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ON KERNEL DISTRIBUTION FUNCTION ESTIMATION NEAR END

POINTS

N. ALMI1, A. SAYAH1∗, §

Abstract. Under that so-called boundary problem on kernel cumulative distribution
function estimation, the main objective of this paper is to introduce and investigate the
properties of our new estimator in order to improve the boundary effects, we will restrict
our attention to the right boundary. We turned out that the order of the Bias has been
reduced to the second power of the bandwidth, simulation studies for three different
types of bandwidth selecting methods were carried out to check these phenomena, we
conclude that the proposed estimator is better than the existing boundary correction
methods.
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1. Introduction

Let X1, ..., Xn be a random variables independent and identically distributed with den-
sity f having support [0, 1]. The most commonly used non parametric estimator of the
cumulative distribution function (CDF) F is the empirical distribution function (EDF)
Fn, defined at some point x as

Fn(x) =
1

n

n∑
i=1

1]−∞,x] (Xi) , (1)

where the indicator function 1]−∞,x] (Xi) = 1 if Xi ≤ x and 0 otherwise.
Theoretical properties of Fn(.) have been investigated by several authors among them,

([22], [14], [3]). It is well known that Fn(.) is a step function even in case F is continuous
and even when n is large, Fn(.) is less smoothing, this fact leads to the effort to obtain an
alternative estimator more smoothing.
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Rosenblatt [15], Parsen [12] introduced the kernel density estimator of f(.) defined at
x by:

fC (x) =
1

nh

n∑
i=1

k

(
x−Xi

h

)
,

then Nadaraya [11] proposed a classical kernel estimator of function F arises as an integral
of kernel density estimator defined by:

FC (x) =
1

n

n∑
i=1

K

(
x−Xi

h

)
, (2)

where h = hn is the smoothing parameter (or the bandwidth) since it controls the amount
of smoothness in the estimator, and satisfy h := hn → 0 as n → ∞, k (.) is a kernel
function which is a predetermined density function symmetric about 0.

The function K is defined from a kernel k as

K (x) =

x∫
−∞

k (t) dt.

If the support of f is a compact interval, from the continuity of F it is well known that
the kernel estimator (2) is an asymptotically unbiased estimator of F if and only if h→ 0
as n goes to infinity (see Yamato [22], Lemma 1). However, if F is not smooth enough
at the boundary points of support the previous kernel estimator FC is a biased estimator
near the boundary of its support, due to so-called boundary effects. In fact, the value of
Bias and Variance of FC at interior point provided by Azzalini [2] are respectively :
for x ∈ [h, 1− h]

Bias(FC(x)) =
1

2
f (1)(x)µ2(k)h2 + o(h2), (3)

and

V ar(FC(x)) =
F (x)(1− F (x))

n
+
h

n
f(x)

 1∫
−1

K2(t)dt− 1

+ o

(
h

n

)
, (4)

where µ2(k) =

∫
t2k(t)dt and f (1) denote the first derivative of f .

While, for x in the right boundary ]1 − h, 1], we can write x = 1 − ch where 0 ≤ c < 1,
then the Bias and Variance of FC at x are respectively:

−hf(1)

−c∫
−1

K(t)dt+ h2f (1)(1)

c2
2
−

c∫
−1

tK(t)dt+ c

−c∫
−1

K(t)dt

+ o(h2), (5)

and

F (x)(1− F (x))

n
+
h

n
f(1)

−c− 2

−c∫
−1

K(t)dt+

c∫
−1

K2(t)dt

+ o

(
h

n

)
. (6)

Proofs of (5) and (6) are provided in Almi & al [1].
In order to improve the theoretical performance of the classical kernel distribution func-

tion estimator when the underlying distribution function F is not smooth enough at the
extreme points of the distribution support, several methods have been proposed for ker-
nel estimation in regression and density function estimation, among them, reflection of
data [16], pseudo-data method [4] and also the boundary kernel method [6]. However, the
boundary problem in kernel distribution estimation is less severe, some recent references
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Koláček & al [9] considered the boundary problem in distribution function estimation in es-
timating ROC curves using the transformation method. Tenreiro[17] proposed a boundary
kernel method for correcting the boundary. Tenreiro [18] and Zhang & al [23] introduced a
new class of boundary kernels for distribution function estimation problem. Almi & al [1]
proposed two estimators the first estimator based a self elimination between modify theo-
retical Bias term and the classical kernel estimator itself and the second estimator is kind
of a generalized reflection method involving reflecting a transformation of the observed
data.

