectious hosts either die due to the natural cause at the rate of µhi or recover at the rate
γhi . ρhi is the rate at which recovered humans lose their immunity and join the susceptible
class again.

The model parameters bi, µ
v
i , ν

v
i depend on temperature level T . These parameters are

defined as follows [24, 27]:

The mosquito biting rate is defined as:

bi = −0.00014T 2 + 0.027T − 0.322

The mosquito death rate is given by

µvi = − ln(−0.000828T 2 + 0.0367T + 0.522)

Further, the incubation period of the mosquitoes is given by

νvi = −0.00083T 2 + 0.044T − 0.487

Let aji and aij respectively denote the movement rates of humans moving from patch i to
patch j and from patch j to patch i (i, j = 1, 2, 3, · · · , n, i 6= j).

With the above assumptions, the system of ordinary differential equations which describes
the transmission dynamics of malaria between n patches [3, 15] is given by

dShi
dt

= ζhi −
biβ

h
i

Hi
Shi I

v
i +

n∑
j=1

aijS
h
j −

n∑
j=1

ajiS
h
i − µhi Shi + ρhi R

h
i

dEhi
dt

=
biβ

h
i

Hi
Shi I

v
i +

n∑
j=1

aijE
h
j −
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j=1

ajiE
h
i − (νhi + µhi )Ehi

dIhi
dt

= νhi E
h
i +

n∑
j=1

aijI
h
j −
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j=1

ajiI
h
i − (γhi + µhi )Ihi

dRhi
dt

= γhi I
h
i +

n∑
j=1

aijR
h
j −

n∑
j=1

ajiR
h
i − ρhi Rhi − µhi Rhi (1)

dSvi
dt

= ζvi −
biβ

v
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Hi
Svi I

h
i − µvi Svi

dEvi
dt

=
biβ

v
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Hi
Svi I

h
i − (νvi + µvi )E
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dIvi
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= νvi E
v
i − µvi Ivi

(i, j = 1, 2, 3, · · · , n, i 6= j)
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Where,

Shi (t) + Ehi + Ihi (t) +Rhi (t) = Hi(t) (Total host population of patch i in time t)

Svi (t) + Evi + Ivi (t) = Mi(t) (Total vector population of patch i in time t)

3. Disease Free Equilibrium Point and Basic Reproduction Number

In this section, we compute an equilibrium point in disease free situation which is known
as disease free equilibrium (DFE) of the system of equations (1) and study its stability.

Theorem 3.1. The model (1) has a unique disease free equilibrium with the host and
vector components S∗h and S∗v respectively.

Proof. In the absence of disease infection, Shi = Sh∗i > 0, Svi = Sv∗i > 0 and other state
variables Ehi = 0, Evi = 0, Ihi = 0, Ivi = 0 and Rhi = 0 for i = 1, 2, 3, · · · , n.
The model equations (1) for human population in disease free situation is:

ASh∗ = ζh (2)

where, A = diag

µhi +
n∑
j=1

aji

− Γ, Γ =


0 a12 · · · a1n
a21 0 · · · a2n
...

...
. . .

...
an1 an2 · · · 0

 ,
ζh = [ζh1 , ζ

h
2 , · · · , ζhn ]T , Sh = [Sh∗1 , Sh∗2 , · · · , Sh∗n ]T

The model equations (1) for vector population in disease free situation is:

BSv∗ = ζv (3)

where,

B = diag(µvi ), Sv = [Sv∗1 , S
v∗
2 , · · · , Sv∗n ]T , ζv = [ζv1 , ζ

v
2 , · · · , ζvn]T .

Matrix A has all off-diagonal entries negative and each column sum is positive. So, A is
non-singular M - matrix. The matrix is an irreducible as it has non-zero non-diagonal
elements. So, the matrix must have positive inverse [7]. Hence, the system of equations
(2) has a unique solution Sh∗ = A−1ζh > 0.

Further, matrix B is a diagonal matrix with positive diagonal elements. So, B−1 exists
with positive diagonal elements. Hence, the system of equations (3) has a unique solution
Sv∗ = B−1ζv > 0. So, the model equation (1) has a unique disease free equilibrium with

host and vector components Sh∗ = A−1ζh > 0 and Sv∗ = B−1ζv > 0. �

3.1. Basic Reproduction Number. The basic reproduction number measures the trans-
mission potential of a disease. It is an average number of new infections produced by a
single infective during its infectious period when introduced into a completely susceptible
population.

