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OPTIMAL MANAGEMENT OF A PREY-PREDATOR SYSTEM IN A

POLLUTED ENVIRONMENT WITH EFFORT SHARED BETWEEN

POLLUTION REDUCTION AND HARVESTING

S. D. ZAWKA1∗, SRINIVASU P. D. N.2, §

Abstract. This paper is concerned with the optimal management of a prey-predator
system in a polluted environment with effort allocated between pollution reduction and
prey harvesting. The growth rates of species and, consequently, the economic gain from
the resources are impacted by the pollutants released from external sources (such as in-
dustrial wastes). We assume that both the prey and predator populations have economic
value. While revenue due to the prey comes from it’s harvesting, it is from tourism that
the revenue due to the predator is realised. The aim is to determine the optimal alloca-
tion of the total effort capacity between harvesting and pollution reduction to maximize
the revenue. First, we study the qualitative behavior of the dynamical system and its de-
pendence on the control parameter viz., effort, followed by an application of Pontryagin’s
maximum principle to solve an optimal harvesting problem. The results indicate that
the system has three possible equilibrium solutions whose existence and stability heavily
depend on the level of effort allocation made between harvesting and pollution reduc-
tion. It underlines that the effort allocation plays vital role in determining the eventual
state of the system viz., permanence or extinction of the species. The result also shows
that the optimal harvesting policy under pollution reduction efforts (as compared to one
under no pollution reduction) calls for employing a lower level of optimal effort, resulting
in higher resource stock levels and increased income. On the other hand, when the stock
benefit of the predator rises, the optimal harvest effort falls, leading to increased stock
levels in both the species.
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1. Introduction

Environmental pollution has become one of the key influencing variables that should
be taken into consideration when managing renewable resources. Pollutants released from
external sources (such as industrial wastes, sewage, agricultural runoff etc.) are well
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known to threaten the survival of exploited ecologically-interdependent populations (such
as prey and predator populations). The simultaneous effects of pollution, exploitation,
and interdependence make such stocks more vulnerable to depletion, cause a significant
decline in the yield, and may end up with extinction of the species. Therefore, optimal
management of such resource stocks with pollution control seems to be crucial to ensure
the persistence and productivity of the ecosystem.

Voluminous literature is devoted to presenting the effect of pollutants on a single species
as well as ecologically-interdependent populations [10, 12, 13, 14, 15, 16, 17, 19, 28, 29].
A considerable number of studies present the simultaneous effects of exploitation and pol-
lutants on the prey-predator system [8, 9, 18, 20, 22, 23, 34]. In particular, the work
presented in Das et.al [8] deals with the prey-predator dynamics in the presence of pol-
lutants (released from some external sources such as industrial wastes) and nonselective
harvesting.

Despite the threats to the survival of the species and the negative effect on the eco-
nomic benefits from the resource, studies on the optimal management of prey-predator in
a polluted environment rarely considered pollution control as an alternative mechanism to
enhance the productivity and hence the economic benefit from such stocks. The authors
in [21, 25, 30, 31, 35, 32] discussed the dynamics of exploited single and competing species
with pollution control activities. While the studies in [25, 30, 31] deal with the optimal
exploitation of single-species populations in a polluted environment with various pollution
control mechanisms, the most recent contribution in [35] focuses on the coexistence of
harvested two-species competition systems in a polluted environment with pollution con-
trol. To the best of our knowledge, no other literature seems to exist that deals with the
optimal management of a harvested prey-predator system with effort allocated towards
pollution control.

This study examines optimal management of a harvested prey-predator system in a
polluted environment. Here, we consider bifurcating the overall effort capacity so that a
portion of it is utilised for pollution reduction and the remaining is utilised for harvesting
and study the consequences of such bifurcated allocation of efforts on the system dynamics.
Ultimately, we derive an optimal division of the effort capacity that maximises revenue
to the sole owner. In this work, we assume that only prey is harvested and that the
predator’s stock has monetary worth in its native habitat. In other words, the owner
of the resource has monitory gains from harvesting of the prey population as well as
from the presence of the predator. The latter indicates the income derived from the
predator’s stock in its natural environment, such as through tourism [25, 32]. In the light of
aforementioned factors, we investigate the existence of distinct equilibria and dependence
of their stability on division of the effort. This is followed by solving an optimal harvesting
problem to maximize the net economic revenue from optimally allocating effort towards
pollution reduction and prey harvesting. The considered optimization problem takes into
consideration the stock benefit to the sole owner from the presence of the predator.