The main subject of this paper is to propose a new estimator for kernel distribution
function to improve the right boundary effects. The organization of the rest of this article
is as follows. In the next section, we provide an explicit formulation and theoretical
properties of the proposed estimator. In section 3, we support the theoretical results with
Monte Carlo simulations to investigate the performance of the estimators in terms of Bias
and MSE at the first, then comparing the graphical presentation of the behavior of the
estimators. In addition, an application on real data as an example, when the data near
the right boundary. Some concluding remarks are given in Section 4.

2. Main results

In order to derive our main results, we shall need the following assumptions.

• A1 : F is twice continuously differentiable in a neighborhood of x.
• A2 : The kernel k is a probability density, nonnegative, bounded, symmetric, and

has compact support [−1, 1].

• A3 : f(1) 6= 0 and h <
1

2
.

If x is a point in the right boundary, we can write x = 1 − ch where c ∈ [0, 1[, our
proposed estimator has the form

FG (x) =
1

n

n∑
i=1

K

(
x−Xi

h

)
+

1

n

n∑
i=1

K

(
x− 2 + g(Xi)

h

)
, (7)

where g is a transformation which is selected from a parametric family, we assume that
verify:

• H1 : g is a continuous and monotonically increasing function from [0, 1] to [0, 1].

• H2 : g−1 exist and verify g−1(1) = 1 and g(1)(1) = 1 where g−1 and g(1) denoting
respectively the inverse and the first derivative function of g.

It is clear that there are various possible choices available for the function g that satisfy
the above assumptions. Based on extensive simulations, we choose the following transfor-
mation g which well adapts to various shapes of distributions and improve the Bias

g(t) = t− t(1− t)2
−c∫
−1

K(t)dt, c ∈ [0, 1[ .

The following theorem provided the asymptotic properties of our estimator, it showing

that the Bias reduced to order o(h2) while the Variance is of order o

(
h

n

)
.
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Theorem 2.1 (Asymptotic properties). Assume that the above assumptions A1, A2, A3,
H1 and H2 hold, then the Bias and Variance of FG(.) at x = 1− ch respectively are

h2

c2
2
f (1)(1) +

−c∫
−1

K(t)
(

2cf (1) (1)− f (1) g(2) (1) (t+ c)
)
dt− f (1) (1)

c∫
−c

tK (t) dt

+o
(
h2
)
,

(8)
and

F (x)(1− F (x))

n
+
h

n
f(1)

−c+

c∫
−1

K2(t)dt+

−c∫
−1

(
K2(t)− 2K(t)

)
dt

+ 2

−c∫
−1

K(t)K(−2c− t)dt

+ o

(
h

n

)
.

(9)

Proof. Under above Assumptions, for x ∈ ]1− h; 1], we have

E (FG(x)) = E

(
K

(
x−Xi

h

))
+ E

(
K

(
x− 2 + g (Xi)

h

))

=

1∫
0

K

(
x− z
h

)
f(z)dz +

1∫
0

K

(
x− 2 + g (z)

h

)
f(z)dz

= I1 + I2.
We will calculate each term separately.

By using the change of the variable and the property K(t) = 1 − K(−t) on the first
term, we have

I1 =

1∫
0

K

(
x− z
h

)
f(z)dz

= h

1
h
−c∫
−c

K (t) f(x− th)dt

= h

1
h
−c∫

c

K (t) f (x− th) dt+ h

c∫
−c

K (t) f (x− th) dt

= h

1
h
−c∫

c

(1−K (−t)) f (x− th) dt+ h

c∫
−c

K (t) f (x− th) dt

= h

1
h
−c∫

c

f (x− th) dt− h

1
h
−c∫

c

K (−t) f (x− th) dt+ h

c∫
−c

K (t) f (x− th) dt

= F (1− 2ch)− h
−c∫

−1
h

+c

K (t) f (x+ th) dt+ h

c∫
−c

K (t) f (x− th) dt.

