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GEODETIC PARAMETERS IN TREE DERIVED ARCHITECTURES

A. B. GREENI1, S. GAJAVALLI1∗, §

Abstract. A geodetic cover of a graph G refers to a subset of vertices of G that covers
all the vertices of G using the shortest paths between the vertices in the set and the
cardinality of a minimum geodetic cover is the geodetic number of the graph G, denoted
by g(G). This paper is devoted to the study of the geodetic number, the strong geodetic
number, the edge geodetic number and the strong edge geodetic number of certain tree
derived architectures.

Keywords: geodetic number, sibling tree, hypertree, slim tree, l-sibling tree, l-complete
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1. Introduction

A connected graph which is acyclic is referred to as a tree. A tree with each ver-
tex having at most two children is referred to as the binary tree. Binary trees have a
wide range of applications in data structures, because they are easy to store, manipulate,
and retrieve. Binary tree derived architectures are considered in this paper. There are
numerous problems in literature related to shortest path. The classic geodetic number
problem is to find a subset of vertices of minimum order such that all the vertices of a
graph are covered using the chosen vertices and the shortest paths between them. In 1993,
Harary, Loukakis and Tsouros introduced the geodetic number problem [1]. They found
the geodetic number of simple graphs such as complete graphs, stars, cycles, wheel graphs,
complete bipartite graphs and meshes. Geodetic number finds its application in location
theory, fixed point theory and game theory. In 2007, the edge version of the problem was
introduced [2]. Chartrand and Zhang initiated the study of geodetic number of oriented
graphs [3]. The computational complexity of the problem has been widely discussed by
Harary, Loukakis and Tsouros [1] and Atici [4]. Tree derived architectures have been ex-
plored already with respect to many parameters such as decycling number, cycle packing
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number [5] and metric dimension [6]. In this paper certain geodetic parameters of some
of the tree derived architectures are studied. The following is a overview of the paper: In
section 2, basic concepts are given. Sections 3 to 6 deal with the main results and section
7 gives the conclusion.

2. Basic concepts

In this paper, G = (V,E) denotes a connected graph with |V | ≥ 2 and M denotes a
subset of V . Throughout this paper, the strong version of the geodetic set(edge geodetic
set) refers to the strong geodetic set(strong edge geodetic set). The number of edges in
the shortest path connecting two vertices u and v determines the distance between them
[7]. A geodesic or an isometric path refers to a shortest path. The maximum of all the
distances from v to any other vertex is the eccentricity e(v) of v. The diameter diam(G)
is the length of any longest geodesic or the maximum eccentricity of the vertices [7]. If
e(v) = diam(G), then v is referred to as a peripheral vertex and the set of all such
vertices is referred to as the periphery [7]. The vertices that are adjacent to a vertex v are
referred to as its neighbors. Extreme vertices are those vertices whose neighbors induce a
subgraph which is complete [7]. A graph is bigeodetic if there are at most 2 isometric paths
connecting every pair of vertices [7]. A tree in which one vertex is distinguished as the
root, is called a rooted tree and any vertex of degree one other than the root, constitutes
a leaf in a rooted-tree [8]. The distance from the root to a vertex, determines the level of
the vertex in a rooted tree [8]. If the root of a rooted tree is of degree 2, and the internal
vertices possess degree at most 3, then it is termed as a binary tree [8]. A binary tree with
all its internal vertices having exactly 3 neighbors is referred to as a complete binary tree
[8].

Definition 2.1. [7] If every vertex of G is covered by the geodesics joining some pair of
vertices in M then, M is said to be a geodetic cover of G. The geodetic cover of minimum
cardinality and the minimum cardinality of its geodetic covers are referred to as the geodetic
basis of G and the geodetic number g(G), respectively.

Definition 2.2. [9] For a graph G, M is referred to as a strong geodetic set, if all the
vertices of G are covered using the shortest paths between the vertices in M , subject to
the condition that one path is fixed between every pair of vertices in M . The minimum
cardinality of the strong geodetic sets is referred to as the strong geodetic number of G,
denoted by sg(G).

Definition 2.3. [2] If every edge of G is covered by a geodesic joining some pair of vertices
in M , then M is referred to as an edge geodetic cover of G. An edge geodetic cover of
minimum cardinality and the minimum cardinality of its edge geodetic covers are referred
to as an edge geodetic basis of G and the edge geodetic number ge(G), respectively.