The paper is organized as follows. A coupled prey-predator equations that characterize
their dynamics in the presence of prey harvesting and pollution reduction activity followed
by formulation of an appropriate optimal harvesting problem are presented in the section
2. The analysis of steady-state equilibria, including their dependency on effort as a control
parameter and maximum sustainable yield, are addressed in Section 3. The considered
optimal harvest problem is solved in section 4, followed by a presentation of numerical
simulations in section 5, and concluding remarks in section 6.
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Table 1. Parameters associated with the model and their descriptions.

Symbol Description

r Intrinsic growth rate of prey.
K Environmental carrying capacity of prey
x0 Initial biomass of prey
y0 Initial biomass of predator
b The rate at which the prey is consumed by predator per unit time
α1 The coefficient of toxicity to the prey
α2 The coefficient of toxicity to the predator
β Conversion factor
c The birth rate of predator in the presence of prey population
η Natural death rate of predator
q Catchability coefficient
α Conversion factor
Emax Total effort capacity
τ Price per unit harvest
δ Discount factor
ρ Maximum stock benefit
σ Half saturation constant

2. Mathematical Problem

Consider a prey-predator system being managed by a sole owner in a polluted envi-
ronment. The growth rates of both prey and predator species are impacted by external
pollutants (such industrial wastes). Das et.al [8] studied a mathematical model of the prey-
predator system in the presence of environmental pollution and nonselective harvesting,
given by

ẋ = rx
(

1− x

K

)
− bxy − α1x

3 − q1Ex, x(0) = x0 > 0

ẏ = cxy − α2y
2 − q2Ey − ηy, y(0) = y0 > 0,

where x(t) and y(t) represent the prey and predator populations at time t, respectively.
In the present study, it is assumed that only the prey population is harvested, whereas

the predator population contributes to the revenue through its presence in its natural
environment. A shark, for example, can be considered as a predator and smaller fish as
its prey. A recent study found that sharks are an integral part of international tourism
and are more valuable in the oceans (via tourism) than on the market (via harvesting)
[33]. Therefore, it seems reasonable to associate harvesting with prey alone and linking
predator with with its tourism value. In order to improve the rates of growth of the prey
and predator and to increase the revenue from the harvesting activity as well as from the
stock of the predator through tourism, the sole owner, who is experiencing a decline in the
revenue from the resource due to the presence of pollution, wishes to allocate a portion
of the total effort capacity towards pollution reduction rather than using the entire effort
for harvesting alone.

Let Emax (which is measured in monetary units) denote the total effort capacity which
can be utilized for harvesting and reduction of pollution per unit time t. Suppose E and
Emax−E represent the effort allocation between prey harvesting and pollution reduction,
respectively. Following [8], the dynamics of the prey-predator system under the aforesaid
allocation of effort towards prey harvesting (E) and pollution reduction (Emax − E) can
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be represented as

ẋ = rx
(

1− x

K

)
− bxy − α1x

3 + α1β(Emax − E)x3 − qαEx, x(0) = x0 > 0

ẏ = cxy − α2y
2 + α2β(Emax − E)y2 − ηy, y(0) = y0 > 0.

In the above equations, the terms α1β(Emax − E)x3 and α2β(Emax − E)y2, respectively
represent the improvement in the growth rates of the prey and predator as a result of
allocating (Emax − E) effort capacity towards pollution reduction. It is assumed that
0 < β(Emax − E) < 1 for positive constant β, and hence

0 < [1− β(Emax − E)]α1 ≤ α1 and 0 < [1− β(Emax − E)]α2 ≤ α2.

αE represents the harvest effort (measured in units of vessels where α is the conversion
factor). For biological reasons, all parameters and constants in the considered model are
assumed to be positive, and their description is given in Table 1.