To find the mathematical expression for the basic reproduction number, we order the
variables related to the infections by Eh1 , Eh2 ,· · · , Ehn, Ev1 , Ev2 ,· · · ,Evn, Ih1 , Ih2 ,· · · ,Ihn , Iv1 ,
Iv2 ,· · · , Ivn. We find transmission matrix, F and transition matrix, V and compute the
basic reproduction number R0 using Next Generation method [13, 37] as,

R0 = ρ{FV −1} (4)
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For the model equations (1),

F =


0 0 0 diag

(
biβ

h
i

Hi
Sh∗i

)
0 0 diag

(
biβ

h
i

Hi
Sv∗i

)
0

0 0 0 0
0 0 0 0

 , V =


V11 0 0 0
0 V22 0 0
V31 0 V33 0
0 V42 0 V44


Here,

V11 =



∑
j 6=1

aj1 + νh1 + µh1 −a12 · · · −a1n

−a21
∑
j 6=2

aj2 + νh2 + µh2 · · · −a2n

...
...

. . .
...

−an1 −an2 · · ·
∑
j 6=n

ajn + νhn + µhn


,

V22 = diag (νvi + µvi ) , V31 = diag(−νhi ),

V33 =



∑
j 6=1

aj1 + γh1 + µh1 −a12 · · · −a1n

−a21
∑
j 6=2

aj2 + γh2 + µh2 · · · −a2n

...
...

. . .
...

−an1 −an2 · · ·
∑
j 6=n

ajn + γhn + µhn


,

V42 = diag(−νvi ), V44 = diag(µvi )

The matrices V11 and V33 are irreducible non-negative M -Matrices. So inverses of the
matrices V11 and V33 exist. Further, the matrices V22, V31, V42 and V44 are diagonal
matrices, so their inverses exist. Hence, V −1 exists and basic reproduction number, R0 is
given by

R0 = ρ{FV −1}

Theorem 3.2 (Local Stability). The disease free equilibrium point of the model equations
(1) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. Jacobian matrix for the system of equations (1) at disease free equilibrium is given
by

Z =

[
X Y
0 F − V

]
Matrix Z is trianglular matrix. So, the stability of the system of equations (1) depends
on matrices X and F − V . Here,
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X =


−[diag(µhi +

n∑
j=1

aji − Γ] 0 diag(ρhi )

0 −diag(µvi ) 0

0 0 −[diag(µhi +

n∑
j=1

aji − Γ + ρhi ]


Where the Matrix Γ is defined in Theorem 3.1. Matrix −X is non-singular M - matrix
since each column sum of the matrix is positive and each non diagonal element is non-
positive. Hence, the matrix −(−X) = X has eigenvalues with negative real parts [7] and
the stability of the model (1) depends on the matrix F −V only. F is non-negative matrix
and V is a non-singular M -matrix. So, the matrix will have eigenvalues with negative
real parts if ρ{FV −1} < 1 [37], i.e., R0 < 1. Thus, the disease free equilibrium is locally
asymptotically stable if R0 < 1. If R0 > 1 , then s(F − V ) > 0. Which shows that at
least one eigenvalue lies in right half plane. So, the disease free equilibrium is unstable if
R0 > 1. �

In two patch setting, the local basic reproduction numbers of patch 1 and patch 2 are
respectively computed as

R01 =

√
b21S

h∗
1 Sv∗1 β

h
1β

v
1ν

h
1 ν

v
1

µv1N
h
1
2
(µh1 + a21 + γh1 )(µh1 + a21 + νh1 )(µv1 + νv1 )

R02 =

√
b22S

h∗
2 Sv∗2 β

h
2β

v
2ν

h
2 ν

v
2

µv2N
h
2
2
(µh2 + a12 + γh2 )(µh2 + a12 + νh2 )(µv2 + νv2 )

The combined (global) basic reproduction R0 is obtained as:

R0 =

√
1

2

(
aR2

01 + bR2
02

)
+

1

2

√(
aR2

01 + bR2
02

)2 − 4cR2
01R

2
02

where,

a =
g1n1(a12a21ν

h
2 + νh1 g2n2)

νh1 (−a12a21 + g1g2)(−a12a21 + n1n2)

b =
g2n2(a12a21ν

h
1 + g1n1ν

h
2 )

νh2 (−a12a21 + g1g2)(−a12a21 + n1n2)

c =
g1n1g2n2

(a12γh1 + g3µh2 + g3γh2 + g2µh1)(a12νh1 + n3µh2 + n3νh2 + n2µh1)

g1 = µh1 + a21 + γh1 , g2 = µh2 + a12 + γh2 , g3 = a21 + γh1

n1 = µh1 + a21 + νh1 , n2 = µh2 + a21 + νh2 , n3 = a21 + νh1

4. Simulations and Discussion

Simulations are carried out to observe the impact of temperature and human movement in
the transmission dynamics of malaria in two patch setting. The following data are used:

H1 = 50000, H2 = 25000, ζv1 = 25000, ζv2 = 12000, µh1 = µh2 = 0.00004029, νh1 = νh1 =
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0.083, βh1 = βh2 = 0.24, βv1 = βv2 = 0.083 γh1 = γh2 = 0.00265, ρh1 = ρh2 = 0.000017. The
model parameters b1, b2, µ

v
1, µv2, νv1 , νv2 are temperature dependent [24, 27].

Figure 1. Dynamics of infectious hosts of patch 1 without host movement
between the patches.