Definition 2.4. [10] For a graph G, the minimum cardinality of its strong edge geodetic
covers is referred to as the strong edge geodetic number of G, denoted by sge(G). A strong
edge geodetic cover refers to a set M ⊆ V (G) such that, for any pair x, y ∈M an isometric
path (connecting the vertices x and y), Pxy can be fixed such that union of the edges in all
such paths is equal to the edge set E.

3. Hypertrees

The geodetic number, the strong geodetic number and their corresponding edge versions
of hypertrees are computed in this section.
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Definition 3.1. [5] A binary tree which is complete gives rise to the hypertree HT (n)
with n levels when vertices x and y in the ith level of the binary tree are made adjacent if
a difference of 2i−1 exist between their labels. In a hypertree, the children of the vertex t
receive the label 2t and 2t + 1.

Observation 3.1. In HT (n), the shortest path from the root to the peripheral vertices is
unique.

We use the following corollary to calculate sge(HT (n)).

Corollary 3.1. [10] For a graph G, if E is an edge-cut which is convex, then sge(G)

≥ d2
√
| E |e.

3.1. Geodetic parameters of hypertrees.

3.1.1. Geodetic number of hypertree HT (n).

Remark 3.1. It is trivial that g(HT (1)) = 3 as HT (1) is K3.

Lemma 3.1. g(HT (2)) = 3.

Proof. The root is an extreme vertex in a hypertree, and therefore it is a member of any
geodetic cover of HT (2) and hence g(HT (2)) ≥ 2. There is a unique path from the root
to all the vertices and hence choosing one more vertex which is diametrically opposite to
the root will not form a geodetic cover of HT (2). See Figure 1(a). Hence g(HT (2)) > 2.
Next we claim that g(HT (2)) = 3. Two vertices u and v are chosen such that they are
diametrically opposite and u and v are at distance 2 from the root, since the eccentricity
of the root is 2. Obviously the root together with these 2 vertices form a geodetic cover
of HT (2), as there are 2 shortest paths of length 3 between these 2 vertices and so the 4
other vertices are covered. Hence g(HT (2)) ≤ 3. Therefore the chosen set is a geodetic
basis. �

Theorem 3.1. For n ≥ 3, g(HT (n)) = 2n−1 + 1.

Proof. Let M denote the geodetic set of HT (n) and r
′

denote the root of HT (n). In

HT (n) there are 2n−2 HT ∗(2), where HT ∗(2) = HT (2) � r
′
. As the root r

′
is an extreme

vertex it should be included in the set M . Take M =
⋃2n−2

i=1 Mi ∪ {r
′}, where Mi is a

geodetic cover of HT ∗(2). Then M will be a geodetic cover of HT (n). Hence g(HT (n))
≤ 2n−1 + 1.
Suppose g(HT (n)) < 2n−1 + 1, then a vertex which is removed from the geodetic cover
M , will be left uncovered which is a contradiction. Hence g(HT (n)) = 2n−1 + 1. �

Remark 3.2. The strong geodetic number of HT (1) and HT (2) are 3 and 4, respectively.
3.1.2. Algorithm to find the strong geodetic number of HT (n).

Input: Hypertree HT (n), n ≥ 3.
Algorithm: Choose 2n−1 consecutive peripheral vertices such that they are in each of
the HT ∗(2), where HT ∗(2) = HT (2) � r

′
and they are in both the levels n+ 1 and n+ 2,

on either side of the edge connecting the vertices 2 and 3. i.e., 2n−1

2 consecutive vertices

in level n + 1 on one side and 2n−1

2 consecutive vertices in level n + 2 on the other side.
Output: The strong geodetic number of HT (n).
Proof of correctness:
The root is an extreme vertex and hence it belongs to any strong geodetic set.
The geodesic from the root to the chosen vertices, covers its neighbors and also covers
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Figure 1: Darkened vertices denote (a) a minimum geodetic set of HT(3) (b) a minimum geodetic set of ST(3)

(a) (b)

the neighbors of the vertices 2, 3 which lie on the side of the edge connecting the vertices
2 and 3 where the chosen peripheral vertices lie. If we choose a pair of peripheral ver-
tices one on either side of the edge connecting the vertices 2 and 3, there are two disjoint
geodesics between each of the chosen peripheral vertices. If vertices in one of the geodesic
is considered as covered, then the vertices in the other geodesic will be covered when the
geodesics between other pair of vertices are considered. Also only when 2 consecutive
peripheral vertices are chosen, their neighbouring peripheral vertices are covered. Hence
the set constructed in the above manner is a strong geodetic cover of HT (n) and it is a
strong geodetic basis.
As a consequence of the above algorithm we arrive at the following theorem.