It is worth noting a few points regarding the decay terms (−α1x
3 and −α2y

2) that
are present in the mathematical model under consideration. The presence of pollutants
in the environment is assumed to affect the growth rates of both prey and predator.
The prey is directly impacted, while the predator which consumes the infected prey is
indirectly impacted. As a result, the effects on the two species will differ, demanding
careful consideration of the appropriate decay terms in the model. Numerous authors
have represented the growth responses of prey and predator towards pollution in various
ways. According to [2, 7, 8, 22, 27], a cubic term (−ux3) on the prey and a quadratic term
(−vy2) on predator were taken into consideration as done in this article. The authors
in [23, 34] considered a quadratic term (−ux2) on the prey and a linear term (−vy) on
the predator. Some studies consider a linear term on both the prey and predator [11].
The primary justification for considering the said cubic term in the prey equation and the
square term in the predator equation is as follows. The pollution in the environment has
direct and strong influence on the growth rate of prey, whereas it influences the predator’s
growth rate in an indirect manner. In other words, the impact is more severe on the
prey than on the predator with severity being represented by the order of the considered
term. This becomes evident from the computation of the first and second variations of
the decay terms with respect to the respective population density. In the case of prey,

they are d(α1x3)
dx = 3α1x

2 > 0 and d2(α1x3)
dx2

= 6α1x > 0, whereas for the predator, they

are d(α2y2)
dy = 2α2y > 0, d2(α2y2)

dy2
= 2α2 > 0. The order of these variations indicates the

strength of the impact of pollution with changes in population density.
Now, consider the benefit to the owner from the resource. The owner has twofold benefit

from the resource: the harvesting benefit from the prey and the stock benefit from the
predator. The latter one stands for the income from the resource stock (predator) in its
natural place such as through tourism [25, 32]. Although the predator is not harvested,
prey harvesting indirectly affects the predator. Thus, it is crucial to ensure a reasonable
level of predator population in the environment to reap the stock benefit besides the prey
harvesting benefit. Therefore, to get the maximum possible revenue from the resource,
we need to determine the optimal allocation of the available effort capacity between prey
harvesting and pollution reduction as the latter helps in improving population levels of the
prey and the predator. First, let us consider the harvesting benefit of the prey population.
The gross harvesting benefit (denoted by B(x,E)) is given by

B(x,E) = τqαEx,
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where τ is the price per unit catch. Next, the stock benefit to the owner due to presence
of the predator (denoted by S(y)) is given by

S(y) =
ρy

σ + y
,

where ρ > 0 and σ > 0 represent the maximum stock benefit and half-saturation constant,
respectively. Clearly, the function S has the following properties:

S ∈ C2, S′ > 0, S′′ < 0.

Hence, the instantaneous net revenue from harvesting and the stock benefit (denoted by
R(x, y, E)) becomes

R(x, y, E) = B(x,E) + S(y)− Emax.
Therefore, the present value of the total net revenues (denoted by PV ) is

PV =

∫ ∞
0

e−δtR(x, y, E)dt.

The aim is to determine the proper allocation of the total effort capacity (Emax) between
harvesting (E) and pollution reduction (Emax − E) so that the net total revenue gets
maximized subject to the given dynamic constraints on the stock. Formally expressed,
the problem is as follows:

max
E∈[0,Emax]

∫ ∞
0

e−δt
(
ταqEx+

ρy

σ + y
− Emax

)
dt (1a)

subject to (1b)

ẋ = rx
(

1− x

K

)
− bxy − α1x

3 + α1β(Emax − E)x3 − qαEx, x(0) = x0 > 0 (1c)

ẏ = cxy − α2y
2 + α2β(Emax − E)y2 − ηy, y(0) = y0 > 0 (1d)

x(∞), y(∞) free, (1e)

where δ is the discount factor. The above problem is an optimal control problem in two
state variables (x, y) and one control variable (E). Solving problem (1) is to finding
out the optimal allocation of the total effort capacity between harvesting and pollution
reduction such that the integral in (1a) is as large as possible.

If no action is taken to reduce pollution, the aforementioned optimal control problem
takes the following form:

max
E∈[0,Emax]

∫ ∞
0

e−δt
(

(ταqx− 1)E +
ρy

σ + y

)
dt (2a)

subject to (2b)

ẋ = rx
(

1− x

K

)
− bxy − α1x

3 − qαEx, x(0) > 0 (2c)

ẏ = cxy − α2y
2 − ηy, y(0) > 0 (2d)

x(∞), y(∞) free. (2e)

This is figuring out the optimal harvesting effort (Eo) so that the integral in (2a) is at its
maximum given the constraints.

Before proceeding forward to solve the above optimal harvest problem, we wish to
initially study the dynamical behavior of the system (1c)-(1d) and its dependence on
the control parameter E. The following lemma discusses the existence, positivity and
boundedness of solutions for the system under consideration. The proof is quite simple,
and hence omitted (ref. [24]).
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Lemma 2.1. The initial value problem (1c)-(1d) admits a unique solution (x(t), y(t))
which is positive for all t ≥ 0. Moreover, the solutions are uniformly bounded.