Figure 2. Dynamics of infectious hosts of patch 2 without host movement
between the patches.

Figure (1) to figure (4) show that the infective human population increases initially and
then decreases after attaining its peak. In fact, the population size increases at first due to
interaction of humans with infectious vectors and later the infective population size starts
to decrease due to natural death and recovery from malaria disease.

To observe the mathematical results graphically, patch 1 is considered to have temperature
within the range of 20oC to 30oC and patch 2 is considered to have temperature within
the range to 15oC to 25oC. Here, patch 1 is high disease prevalent patch in comparison to
patch 2. Figure (1) and (2) are simulated to observe impact of temperature on the disease
prevalence without human movement.

According to [24], the optimal malaria transmission occurs at 25oC. In figure (1), the in-
fective population increases when temperature increases from 20oC to 25oC and decreases
at 30oC. In figure (2), the disease prevalence increases with the increasing temperature
as the highest temperature in the second patch is 25oC.
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Figure 3. Dynamics of infectious hosts of patch 1 and patch 2 with a21 = 0.

Figure 4. Dynamics of infectious hosts of patch 1 and patch 2 with a12 = 0.

Figure 5. Basic reproduction number of patch 1 against movement rates.

Figure (3) and figure (4) describe the impact of human movement when humans move in
one direction only. Figure (3) shows that when humans are allowed to move to patch 1
from patch 2 only, more humans of patch 1 is observed infected while only few in patch 2.
Meanwhile, when only the humans from patch 1 are allowed to moved to patch 2, more
infections in patch 2 can be seen and few cases of infection in patch 1 (Figure (4)). Thus,
proper human movement can help in decreasing the burdern of malaria disease.
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Figure 6. Basic reproduction number of patch 2 against movement rates.

In epidemiology, basic reproduction number is considered a metric which determines
whether the disease persists or dies out. Greater the value of the number, higher the
disease prevalence. Figures (5) and (6) demonstrate the role of human movement on local
basic reproduction numbers R01 and R02. It is observed that due to human movement
from high disease prevalent patch to the low disease prevalent patch (a21), R01 decreases
and R02 increases. Similarly, increase in human movement from low patch 2 to the patch 1
(a12) causes increase in R01 and decrease in R02. Thus, human movement from high preva-
lent patch to the low prevalent patch contributes in increasing the disease prevalence in
low disease prevalent patch and decreasing the disease prevalence in high prevalent patch.
Also, human movement from low prevalent patch to the high prevalent patch contributes
in increasing the disease prevalence in high disease prevalent patch and decreasing the
disease prevalence in low prevalent patch.

Figure 7. Basic reproduction number against temperature.

Figure (7) and (8) are drawn for local basic reproduction numbers against temperature.
The figures show that the malaria disease prevalence increases along with temperature
upto the 25oC temperature [24] when temperature level is more than 25oC, disease preva-
lence starts decreasing. Also, the local basic reproduction number determines the value
of global basic reproduction number, R0. With the increase/decrease in local basic repro-
duction numbers, there is increase/decrease in global basic reproduction number. It shows
that the disease dominances in the local patches determine the global disease dominance
(Figure (9)).
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Figure 8. Basic reproduction number against temperature.

Figure 9. Global basic reproduction number against local basic reproduc-
tion numbers.

5. Conclusion

Malaria disease is one of the leading infectious diseases which is causing millions of cases
worldwide. The disease is increasing its dominance due to human movement and changing
climatic situations. A multi-patch SEIRS-SEI epidemic compartmental model is developed
to study impact of temperature and human movement in malaria disease transmission
dynamics in the present work.

Climatic factors like temperature have a significant impact on malaria disease transmission.
Temperature affects mainly the biting behavior of mosquitoes, incubation period and death
rate of mosquitoes. The dynamics of infected population is observed taking different
temperature levels via simulation. The simulated results show that the maximum number
of infected humans are observed at 25oC [24]. Also, the temperature below 16oC is not
favorable for malaria disease transmission.

Human movement is an important driver of spatial spread of infectious diseases. The
geographic spread of infectious pathogens is caused by the travelling of infected individuals
between areas of active transmission and disease-free areas. Human movement contributes
in further expansion of the disease. Simulations of the model are made in the two patch
setting to investigate the impact of human movement on spatial spread of malaria disease.
It is observed that the disease prevalence can be reduced by managing human movement
between high and low disease prevalent patches. We have discussed the local stability of
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disease free equilibrium point of the model equations. The basic reproduction number of
the model is computed. It is observed that the disease free equilibrium point is locally
asymptotically stable when basic reproduction number R0 < 1 and unstable when R0 > 1.

Simulated results show that, basic reproduction number depends on temperature and
human movement. The prevalence of disease can increase or decrease with temperature
and host movement from one patch to the other. Present work suggests that the burden of
the disease can be reduced by managing the host movement between low and high disease
prevalent patches. The optimal temperature for malaria disease transmission is 25oC.
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