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SOLVING INVERSE PARTIAL DIFFERENTIAL EQUATIONS
PROBLEMS BY USING TEACHING LEARNING BASED
OPTIMIZATION ALGORITHM

A. A. BOROUJENI', R. POURGHOLI™, S. H. TABASI', §

ABSTRACT. In this paper, a numerical approach is combined with teaching learning
based optimization algorithm (TLBO) to solve problems of inverse partial differential
equations. The most important point in the way we have presented for these problems, for
example an inverse heat condition problem (IHCP), is that we can get an answer to them
without any conjecture about the unknown. Numerical experiments in implementation
of this method, even without guessing the type of unknown function of the problem, show
that these problems can be solved with great accuracy. Accurate results also show that
after solving the problems, an excellent estimation of some unknowns can be obtained.

Keywords: Inverse partial differential equations problems, TLBO Algorithm, Optimiza-
tion, Fully implicit method.
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1. INTRODUCTION

In many problems of partial equations we encounter a problem in which the problem
conditions are known and the main equation is solved. In addition to these problems, there
are another set of problems where in addition to the unknown principal factor, there are
other unknowns in the equation or in terms of it. Such problems are called inverse problems
[37]. Inverse Problems in modeling many issues arise in the physical and engineering fields,
such as heat conduction problems [2, 3], infiltration issues such as soil contamination, laser
cutting, mechanical problems, medical imaging and etc [37, 16, 19]. Inverse problems are
a subset of indirect measurement problems. In fact, indirect measurements describe the
nature of a problem. Inverse problems are difficult because they are very sensitive to the
error of the measured value. For a inverse problem a mathematical model can be presented
[17, 9, 10, 11]. But the process of solving an inverse problems is very difficult, which
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usually does not give the exact answer. Therefore, for solving such problems, approximate
methods such as: iterative methods, regularization technique (Tikhonov regularization)
[5, 6], random methods and system identification, methods that search for approximate
answer in subset of solutions, integrated techniques or direct numerical methods are used
[21, 34, 36, 38].

Methods are also provided for one type of these problems such as inverse heat conduction
problem (IHCP) and among the most versatile methods can be mentioned: Mollification
[4], iterative regularization [35], BFM (Base Function Method) [6], tikhonov regularization
[5, 6], HBM (Haar basis method) [7, 8], and the FSM (Function Specification Method)
[34]. As mentioned, these methods are approximate and usually do not get the exact
answer [12]. For example, regularization technique is used in [6], which is difficult to find
the a value of the regularizer or in Haar basis method [7, 8], we face a limitation when the
dimension of the operational matrix is high but one of the advantages of this method is
the ability to solve non-linear problems. In this paper, a numerical approach is combining
with fully-implicit method [13] and teaching learning based algorithm [28, 29] (TLBO) to
solve problems of inverse partial differential equations.

2. INVERSE PARTIAL DIFFERENTIAL EQUATIONS PROBLEMS (IPDEP)

Problems in engineering, which are defined as equations with partial derivatives or
integral equations, are defined by the shape and size of the problem domain, boundary
and initial conditions, the physical characteristics of the fluid in question, internal sources,
external conditions, and input [14, 37].

If all this information is specified, the problems is straightforward, and it can generally be
considered solvable. consider the following inverse parabolic problem.

Up(z,t) = Upe(x,t) + F(x,t), O<z<l1l, t>0 (1a)
U(z,0) = f(x), 0<z<1 (1b)
U,t) =pt), 0<t<tpin (1c)
UL t)=q(t), 0<t<tpn (1d)

and the over-specified condition:
u(z1,t) = g(1), 0<z,<1, 0<t<tgpn (le)

where f(z) is a continuous known function, p(t) and ¢(t) are infinitely differentiable
known functions and #y;, represents the final existence time for the time evolution of the
problem.
In (IPDE problems), finding unknown conditions is considered. Because by finding an
unknown condition, the problem becomes a direct problem that can be solved with desir-
able accuracy using the methods described. In this paper we approximate the unknown
condition of the problem using TLBO algorithm. To do this, we define the cost function
as follows that Eq. (2) must be minimum:

F(8) =D (U; —s55)%, (2)
j=1

where U; ,j = 1,2,--- ,m are values calculated at a point (z,t) = (a, s;) by numerical
methods approximated bye the TLBO algorithm and s; = s(t;) ,j = 1,2,---,m are
measured values.
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Remark 2.1. Here we examined the problems using the implementation of the fully
implicit method [13]. In this method, we first discretize the problem and then solve the
algebraic system of equations:

— i1 41+ (L4 20w j41 — ruiprj+1 = wij + kEy,  § >0,
i=1,2,---,N—1, (3a)
uio = f(ih), 1=1,2,--- ,N —1, j=0, (3b)
up; = p(jk), i=0 j=01,2,---,N—1, (3¢)
un; =q(jk), j=0,1,2,---,N—1, Nh=1, (3d)

k
where r = —, x = th and t = jk. By using Eq. (3) we obtain the following linear

algebraic system of equations:

1+2r —r 0 0 O 0 0 Ul,5+1 —TPj+1
-r  14+2r —r 0 0 0 0 U2 j+1 0
0 0 0 0 —r 1 + 2r T UN—-2,5+1 0
0 0 0O 0 O -r 1+2r UN—1,j+1 —Tqj+1
U kFy
UQJ' k'FQyj
= (4)
UN—2,j kEN_2;
UN_1,j kFN_1,;

3. TEACHING-LEARNING BASED OPTIMIZATION (TLBO) ALGORITHM FOR SOLVING
IPDEP

The teaching learning-based Optimization algorithm is an efficient optimization method
that was first introduced by Mr. Rao et al. This method is similar to other existing op-
timization techniques of an algorithm derived from different natural phenomena. TLBO
works based on the influence of a teacher on classroom learning. The algorithm was in-
troduced in 2011 and is one of the new algorithms that can be improved in a variety of
ways, as has been done in recent years and the desired results have been obtained. See in
[15, 23, 26, 30, 31, 32]

The most common method of evolutionary optimization is genetic algorithm (GA) [20].
However, GA offers an almost optimal near-solution solution to a complex problem with
a large number of variables and constraints. This is mainly due to the difficulty in de-
termining control parameters such as population size, crossover rate and mutation rate.
Changing the algorithm parameters changes the effect of the algorithm. The same is true
of PSO [25], which uses inertial, social, and cognitive weight components. Likewise, Ar-
tificial Bee Colony algorithm (ABC) [22] needs control parameters in optimization, such
as the number of employees, scouts and onlookers bees. Harmony Search (HS) [24] needs
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to consider memory coordination, step adjustment, and so on. This can also be seen in
the [1, 18], therefore, efforts are being made to develop new optimization techniques that
are independent of the algorithm parameters. The TLBO algorithm is free of algorithm
parameters, i.e. no algorithmic parameters are required for the algorithm to work. This
advantage helps us to solve the problem without guessing the answer and without the
need for parameters.

In TLBO the teacher is generally regarded as a highly educated person who shares his
knowledge with the learners. Teacher quality affects learners’ outcomes. Obviously, a
good teacher trains learners so that they can have better results. This algorithm uses an
initial population of answers to achieve the overall answer. The population is considered a
group of learners or students of a class. A teacher strives to increase the level of classroom
knowledge by educating learners, and the student achieves a good grade or rank according
to his or her ability. In fact, a good teacher is one who brings his students to the level of his
knowledge. The teacher is a person with high knowledge in society who shares his knowl-
edge with his students, so that in the same repetition the best answer (the best member
of the population) acts as a teacher. But it is necessary to point out that students acquire
knowledge according to the situation of the students present in the class and the quality of
education provided by the teacher. Additionally, students learn from the interaction be-
tween themselves (group discussions, presentations, etc.) that helps their situation [28, 29].

If we consider two different teachers, 77 and T, in two different classes, the figure 1
shows the distribution of the scores obtained by the students of the two different classes
evaluated by teachers. Curves 1 and 2, which obtain from teaching students with the same
level of learning and content, represent the scores obtained by students who are taught by
the teacher T1 and 75. A normal distribution is considered for the symptoms obtained,
but in practice it can be skewed. The normal distribution is defined as follows:

—(z — )’

1 - 7
exp 207 (5)

oV 2m

f(X) =

where ¢ is the variance, x is any value of which normal distribution function is required
and p is the means.