3. Steady-state Analysis

In this section we shall study the existence and stability behaviour of equilibrium so-
lutions of (1c)-(1d). To reduce the number of parameters and simplify the analysis we
non-dimensionalise the system (1c)-(1d). The transformations:

X =
x

K
, Y =

b

r
y, T = rt (3)

reduce the system (1c)-(1d) to the equivalent form

dX

dT
= X

(
1−X − Y − φX2 − qE

)
dY

dT
= Y

(
cX − ψY − η

)
,

(4)

where

φ =
α1K

2

r
, ψ =

α2

b
, q =

qα

r
, c =

cK

r
, η =

η

r

with

α1 = α1[1− β(Emax − E)], α2 = α2[1− β(Emax − E)]. (5)

Clearly, the isoclines of (4) are

Y = 1−X − φX2 − qE, and Y =
cX− η
ψ

and the feasible equilibrium solutions of (4) are given by (0, 0) - the trivial equilibrium
point, (X, 0) - the axial equilibrium point, (X∗, Y ∗) - the interior equilibrium point, where

X = X(E) =
−1 +

√
1 + 4φ(1− qE)

2φ

X∗ = X∗(E) =
−(1 + c

ψ
) +

√
(1 + c

ψ
)2 + 4φ(1− qE + η

ψ
)

2φ

Y ∗ = Y ∗(E) =
cX∗(E)− η

ψ
.

From the above expressions we observe that signs of 1− qE, 1− qE + η

ψ
and cX∗(E)− η

play crucial role in determining the existence of foresaid equilibrium solutions. Let Ē and
E∗, respectively, stand for solutions of

1− qE = 0 (6)

and

cX∗(E)− η = 0. (7)

It can be observed that cX(E) − η < 0 for E ∈ (E∗, Ē), X = X∗ whenever Y ∗ = 0 i.e.,
when E = E∗. We have the following result regarding existence and local stability of
various equilibrium solutions for the system (4).
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Theorem 3.1 (Existence and Local Stability).
(a) The system (4) always admits the trivial equilibrium (0, 0) and it is asymptotically
stable as long as E > Ē.
(b) The axial equilibrium point (X, 0) comes into existence when E < Ē. Emergence of
axial equilibrium point destabilises the trivial equilibrium point and (X, 0) is asymptotically
stable as long as E ∈ (E∗, Ē).
(c) The interior equilibrium point (X∗, Y ∗) comes into existence when E ∈ [0, E∗). Emer-
gence of interior equilibrium point destabilises the axial equilibrium and the interior equi-
librium point is always asymptotically stable.

Proof. The Jacobian matrix associated with the system (4) is

J(X,Y ) =

[
1− 2X − Y − 3φX2 − qE −X

cY cX − 2ψY − η

]
.

J(X,Y ) evaluated at (0, 0) gives

J(0, 0) =

[
1− qE 0

0 −η

]
.

Clearly, the trivial equilibrium is locally asymptotically stable whenever 1− qE < 0, and
hence (a).
J(X,Y ) evaluated at the axial equilirbium (X, 0) gives

J(X, 0) =

[
−(X + 2φX

2
) −X

0 cX − η

]
.

Clearly, (X, 0) is locally asymptotically stable since cX − η < 0 and hence (b).
J(X,Y ) evaluated at the interior equilibrium (X∗, Y ∗) gives

J(X∗, Y ∗) =

[
−(X∗ + 2φX∗2) −X∗

cY ∗ −ψY ∗
]
.

The trace and determinant of matrix J(X∗, Y ∗) are given by

traceJ(X∗, Y ∗) = −(X∗ + 2φX∗2)− ψY ∗

detJ(X∗, X∗) =
(
X∗ + 2φX∗2

)
ψY ∗ + cX∗Y ∗.

Clearly, traceJ(X∗, Y ∗) < 0 and detJ(X∗, Y ∗) > 0. Consequently, both the eigenvalues
of J(X∗, Y ∗) are negative, and hence (c). �

The following result establishes the global stability behaviour of the equilibria.

Theorem 3.2 (Global Stability).
(a) The interior equilibrium of the system (4) is globally stable whenever it is locally stable.
(b) The axial equilibrium of the system (4) is globally stable whenever it is locally stable.
(c) The trivial equilibrium of the system (4) is globally stable whenever it is locally stable.