Theorem 3.2. For n ≥ 3, sg(HT (n)) = 2n−1 + 1.

3.1.3. Edge geodetic parameters of HT (n).

Theorem 3.3. For n ≥ 2, ge(HT (n)) = sge(HT (n)) = 2n−1 + 1.

Proof. Let M denote the subset of vertices which covers the edges of HT (n). As the
neighbors of the root induce a complete subgraph, any edge geodetic cover of G includes
the root. Choose M such that the elements are the peripheral vertices in HT (n) and they
are diametrically opposite in each of the HT ∗(2). This set forms a geodetic cover which
covers the edges of HT (n). Hence ge(HT (n)) ≤ 2n−1 + 1.

Suppose g(HT (n)) < 2n−1 + 1, then a vertex which is removed from the edge geodetic
cover M , will be left uncovered and thereby the incident edges will be left uncovered,
which is a contradiction.

Since the edge-cut E of HT ∗(n), (where HT ∗(n) = HT (n) � root) is a convex edge-cut,
the cardinality of the set consisting of edges in the convex edge-cut including the root gives
the upper bound. Root is an extreme vertex and hence it belongs to any strong geodetic
set which covers the edges of HT (n). Choose M such that the elements are the peripheral
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vertices in HT (n) and they are diametrically opposite in each of the HT ∗(2). This set
forms a strong edge geodetic cover of HT (n) and hence the lower bound. �

4. Sibling trees

Definition 4.1. [5] A complete binary tree Tn gives rise to the sibling tree STn when
sibling edges are added between the children of every parent vertex. The label and level
of the root vertex are considered to be 1 and 0, respectively. The children of the vertex v
receive the label 2v and 2v + 1. For 1 ≤ i ≤ n, each level i has 2i vertices.

4.1. Geodetic parameters of sibling trees.

Theorem 4.1. For n ≥ 2, g(STn) = sg(STn) = ge(STn) = sge(STn) = 2n + 1.

Proof. Let S
′

denote the set consisting of the root and the vertices in the level n of STn.
All the vertices in S

′
are extreme vertices and thereby they are members of any geodetic

set, its strong version and any edge geodetic set, its strong version. Since there is a unique
geodesic joining every vertex with the other remaining vertices, all the four sets are the
same. See Figure 1(b). If M is a geodetic basis, strong geodetic basis, edge geodetic basis,

and strong edge geodetic basis, then |M | ≥ |S′ | where |S′ | = 2n + 1.
Next our claim is that |M | ≤ 2n + 1. Choose the root and all the 2n vertices in level

n in M . These vertices form a geodetic cover(strong geodetic cover) and edge geodetic
cover(strong edge geodetic cover) of STn. Hence the claim. Therefore M is a geodetic
basis(strong geodetic basis) and edge geodetic basis(strong edge geodetic basis) of STn. �

Remark 4.1. The result holds good for 1-rooted sibling tree.
4.2. k-rooted sibling tree.
Consider k copies of 1-rooted sibling tree ST 1

n on 2n vertices with roots say x1, x2,..., xk.
Add the edges (xi, xi+1), 1 ≤ i ≤ k − 1. The resultant graph is a k-rooted sibling tree,
ST k

n . The length of any longest geodesic in ST k
n is 2n + k − 1 [5].

4.2.1. Geodetic parameters of k-rooted sibling tree.

Theorem 4.2. For n ≥ 2, g(ST k
n ) = sg(ST k

n ) = ge(ST
k
n ) = sge(ST

k
n ) = k(2n).