3.1. Teaching Phase. At this stage, a member of the community who is better than the
others is selected as a teacher. As you can see in the Fig. 2, The grade point average
increases from M; to My according to the teacher performance [28, 29].

According to the teacher’s knowledge, learners update their knowledge using the fol-
lowing expression,

Dif ferenceMean; = ri( Myew — T§M;) (6)

Xnew,i = Xoa,i + Dif ferenceMean; (7)

Where T is a teaching factor and r; is a random value in the range [0, 1].

3.2. Learning Phase. At this stage, students interact randomly with others to enhance
their knowledge, so that the learner interacts randomly with other learners through group
discussions, presentations, formal communication, etc., and learners interact with oth-
ers. They increased their knowledge among themselves. Learner updates their knowledge
according to the difference with another learner by using the following expression [28, 29]:
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FiGURE 1. Distribution of marks obtained by learners taught by two dif-
ferent teachers.
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FIGURE 2. Model for obtained marks distribution for a group of learners.

i =zt r(ry—x)  iff(zi) < fzg) (8a)
o =z +r(vi —x)  iff(xi) > f(z)) (8b)

The overall flowchart of teaching-learning based optimization algorithm is shown in Fig.
3.
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| Initialize termination criterion, parameters and population members |

| Calculate the mean of each design variables |<—
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FiGure 3. Flowchart showing the working of TLBO algorithm.

In this study for determining ¢(¢), TLBO is considered for solving IPDEP. Consider
students:

Si :{Si71,8i72,...78i7m}, 1= 1,2,3,...771.

In the methods that have been proposed to solve IPDEP to obtain ¢(t), they guess the
type of function ¢(t) [27, 12] and continue to checking it until the answer is obtained with
the desired accuracy. But then we show that even without guessing the unknown answer,
we get exact values for it.

4. SOLVING IPDEP WITHOUT GUESSING Q(T)

As mentioned, in the methods proposed to solve problem IPDEP so far, for determining
the unknown of the problem, for example ¢(t) here, ¢(t) was considered as a polynomial
or exponential function [27, 12] and then, they estimates coefficients of function ¢(t), but
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in this study, we determine ¢(t) without considering the type of function ¢(¢).

We have used the TLBO algorithm with real values. In this algorithm, we consider each
student as a string of real numbers in which each element of the string represents the value
of the unknown condition or conditions at the corresponding point. In this study, we use
TLBO algorithm and estimate each member of the class at times m to determine ¢(t).
Each student estimates value of ¢(t) at t;, j = 1,2,3,...,m. Solving then direct partial
differential equations problem by fully-implicit method and selecting the best student by
considering Eq. 2. We run the algorithm until we get the desired answer and then for
determining ¢(t) we find the interpolation of m-points of the best student. The steps of
the TLBO algorithm for determining ¢(¢) can be divided into the following steps:

Step 1. Generate the initial population of the class at random.

Step 2. Evaluate fitness of each class members.

Step 3. Perform the teaching phase by selecting the best member with better fitness as a
teacher.

Step 4. Perform the learning phase. Learners increase their knowledge by interacting
with each other during the learning phase. We select two variables at random and
quantify the learner according to the explanations given in the learning phase.

Step 5. Evaluate fitness value of new members and update main class population based
on the fitness of all members.

Step 6. Repeat steps 2 to 5 to find an acceptable member. The end condition of the TLBO
algorithm can be determined by the problem or conditions such as the execution
time of the algorithm or the failure to change the best answer for a certain number
of production steps.

Remark 4.1. We set the problem optimization parameters, i.e. population size, number
of generations, number of variables and the desired interval for ¢(¢). The range for ¢(t) can
be considered the range of high values or the range of low values, which if we consider the
range of values is low, our unknown values may not be in that range, and if we consider
the range of values is high, we may not get the exact answer.

5. NUMERICAL RESULTS AND DISCUSSION

IPDE problems, such as an Inverse Heat Conduction Problem (IHCP), is examined. In
the inverse heat conduction problems, finding the condition or unknown conditions is con-
sidered. Because by finding an unknown condition , the problem becomes a direct problem
that can be solved with desirable accuracy using the numerical methods described in Sec-
tion 2. In this study to solve the inverse thermal conductivity problem, we approximate
the unknown condition or condition of the problem using the TLBO algorithm.