Proof. We know that, whenever the system (4) admits interior equilibrium then it is unique
and locally asymptotically stable. To establish its global asymptotic stability, it suffices to
verify the Bendixson – Dulac’s criterion which ensures that there is no closed orbit in the
positive quadrant of the XY -plane. To verify this criterion, let us consider the functions
F (X,Y ), G(X,Y ), and B(X,Y ) as follows:

F (X,Y ) = X(1−X − Y − φX2 − qE)

G(X,Y ) = Y (cX − ψY − η)
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and

B(X,Y ) =
1

XY
.

For the above choice for B we have,

∇(BF,BG) = − 1

Y
− 2

φX

Y
− ψ

X
< 0

for all (X,Y ) inside the positive quadrant of the XY -plane. Hence no closed orbit exists
inside the positive quadrant of the XY -plane. This proves (a). The proofs for items (b)
and (c) are similar, and hence the theorem. �

Parallel results for the original system (1c)-(1d) can be obtained using inverse mapping
for the transformations defined in (3), thus moving back to the original variables x, y, t.
Hence forth we shall discuss about the system (1c)-(1d).

3.1. Maximum Sustainable Yield. Let (x∗(E), y∗(E)) be the unique interior equi-
librium of the system (1c)-(1d) for each E in [0, E∗). For the given effort allocation
(E,Emax − E), the sustainable yield (SY ) is given by

SY (E) = qαEx∗(E). (8)

We observe that increasing the harvest effort (E) in (8) may not improve the yield in
general. The reason is, an increase in the harvest effort causes a decrease in the depollution
effort (Emax − E). This may cause a reduction in the resource stock, and hence possibly
the yield. Thus, it is quite important to determine the proper effort allocation between
harvesting and pollution reduction in order to maximize the yield.

The maximum sustainable yield (MSY) is nothing but the maximum of the function
SY (E) on a closed and bounded interval [0, Emax]. Since SY (E) is continuous on [0, Emax],
it certainly attains its maximum at EMSY giving rise to MSY. Here, the maximum may
occur either at the boundary (i.e., EMSY = Emax) or in the interior 0 < EMSY < Emax.
In the latter case, EMSY must satisfy the equation dSY

dE = 0 i.e.,

x∗(E) +
dx∗(E)

dE
= 0. (9)

4. Optimal harvest Strategy

In this section we shall consider the optimal harvest problem formulated in section 1
and solve it by using Pontryagyn’s Maximum Principle and hence derive optimal harvest
strategies for the sole owner to maximize his revenues. Recall the optimal harvest problem
(1):

max
E∈[0,Emax]

∫ ∞
0

e−δt
(
ταqEx+

ρy

σ + y
− Emax

)
dt

subject to

ẋ = rx
(
1− x

K

)
− bxy − α1x

3 − qαEx, x(0) = x0 > 0

ẏ = cxy − α2y
2 − ηy, y(0) = y0 > 0

x(∞), y(∞) free,
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where α1 and α2 are given in (5). By the maximum principle [6, 26], the Hamiltonian
H(x, y, E, µ1, µ2, t) associated with the problem (1) is

H(x, y, E, µ1, µ2, t) = e−δt
(
ταqEx+

ρy

σ + y
− Emax

)
+

µ1

[
rx
(

1− x

K

)
− bxy − α1x

3 − qαEx
]

+ µ2
[
cxy − α2y

2 − ηy
]
,

and the associated adjoint differential equations are

µ̇1 =− e−δt(τqE)− µ1
[
r(1− 2x

K
)− by − 3α1x

2 − qαE
]
− µ2cy,

µ̇2 =− e−δt
(

σρ

(σ + y)2

)
+ µ1bx− µ2 [cx− η − 2α2y] ,

where µ1 and µ2 are the adjoint variables. Because of the presence of the term e−δt we
need the following transformation:

λi(t) = µi(t)e
δt, i = 1, 2 and H = Heδt,

where H is known as the current value Hamiltonian defined by

H
(
x, y, E, λ1, λ2

)
=
[
τqαEx+

ρy

σ + y
− Emax

]
+

λ1
[
rx
(

1− x

K

)
− bxy − α1x

3 − qαEx
]

+ λ2
[
cxy − α2y

2 − ηy
]
.