The result is trivial as the set consisting of the extreme vertices in ST k
n , acts as a

geodetic basis, strong geodetic basis, edge geodetic basis and strong edge geodetic basis.
4.3. l-sibling tree.
By adding new edges between vertices in the last level of ST k

1 and the corresponding
vertices in the last level of ST k

2 we obtain an l-sibling tree, denoted by l-ST k
n where ST k

1 ,
ST k

2 refers to two copies of ST k
n [5].

4.3.1. Geodetic parameters of l-sibling tree.

Theorem 4.3. For n ≥ 2, g(l-ST k
n ) = ge(l-ST

k
n ) = 2.

Proof. The root vertex in the first copy of the rooted sibling tree ST k
1 and its diametrically

opposite root vertex in the other copy of the rooted sibling tree ST k
2 form a geodetic basis

and an edge geodetic basis. Hence g(l-ST k
n ) = ge(l-ST

k
n ) = 2. �

Algorithm to find the strong geodetic number of l-ST k
n

Input: l-sibling tree l-ST k
n , n ≥ 2.

Algorithm: Let M denote the strong geodetic set of l-ST k
n . Choose the vertices which

were extreme vertices in ST k
1 , ST k

2 before adding new edges between each vertex in the
last level of ST k

1 and the corresponding vertex of ST k
2 which lies in the last level such that
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one vertex lies in one tree and its corresponding pair in the diagonal position in the other
tree.
Output: Strong geodetic number of l-ST k

n .
Proof of correctness:
Vertices in l-ST k

n � r
′
k where r

′
k = { r′1, r

′
2, r

′
3,..., r

′
k } are connected by atmost 2 isometric

paths. Only the vertices in r
′
k are connected by more than 2 geodesics. When the vertices

are chosen in the above pattern, alternate vertices lie in the same level. The vertices in
the same level are connected by an unique geodesic, and there are 2 geodesics between
the vertices which doesn’t lie in the same level. When the vertices which lie on one half of
the graph are covered by the isometric path joining vertices in the same level, the vertices
lying on the other half are covered by the isometric path joining vertices which doesn’t lie
in the same level. Thus the vertices in the set M form a strong geodetic basis of l-ST k

n .
As a consequence of the above algorithm, we arrive at the following theorem.

Theorem 4.4. For n ≥ 2, sg(l-ST k
n ) = k(2n).

Theorem 4.5. For n ≥ 2, sge(l-ST
k
n ) = k(2n + 2n−1).

Proof. Let M denote the strong edge geodetic set of l-ST k
n . By definition, l-ST k

n contains
ST k

1 , ST k
2 where ST k

1 , ST k
2 refers to two copies of ST k

n . Choose the two extreme vertices
such that one vertex lies in ST k

1 and the other vertex lies in ST k
2 , before adding new

edges between each vertex in the last level of ST k
1 and the corresponding vertex in the

last level of ST k
2 . The set M forms a strong edge geodetic cover of l-ST k

n . Hence sge(l-
ST k

n ) ≤ k(2n + 2n−1). Next our claim is that, M is a strong edge geodetic basis. For if
sge(l-ST

k
n ) < k(2n + 2n−1), then there exists a strong edge geodetic cover M with |M | =

k(2n + 2n−1)− 1. If one vertex is omitted from the set M , then atleast one edge of l-ST k
n

will be left uncovered. Hence M is a strong edge geodetic basis. �

5. Slim tree

Definition 5.1. [5] The nth slim tree denoted by SL(n), n ≥ 2 has a recursive definition
as follows:
1. SL(2) is the complete graph on 3 vertices.
2. The nth slim tree SL(n), with n ≥ 3 consists of a vertex x(root) and two disjoint copies
of (n− 1)th slim trees. The vertex set of SL(n) = (V,E, x, e, f) is the union of the vertex
sets of the two (n− 1)th slim trees and x. The edge set consists of the union of the edge
sets of the two (n− 1)th slim trees together with the edges {(x, x1), (x, x2), (f1, e2)}, where
x, e and f stand for the root, left and right vertex, respectively.

Observation 5.1. SL(n) is a bigeodetic graph.

5.1. Geodetic parameters of slim tree.
5.1.1. Algorithm to find the geodetic number and the strong geodetic number of SLn.