Now we are going to demonstrate numerically, some of results for the unknown bound-
ary condition and the answer to the problem, i.e. U(z,t) in the 1 (IPDEP). Considering
that the IPDE problems is ill-posed, in this section we test the stability of the method
presented in section 2.

In this example we consider the following IHCP (one-dimensional) which is discussed
in [27], where it is solved in [27] by considering the type of ¢(¢) function and guessing the
coefficients of the function, but in the paper we solve the problems without any guessing
the type of ¢(t) function, using the said method.
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Ti(x,t) = Tpp(x,t), re (0,1), te(0,1) (9a)
T(z,0) = sin(mz) + cos(mx), x € 1[0,1] (9b)
TO,t) =™t  tel01] (9¢)
T(1,t) =q(t), telo,1] (9d)
and the over-specified condition:
T(0.5,8) = s(t:), ti=ix0.1, i=1,2,..,10, (9e)

Where unknown function is the continuous function ¢(t) as,
qt) =—e ™t telo1].
And the exact solution of this problem is
T(z,t) = e ™ !(sin(rz) + cos(rz))

Remark 5.1. In an IHCP there are two sources of error in the estimation. The first source
is the deterministic error (or unavoidable bias deviation). The second source of error is
the variance due to the amplification of measurement errors (stochastic error). The global
effect of deterministic and stochastic errors are considered is considered as follows, [33].

- :
S= =2 @-ar]". (10)

1=
Where n is the total number of estimated values, ¢; are calculated values from interpo-
lated equation and g; are exact values of ¢(t).

In this example to determining the unknown condition, ¢(t) and get the answer to the
problem (T'(z,t)), using the TLBO algorithm, real values are used. In this example, a
population of 30 and 60 class students is generated where the student estimate 10 points
of q(t) at t; =ix0.1,i = 1,2,..., 10, and the described steps, are applied to the population
of the class to find unknown conditions and answer the problem. The number of iterations
to run the algorithm in both populations of the class to determining the exact answer was
40. In this method, the best student is entered with the least fitness to approximate the
unknown condition.

It should be noted that the interval we chose randomly in this issue to create the ini-
tial class population was [-20 20], which is a relatively large interval. We know that the
interval that boundary condition (¢(¢)) in this problem, is [0 1], but we chose a much
larger interval to show the execution power of the proposed method and to show, with-
out any conjecture and dependence on the unknown boundary condition, we determine
the unknown of the problem with the desired accuracy. Obviously, if we chose a smaller
initial population interval, the rate of convergence to the exact answer would also increase.

Remark 5.2. In all the problems that we examine in this section, we change the number
of variables for the class population according to the length of the step and the conditions
of the problem. We also consider the teaching factor (Tr) randomly to increase the accu-
racy of problem solving.



746 TWMS J. APP. AND ENG. MATH. V.14, N.2, 2024

Fig. 4, illustrates the best fitness at each iteration for a population of 30 and 60 stu-
dents in 40 iterations of the algorithm. The implementation of this method shows that it
always tries to improve the answer and with a slight increase in the number of people in
the population, the results are obtained with very good accuracy.

Fig. 5(a), illustrates exact solution of this problem (T'(z,t)) and solution using q(t)
estimation using TLBO algorithm with the initial population of 30 and 60 students. In
this algorithm, a population of 30 and 60 students is used as the initial population to
obtain for numerical results of algorithm for 40 iterations. In this method each student
are used to determine ¢(¢) and with the best value of ¢(t) specified, we solve the problem
to determine (7'(z,t)). Table 1 also presents the numerical values of the answer at 10 time
points.

Fig. 5(b) ,illustrates the exact values of ¢(t) and best estimated ¢(¢) by implementing
the TLBO algorithm to interpolate the best student for determining ¢(¢). In this method,
a population of 30 and 60 students is used as the initial population to obtain the numerical
results; and our algorithm is run for 40 iterations. Table 2 presents the numerical values
of the best ¢(t) at 10 time points. Table 3 also presents the results. We should note
that because of high calculations it consumes a long execution time to compute finesses
of students.