(10)

λ1, λ2 are known as the current value adjoint variables satisfying the following differential
equations:

λ̇1 = δλ1 −
∂H
∂x

and λ̇2 = δλ2 −
∂H
∂y

i.e.,

λ̇1 = δλ1 − τqαE − λ1
[
r(1− 2x

K
)− by − 3α1x

2 − qαE
]
− λ2cy (11a)

λ̇2 = δλ2 −
σρ

(σ + y)2
+ λ1bx− λ2

[
cx− η − 2α2y

]
. (11b)

Since (1) is linear in the control variable E, the optimal control is a combination of bang-
bang and singular controls [5]. First, we wish to determine the optimal steady state
(singular) solution. Now, differentiating the current value Hamiltonian (10) (partially)
with respect to E gives

HE = τqαx− λ1(α1βx
3 + qαx)− λ2α2βy

2,

and hence the switching function (s(t)) is given by

s(t) = ταqx− λ1(α1βx
3 + qαx)− λ2α2βy

2. (12)

In the case of singular solution, we have s(t) = 0 i.e.,

ταqx− λ1(α1βx
3 + qαx)− λ2α2βy

2 = 0. (13)



S. D. ZAWKA, SRINIVASU P. D. N.: OPTIMAL MANAGEMENT OF A PREY-PREDATOR ... 825

Now, the unique interior steady state of the four dimensional dynamical systems (1c),
(1d), (11a) and (11b) is

x∗(E) =
−
(
r
K + bc

α2

)
+

√(
r
K + bc

α2

)2
+ 4α1(r − qαE + bη

α2
)

2α1

y∗(E) =
cx∗ − η
α2

λ∗1(E) =
ατqE(δ + α2y

∗) + cσρy∗

(σ+y∗)2

(δ + r
Kx
∗ + 2α1(x∗)2)(δ + α2y∗) + bcx∗y∗

λ∗2(E) =
1

cy∗

[
(δ +

r

K
x∗ + 2α1(x

∗)2)λ∗1 − τqαE
]
.

(14)

Substituting (x∗(E), y∗(E), λ∗1(E), λ∗2(E)) into (13) gives the following equation (involving
E as the only variable)

ταqx∗ − λ∗1x∗[α1β(x∗)2 + qα]− α2βλ
∗
2(y
∗)2 = 0. (15)

Then, a solution Ê of (15) satisfying 0 < Ê < Emax (together with part (c) of Theorem

3.1) is singular control to the given problem. If Ê is unique, it becomes an optimal
singular control, otherwise the optimum is one with the largest integral value along with

the associated optimal solution
(
x∗(Ê), y∗(Ê)

)
[3, 4].

With the optimal solution
(
x∗(Ê), y∗(Ê)

)
identified, it remains to reach this solution

optimally from the given initial state (x0, y0). Since the problem under consideration is

linear in the control variable, the solution (x∗(Ê), y∗(Ê)) can be reached by a bang-bang

control [26]. If we denote the bang-bang control by Ẽ(t), then

Ẽ =

{
0, for s(t) < 0
Emax, for s(t) > 0,

(16)

where s(t) is the switching function given in (12). Let T be the time taken to reach the
optimal solution from the given initial state. Then, the optimal harvest strategy (denoted
by Eo(t)) becomes

Eo(t) =

{
Ẽ, for 0 ≤ t < T

Ê, for t ≥ T.
(17)

If
(
x̃(t), ỹ(t)

)
denotes the optimal approach path from the initial state (x0, y0) to the

optimal solution (x∗(Ê), y∗(Ê)), and

(x̃(t), ỹ(t)) =

{
(xm(t), ym(t)), for E = 0
(xM (t), yM (t)), for E = Emax,

(18)

then the optimal stock path (denoted by (xo(t), yo(t))) is

(xo(t), yo(t)) =

{
(x̃(t), ỹ(t)) for 0 ≤ t ≤ T
(x(Ê), y(Ê)) for t ≥ T. (19)

Here (xm(t), ym(t)) and (xM (t), yM (t)) are the trajectories of dynamical system (1c)-(1d)
for E = 0 and E = Emax, respectively, and their respective initial conditions.