Input: Slim tree SLn, n ≥ 4.
Algorithm: Let the geodetic set of SLn be denoted by M . The neighbors of the left
vertex and the neighbors of the right vertex induce a complete subgraph and hence the
left and the right vertices are members of any geodetic set and strong geodetic set. To
cover the remaining vertices,
i) vertices in the level (n − 1) of SLn are chosen such that, they are the left and right
child of the parents in the (n−2)th level (which are from the same parent in the (n−3)rd
level) and
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ii) vertices in the level n are chosen such that they are the vertices l and r of SL(n− 2)s.
Output: Geodetic number and strong geodetic number of SL(n).
Proof of correctness:
Each SL(n) contains 2 SL(n− 1)s, 4 SL(n− 2)s. There is a unique geodesic between the
left and right vertices and hence the vertices (boundary vertices) which lie on this geodesic
are covered. The vertices in the level (n− 1) are covered only when they are chosen in the
geodetic set or when one of their corresponding children are chosen in the geodetic set.
Hence the set constructed in the above manner is a geodetic cover and strong geodetic
cover of SL(n) and it is a geodetic basis and strong geodetic basis of SL(n).
As a consequence of the above algorithm we arrive at the following theorem.

Theorem 5.1. For n ≥ 4, g(SLn) = sg(SLn) = 2n−2.
5.1.2. Algorithm to find the edge geodetic number and the strong edge geodetic number of
SLn.
Input: Slim tree SLn, n ≥ 3.
Algorithm: Choose the root, the extreme vertices l, r and all the vertices in the level n
in the set M .
Output: Edge geodetic number and strong edge geodetic number of SLn.
Proof of correctness:
Let M denote the geodetic set which covers the edges of SL(n). As the vertices l and r
are extreme vertices, they belong to M . There is a unique shortest path from the root to
all the other vertices. Hence M acts as a strong geodetic set also. The geodesic from root
to the chosen vertices covers all the edges connecting vertices in one level to vertices in
the next level. Hence only when all the vertices in level n are chosen, the edges connecting
level (n−1) and level n and edges in the level n will be covered. Hence the set constructed
in the above manner is an edge geodetic cover and a strong edge geodetic cover of SL(n)
and is an edge geodetic basis and a strong edge geodetic basis of SL(n), respectively.
As a consequence of the above algorithm we arrive at the following theorem.

Theorem 5.2. For n ≥ 3, ge(SL(n)) = sge(SL(n)) = 2n−1 + 1.

6. l-complete binary tree

Definition 6.1. [5] Let Tk be a complete binary tree, k ≥ 1. A graph which is obtained
from two copies of complete binary tree Tk, say T1, T2 by joining each vertex in the last
level (i.e., (k-1)th level) of T1 and the corresponding vertex of T2 is called the l-complete
binary tree and its denoted by l-Tk.

6.1. Geodetic parameters of l-complete binary tree.

Theorem 6.1. For k ≥ 2, g(l-Tk) = ge(l-Tk) = 2.

Proof. The root and the vertex in the last level of the l-complete binary tree form a
geodetic basis and an edge geodetic basis of l-Tk. Hence g(l-Tk) = ge(l-Tk) = 2. �

Remark 6.1. l-Tk is a bigeodetic graph.

Theorem 6.2. For k ≥ 2, sg(l-Tk) = sge(l-Tk) = 2k.

Proof. Let M denote the strong version of the geodetic set and the strong version of the
edge geodetic set of l-Tk. There are 2k vertices in the kth level of l-Tk and they are
peripheral vertices. Choose them in the set M . Since l-Tk is a bigeodetic graph, there
are atmost two geodesics joining any two vertices in the graph, in particular between the
vertices chosen. All the remaining vertices of l-Tk, are internal vertices in atleast one of
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the isometric paths between the chosen vertices. By fixing one path between any two
vertices in the set chosen, all the vertices and edges of l-Tk are covered and therefore M
is a strong geodetic cover and strong edge geodetic cover and hence |M | ≤ 2k. We claim
that |M | ≮ 2k. For if |M | < 2k, i.e., if any one vertex from the kth level is not considered
in the set M , then that vertex and the corresponding edges incident with it would be left
uncovered. Therefore sg(l-Tk) = sge(l-Tk) = 2k. �

7. Conclusions

The geodetic parameters of certain tree derived architectures are obtained. We have
observed that in all the architectures at least two parameters are found to be equal.
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