Best Fitness
>
Best Fitness
>
®

102

10—3 L

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Iteration Iteration

(a) The best amount of fitness in each iteration  (b) The best amount of fitness in each iteration
with a population of 30 students for 40 iteration. with a population of 60 students for 40 iteration.

FIGURE 4. The best amount of fitness in each iteration.
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(a) Determining T'(x,t) by estimating ¢(¢), with ~ (b) Determining ¢(¢), with a population of 30
a population of 30 and 60 students for 40 itera- and 60 students for 40 iteration.
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tion
FIGURE 5. Results of T'(x,t) and ¢(t).
TABLE 1. The answer of the IPDEP (T(x,t)), by using the obtained ¢(¢).
Population T(xz,t;) = s(t;)
5(t1) s(t2) s(t3) 5(ta) s(ts)
0.373 0.131 0.054 0.0199 0.009
30
5(te) s(t7) s(ts) 5(to) 5(t10)
5.2398E-04 0.002 -0.003 0.006 -6.5535E-04
s(t1) s(t2) s(ts) 5(ta) s(ts)
0.371 0.140 0.053 0.019 0.007
60
5(te) s(tr) s(ts) 5(to) s(t10)
0.002 0.001 1.8972E-04 3.4978E-04 -2.8148E-04
S1 52 S3 S4 Ss
Exact 0.374 0.154 0.058 0.0197 0.005
Sg S7 S8 Sg 510
0.001 1.6605E-04 -8.6864E-05 -8.8096E-05 -5.1723E-05
TABLE 2. The best student at 40 iteration for population of 30 and 60
students.
Population S;
S1 S2 S3 S4 S5
30 -0.819 -0.341 -0.084 -0.046 -0.006
S6 St S8 S9 510
-0.021 0.008 -0.022 0.037 -0.018
S1 52 53 54 S5
60 -0.830 -0.296 -0.111 -0.046 -0.014
S6 S7 S8 S9 510
-0.005 -0.023 -0.0019 0.0010 -0.0021
51 52 53 S4 S5
Exact -0.610 -0.215 -0.075 -0.026 -0.009
S6 S7 S8 Sg 510

-0.003 -0.001 -4.1550E-04 -1.4659E-04 -5.1723E-05
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TABLE 3. The results of 40 iteration for determining ¢(t), for a population
of 30 and 60 students.

Population Tteration Best fitness Time(s)
30 40 1.29371E-04 293.444
60 40 6.65814E-06 590.425
Example 2.

In this example let us consider the following one-dimensional inverse parabolic problem
[6, 7],

Ti(z,t) = Tpp(z,t), 0<z<l O0<t<l1 (11a)
T(x,0) = 2sin(2x) + 2 cos(2z) + %m‘l, 0<z<1 (11b)
T(0,t) = p(t), 0<t<1 (11c)
T(1,t) = 2e *(cos(2) +sin(2)) + 3(t* + ¢ + %), 0<t<1 (11d)
and the over-specified condition:
T(0.2,;) = s(t;), ti=ix0.1, i=12,..,10, (1le)

Where unknown function is the continuous function p(t) as,
p(t) =2 +3t%,  0<t< 1.

And the exact solution of this problem is
1
T(z,t) = 2~ (sin(2z) + cos(2z)) + 3(t* + ta* + Efl)

It should be noted that the interval we chose randomly in this issue to create the ini-
tial class population was [-10 10], which is a relatively large interval. We know that the
interval that boundary condition (p(t)) in this problem, is [0 1], but we chose a much
larger interval to show the execution power of the proposed method and to show with-
out any conjecture and dependence on the unknown boundary condition, we determine
the unknown of the problem with the desired accuracy. Obviously, if we choose a smaller
initial population interval, the rate of convergence to the exact answer would also increase.

Fig. 6, illustrates the best fitness at each iteration for a population of 30 and 50 stu-
dents in 50 iterations of the algorithm. The implementation of this method shows that it
always tries to improve the answer and with a slight increase in the number of people in
the population, the results are obtained with very good accuracy.