Depending on a Taylor expansion of the function f(.) and F (.) and at x = 1, we have

f(x+ th) = f(1)− h(c− t)f (1)(1) + o(h),
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f(x− th) = f(1)− h(c+ t)f (1)(1) + o(h),

and

F (1− 2ch) = F (1)− 2chf (1) +
(2ch)2

2
f (1) (1) + o

(
h2
)
. (10)

By the existence and continuity of F (2)(.) near 1, we obtain for x = 1− ch

F (1) = F (x) + chf (x) +
(ch)2

2
f (1) (x) + o

(
h2
)
,

f (x) = f (1)− chf (1) (1) + o (h) ,

f (1) (x) = f (1)(1) + o (1) .

By substitution in (10), we find

F (1− 2ch) = F (x)− chf (1) +
3

2
(ch)2 f (1) (1) + o(h2). (11)

Therefore

I1 = F (x)−hf(1)

−c∫
−1

K(t)dt+h2f (1)(1)

3

2
c2 +

c∫
−1

(c− t)K(t)dt−
c∫
−c

(c+ t)K(t)dt

+o(h2).

By the same procedure, we calculate the second term I2

I2 =

1∫
0

K

(
x− 2 + g (z)

h

)
f(z)dz.

= h

−c∫
−

1

h
−c

K (t)
f(g−1 (1 + h (t+ c)))

g(1) (g−1 (1 + h (t+ c)))
dt,

we use a Taylor expansion of the function
f(g−1(.))

g(1)(g−1(.))
, we obtain

I2 = hf(1)

−c∫
−1

K(t)dt+ h2
−c∫
−1

K(t)
(

(c+ t)(f (1)(1)− f(1)g(2)(1)
)
dt+ o(h2).

At last, we combine I1 and I2 terms to get the Bias of FG .
For the Variance term, we have

nV ar(FG (x)) = V ar

(
K

(
x−Xi

h

)
+K

(
x− 2 + g(Xi)

h

))

= E

[
K

(
x−Xi

h

)
+K

(
x− 2 + g(Xi)

h

)]2

−
[
E

{
K

(
x−Xi

h

)
+K

(
x− 2 + g(Xi)

h

)}]2
= J1 − J2,
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where

J1 = E

[
K

(
x−Xi

h

)
+K

(
x− 2 + g(Xi)

h

)]2

= E

[
K

(
x−Xi

h

)]2
+ E

[
K

(
x− 2 + g(Xi)

h

)]2
+ 2E

[
K

(
x−Xi

h

)
×K

(
x− 2 + g(Xi)

h

)]
,

=

1∫
0

K2

(
x− z
h

)
f(z)dz +

1∫
0

K2

(
x− 2 + g(z)

h

)
f(z)dz

+ 2

1∫
0

K

(
x− z
h

)
K

(
x− 2 + g(z)

h

)
f(z)dz

= J11 + J12 + J13.
We will calculate each term separately.

J11 =

1∫
0

K2

(
x− z
h

)
f(z)dz

= h

1

h
−c∫

−c

K2 (t) f (x− th) dt

= h

c∫
−c

K2 (t) f (x− th) dt+ h

1

h
−c∫

c

K2 (t) f (x− th) dt

= h

c∫
−c

K2 (t) f (x− th) dt+ h

1

h
−c∫

c

(1−K (−t))2 f (x− th) dt,

= F (1− 2ch) + h

−c∫
−1

h
+c

K2 (t) f (x+ th) dt− 2h

−c∫
−1

h
+c

K (t) f (x+ th) dt

+ h

c∫
−c

K2 (t) f (x− th) dt.

Depending on a Taylor expansion (11) we have

J11 = F (x)− chf (1) + hf (1)

c∫
−1

K2 (t) dt− 2hf (1)

−c∫
−1

K (t) dt+ o (h) .
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Similar computation give

J12 =

1∫
0

K2

(
x− 2 + g(z)

h

)
f(z)dz

= h

−c∫
− 1

h
−c

K2 (t)
f(g−1 (1 + h (t+ c)))

g(1) (g−1 (1 + h (t+ c)))
dt

= hf (1)

−c∫
−1

K2 (t) dt+ o (h) .