Fig. 7(a), illustrates exact solution of this problem (7'(z,t)) and solution using p(t)
estimation using TLBO algorithm with the initial population of 30 and 60 students. In
this algorithm, a population of 30 and 50 students is used as the initial population to
obtain for numerical results of algorithm for 40 and 50 iterations. In this method each
student are used to determine p(¢) and with the best value of p(t) specified, we determine
(T'(x,t)). Table 4 also presents the numerical values of the answer at 10 time points.
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Fig. 7(b), illustrates the exact values of p(t) and best estimated p(¢) by implementing
the TLBO algorithm to interpolate the best student for determining p(¢). In this method,
a population of 30 and 50 students is used as the initial population to obtain the numerical
results; and our algorithm is run for 40 and 50 iterations. Table 5 presents the numerical
values of the best p(t) at 10 time points. Table 6 also presents the results. We should note
that because of high calculations it consumes a long execution time to compute finesses
of students.

102 - - - - - - - 102

10"k

=
>

Best Fitness
Best Fitness

. . . . . . . . . . . . . . . .
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 45 50
Iteration Iteration

(a) The best amount of fitness in each iteration  (b) The best amount of fitness in each iteration
with a population of 30 students for 40 iteration. with a population of 50 students for 50 iteration.

FIGURE 6. The best amount of fitness in each iteration.

3.5 T T T T T T T T 3.5

Exact Ans Exact Ans
—©—30-Stu —O©—30-Stu

—0—60-Stu 3k —1—60-stu

Variable Time(s)

(a) Determining T'(x,t) by estimating p(¢), with  (b) Determining p(t), with a population of 30
a population of 30 and 50 students for 40 and and 50 students for 40 and 50 iteration.
50 iteration.

FIGURE 7. Results of T'(z,t) and p(t).
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TABLE 4. The answer of the IPDEP (T(x,t)), by using the obtained p(t).

Population T(x,t;) = s(t;)
s(t1) s(t2) s(ts) s(ta) s(ts)
1.754 1.354 1.078 1.050 1.160
30
s(te) s(t7) s(ts) 5(to) s(f10)
1.393 1.695 2.130 2.584 3.156
s(t1) s(t2) s(ts) 5(t4) s(ts)
1.802 1.320 1.100 1.059 1.164
50
s(te) s(t7) s(ts) s(to) s(t10)
1.390 1.711 2.123 2.609 3.169
s(t1) s(t2) s(t3) 5(ta) s(ts)
1.799 1.322 1.095 1.057 1.165
30
s(ts) s(tr) s(ts) 5(to) s(t10)
1.390 1.713 -2.123 2.610 3.168

TABLE 5. The best student at 40 and 50 iteration for population of 30 and
50 students.

Population S;
51 52 S3 S4 S5

30 2.099 1.331 0.856 0.846 -0.966
Sg S S8 Sg 510
1.218 1.508 1.982 2.393 2.989
51 52 53 Sq S5

50 2.189 1.242 0.912 0.851 0.968
S6 S7 S8 S9 510
1.211 1.539 1.960 2.443 3.001
S1 52 53 S4 S5

Exact q(t) 2 1.319 0.970 ,0.860 0.930
S6 St S8 S9 S10
1.142 1.472 1.903 2.427 3.036

TABLE 6. The results of 40 and 50 iteration for determining p(t), for a
population of 30 and 50 students.

Population Tteration Best fitness Time(s)
30 40 0.0045981 309.333
50 50 4.4672e-05 645.560
Example 3.

In the next example, we examine and solve one of the non-homogeneous inverse prob-
lems, which are considered as inverse problems that are time-consuming and difficult to
solve, but can be solved with the desired method with good accuracy:
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Ui(z,t) = Ugg(x,t) + et (7% cos(mz) + n? sin(7mx)) — 2te " (cos(mzx) + sin(mx))

0<z<l 0O0<t<l1 (12a)
U(z,0) = sin(mz) + cos(mx), 0<z<1 (12b)
UO,t)=et, 0<t<1 (12¢)
U(1,t) = q(t), 0<t<1 (12d)

and the overspecified condition:
T(0.5,t;) = s(t;), ti=ix01, i=1,23,..10, (12€)

Where unknown function is the continuous function ¢(t) as,

And the exact solution of this problem is
U(z,t) = e_t2(sin(7m:) + cos(mz)).

Fig. 8, illustrates the best fitness at each iteration for a population of 30 and 60 stu-
dents in 40 iterations of the algorithm. The implementation of this method shows that it
always tries to improve the answer and with a slight increase in the number of people in
the population, the results are obtained with very good accuracy.

Fig. 9(a), illustrates exact solution of this problem (7'(x,t)) and solution using ¢(t)
estimation using TLBO algorithm with the initial population of 30 and 60 students. In
this algorithm, a population of 30 and 60 students is used as the initial population to
obtain for numerical results of algorithm for 40 iterations. In this method each student
are used to determine ¢(¢) and with the best value of ¢(t) specified, we solve the problem
to determine (7'(x,t)). Table 7 also presents the numerical values of the answer at 10 time
points.

Fig. 9(b) .illustrates the exact values of ¢(t) and best estimated ¢(¢) by implementing
the TLBO algorithm to interpolate the best student for determining ¢(¢). In this method,
a population of 30 and 60 students is used as the initial population to obtain the numerical
results; and our algorithm is run for 40 iterations. Table 8 presents the numerical values
of the best ¢(t) at 10 time points. Table 9 also presents the results. We should note
that because of high calculations it consumes a long execution time to compute finesses
of students.
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tion.
FIGURE 9. Results of T'(z,t) and p(t).
TABLE 8. The best student at 40 iteration for population of 30 and 60
students.
Population S;
S1 52 53 Sq S5
30 -1.123 -0.964 -0.915 -0.873 -0.837
56 S7 S8 S9 510
-0.802 -0.763 -0.652 -0.479 -0.269
S1 So S3 Sq S5
60 -0.997 -0.957 -0.945 -0.910 -0.837
56 S7 S8 Sg 510
-0.787 -0.707 -0.661 -0.467 -0.310
S1 So S3 Sq S5
Exact -1 -0.987 -0.951 -0.804 -0.820
56 S7 S8 Sg S10

-0.734 -0.641 -0.546 -0.453 -0.367
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TABLE 7. The answer of the IPDEP (T(x,t)), by using the obtained ¢(t).

Population T(x,t;) = s(t;)
s(t1) s(ta) s(ts) s(ta) s(ts)
1.337 1.298 1.248 1.178 1.086
30
s(te) s(t7) s(ts) s(t9) s(t10)
0.979 0.862 0.745 0.637 0.543
s(t1) s(t2) s(ts) s(ta) s(ts)
1.344 1.306 1.252 1.177 1.085
60
s(te) s(t7) s(ts) s(to) s(t10)
0.979 0.866 0.748 0.639 0.542
S1 So S3 Sq S5
Exact 1.382 1.342 1.276 1.190 1.087
S6 St S8 S9 S10
-0.974 0.855 0.736 0.621 0.513

TABLE 9. The results of 40 iteration for determining ¢(t), for a population
of 30 and 60 students.

Population Iteration Best fitness Time(s)
30 40 4.7708E-04 442.123
60 40 4.4822¢-05 887.848

6. CONCLUSIONS

A numerical method to determine unknown boundary condition is proposed for IPDEP
and the following results are obtained:

(1)
(2)

3)

(4)

()

(6)

The present study successfully applies the numerical method to IPDEPs.

The most important point in this method that we have presented for IPDEPs, for
example an inverse heat condition problem (IHCP), is that we can get an answer
to them without any conjecture about the unknown. Numerical experiments in
running this algorithm, even without an unknown guess, show that these problems
can be solved with great accuracy.

The TLBO algorithm is free of algorithm parameters. This advantage helps us
to solve the problem without guessing the unknown so that guessing the values
of an unknown function instead of its coefficient using TLBO algorithm, does not
increase the execution time of the algorithm.

Information on the numerical interval of the boundary or initial condition of the
IPDEPs is usually available, but our numerical results show that even without an
exact interval, the unknown of the problem can be determined and interpolated.
Both homogeneous and non-homogeneous IPDEPs can be solved using this method.
Also IPDEPs can be solved with this method, whether its boundary condition or
its initial condition is unknown.

By implementation this method at pentium (R) CPU 3.70 GHz, numerical results
show that an excellent estimation can be obtained within a couple of minutes.
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