J13 =

1∫
0

K

(
x− z
h

)
K

(
x− 2 + g(z)

h

)
f(z)dz

=

−c∫
−1

K (−2c− t)K(t)
f(g−1 (1 + h (c+ t)))

g(1)(g−1 (1 + ch+ th))
dt

= 2hf (1)

−c∫
−1

K (t)K (−2c− t) dt.

We combine J11, J12 and J13 to obtain J1.
With the expression of the Bias(FG), we find

J2 = F 2(x) + o(h).

�

Corollary 2.1. Under the assumptions of Theorem (2.1), the asymptotically optimal band-
width in the sense of minimising the leading terms in the expansion of the MSE is

f (1)

c− c∫
−1

K2 (t) dt−
−c∫
−1

K2 (t) dt+ 2

−c∫
−1

K (t) dt− 2

1∫
−c

K (t)K (−2c− t))dt


4n

1

2
c2f (1) (1) +

−c∫
−1

K (t)
(

2cf (1) (1)− f (1) g(2) (1) (t+ c)
)
dt− f (1) (1)

c∫
−c

tK (t) dt

2



1/3

3. Simulation study

In this section, we compare the performance of our proposed estimator with the clas-
sical kernel estimator and three existing estimators based on boundary modified kernel
distribution function method summarized in the coming subsection. It is well known that
the choice of the kernel function k is less important than the choice of the bandwidth h,
in this section we use three different bandwidth selection methods, the first one consist on
the plug on approach of Polansky & al denoted by hBp, the second one consist on the use
of the Altman & al denoted by hAl, the third one consists on the use of Cross-validation
approach of Bowman denoted by hCv for Epanechnikov kernel.

The comparison was made by calculating the Bias and MSE through generating a sample
size of n = 200 from distribution with support [0, 1] listed in table (1) and we did thousand
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replication for each estimator. Let θ̂i be estimator of θ based on the ith generated random
numbers of size n. Then the Monte Carlo estimator of the Bias and MSE are

Bias(θ̂) =
1

r

r∑
i=1

(
θ̂i(x)− θ(x)

)
, (12)

MSE(θ̂) =
1

r

r∑
i=1

(
θ̂i(x)− θ(x)

)2
. (13)

Table 1. Distributions used in the simulation study

Description Density for x ∈ [0, 1]

D1 Truncated Normal(0,1) exp(−x2/2)/
1∫
0

exp(−x2/2)dx

D2 Truncated Exponential(2) 2exp(−2x)/(1− exp(−2))
D3 Kumaraswamy(4,2) 8x3(1− x4)
D4 Beta(3, 1) 3x2

3.1. Existing estimators used in comparison. In this subsection, we mentioned ex-
isting boundary modified kernel distribution function estimator given by

FBj (x) =
1

n

n∑
i=1

KBj

(
x−Xi

h

)
, j = 1, 2, 3.

where KBj is a kernel distribution function.

Tenreiro [18] and Zhang & al [23] found that kBj must satisfying
1∫
−c

c+ x

c
kBj (x)dx = 1,

we choice three boundary kernel which are

kB1(t) = 6 (1− t) (c+ t)
1

(1 + c)3

(
1 + 5

(
1− c
1 + c

)2

− 10
1− c

(1 + c)2
t

)
, −c ≤ t ≤ 1.

kB2(t) = 12
1− t

(1 + c)4

(
3c2 − 2c+ 1

2
− t (1− 2c)

)
, −c ≤ t ≤ 1.

kB3(t) =
1

(1 + c)3
(3(1 + c2)− 6t2), −c ≤ t ≤ 1.

Each boundary kernel gives a different estimator, which we denote by FBj where j = 1, 2, 3.

Remark 3.1. If c = 1, we have

kB1(t) = kB2(t) = kB3(t) =
3

4
(1− t2)1[−1,1](t).

The simulation results measuring the performance of the different estimators for each
distribution are summarized in the following table (2).
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Table 2. Performance Bias(MSE) of distributions values at x = 1, Results
are re-scaled by the factor 0.001.

FC FB1 FB2 FB3 FG

D1

hCv

hAl

hBp

6.452(6.919)

6.419(5.548)

6.371(5.825)

5.844 (6.867)

6.533 (6.547)

5.971(6.725)

5.772 (6.866)

6.436 (7.478)

5.971(4.725)

5.623 (6.636)

6.224 (6.154)

5.971(4.725)

3. 812 (4.034)

4.234 (4.255)

4.055(4.123)

D2

hCv

hAl

hBp

2.106(2.170)

2.938(2.963)

2.671(2.225)

1.102(2.104)

1.464(2.549)

1.119(2.108)

1.101(2.124)

1.457(2.108)

1.131(2.106)

1.096(2.100)

1.128(2.328)

1.106(2.057)

0.470(1.527)

0.826(1.937)

0.529(1.734)

D3

hCv

hAl

hBp

0.480(0.712)

0.707(0.478)

0.480(0.712)

0.4706(0.693)

0.473(0.698)

0.471(0.694)

0.470(0.693)

0.472(0.696)

0.470(0.693)

0.472(0.692)

0.478(0.696)

0.474(0.693)

0.469(0.691)

0.472(0.695)

0.470(0.692)

D4

hCv

hAl

hBp

6.725(5.039)

7.154(5.259)

6.892(5.156)

5.325(4.687)

6.325(4.921)

6.012(4.698)

4.728(3.697)

4.733(3.782)

4.732(3.795)

4.283(3.423)

4.326(3.457)

4.301(3.424)

3.754(3.245)

3.897(3.012)

3.757(3.015)

Depending on the table, we can see that our proposed estimator is well performed when
comparing with each considered estimators mentioned previously in the sens of Bias and
MSE also, followed by boundary modified kernel estimators mentioned respectively FB3 ,
FB2 and FB1 , even when we change the bandwidth value. the effect of the hCv method
is more efficiency than hBp which better than hAl. Also, we can see for density D3 which
takes the value zero at the right endpoints f(1) = 0 is free of boundary problem in such
a case.

To support our numerical results, we present the graphical representation of the esti-
mators when the data near the right boundary of the support

(a) Performance of truncated normal distribution (b) Performance of truncated exponential distribu-
tion
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(c) Performance of Kumaraswamy distribution (d) Performance of Beta distribution

Figure 1. Performance of considering estimators at the right boundary of
the support

3.2. Real Data Application. The aim of our application is to compare the performance
of the previously kernel estimators respectively Fn, FC , FG and FBj where j = 1, 2, 3, by
using the cross-validation bandwidth selection method for two real data sets. The first
data X consists of the number of deaths due to COVID-19 recorded from February 29,
2020 to December 31,2020 in 50 states of the United States of America which gives 305
observation taken from www.nytimes.com, where Xi ∈ [0, 3808]. The second data sets take
of [5], which rises from the 1989 total charges in thousands of dollars for 33 patients at
a Wisconsin hospital, is used. Each patient was female, aged 33–49, and admitted to the
hospital for circulatory disorders where Xi ∈ [2.337, 3.041]. The support can be mapped
onto the unit interval by the transformation Zi = (Xi − X(1))/(Xn − X(1)), where X(1)

and X(n) are repectively the minimum and the maximum of the data.
The results reveal that the proposed kernel estimator of the distribution function per-

forms well when compared with the estimators previously mentioned.

4. Conclusions

In conclusion, the proposed estimator allowed us to reducing the Bias of kernel distribu-
tion function estimator and obtain better results when comparing with boundary modified
kernel methods, it has a smaller Bias in the sense of convergence rate, specifically when the
data near the right boundary, these results similar for each bandwidth selecting method.
In generally, we can say that the cross-validation bandwidth reveals a very good per-
formance fellowed by the plog in approach of Polansky and Baker. A simulation study
achieves these results as well.
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Figure 2. Performance of considering estimators at the right boundary of
the support for real data sets
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