Note that, if the optimal singular control (Ê) is employed right from the given initial

state (x0, y0), by the global stability behavior of (x∗(Ê), y∗(Ê)), the corresponding stock
path (also known as suboptimal path) approaches the optimal solution asymptotically.
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Table 2. Values of parameters and constants

Symbol Parameter Values Unit

r (δ ) 0.85 (0.02) 1/year
K (σ) 4.5× 104 (1× 104) ton
x0 (y0) 1000 (200) ton
b (c) 1× 10−5 (8× 10−6) 1/ton/year
α1 1× 10−9 1/ton2/year
α2 6× 10−5 1/ton/year
β 5× 10−7 1/vessel
η 7× 10−2 1/year
q 5× 10−4 1/vessel/year
α 1× 10−3 vessel/US$
Emax 1.8× 106 US$
τ 1× 104 US$/ton
ρ 5× 105 US$/year

5. Numerical Simulations

This section uses numerical simulations to illustrate the study’s important findings.
The values given to parameters correspond to the potential values that can be found in a
fishery [1, 5].

With the set of parameter values in Table 2, we have from (7), E∗ = 1.2578×106. Thus,
for each E ∈ [0, E∗) the system (1c)-(1d) has a unique interior equilibrium (x∗(E), y∗(E))
which is globally asymptotically stable. The equilibrium points are shown in Figure 1.
The figure further highlights the maximum sustainable yield (MSY) and the corresponding
harvest effort EMSY = 9.0289 × 105 (US$). The associated steady state is (14361, 1357)
(tons). In the figure one can also see the maximum(minimum) equilibrium stock levels
for both prey and predator. Also, from (6) we have, Ē = 1

q = 1.7 × 106. Thus, system

(1c)-(1d) has a unique axial equilibrium (x(E), 0) for each E ∈ [0, Ē) which is globally
asymptotically stable only when E ∈ (E∗, Ē). The stable axial equilibrium corresponding
to E = 1.5 × 106 is shown in Frame (b) of Figure 2. If we consider E = 1.75 × 106 > Ē,
the trivial equilibrium (0, 0) is globally asymptotically stable (see Frame (c) of Figure 2).

Consider the optimal harvesting problem given in (1). For the given set of parameter

values in Table 2, and using (15), the optimal singular harvest effort is Ê = 9.0732× 105

(US$) (Emax − Ê goes for pollution reduction) and the associated optimal steady state is
(14290, 1334) (tons). The stability of this equilibrium can be seen in Frame (a) of Figure

3. The corresponding sustainable yield (SY (Ê)) is 6483 (tons). Note that this yield is
less than MSY (6483.2) as it was expected. The optimal control, which is a combination
of bang-bang and singular controls is given by

Eo(t) =


0, for 0 ≤ t < 13.7
Emax, for 13.7 ≤ t < 14.69

Ê, for t ≥ 14.69

Graphs of the optimal control and the associated stock path are present in Figure 3. The
figure also presents the suboptimal path. While the optimal approach path reaches the
singular solution in 14.69 (years), it takes 150 (years) for the suboptimal path to enter
a neighborhood with sufficiently small radius from the given initial state (see Frame (b)
of Figure 3). Using (1a), the present value of the total net revenues on the time period
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Figure 1. This four-quadrant figure depicts the interior equilibrium
(x∗(E), y∗(E)) and the corresponding sustainable yield SY (E) for each
effort E ∈ [0, E∗]. For the given effort E ∈ [0, E∗], the yield can be
seen in quadrant I and the associated steady state in Quadrant III (via
quadrant IV). We observe that MSY occurs at some critical effort level
(0 < EMSY < Emax). With increased harvesting effort E, the prey and
predator stocks both decline. Particularly, the largest(smallest) prey stock
occurs when E = 0(E = E∗). The largest (smallest) predator stock level is
also visible. Remember that we only examined 0 ≤ E ≤ E∗ for which the
interior equilibrium existed while creating this graph.

[0, 100] (years) is

PV =

∫ 13.7

0
e−δt

(
ρym

σ + ym
− Emax

)
dt+

∫ 14.69

13.7
e−δt

(
(ταqxM − 1)Emax +

ρyM
σ + yM

)
dt

+

∫ 100

14.69
e−δt

(
ταqÊx∗(Ê) +

ρy∗(Ê)

σ + y∗(Ê)
− Emax

)
dt = 2.533× 109 (in US$)

with the associated pollution reduction cost (PRC) given by,

PRC =

∫ 13.7

0
e−δt(Emax)dt+

∫ 14.69

13.7
e−δt(0)dt+

∫ 100

14.69
e−δt(Emax − Ê)dt

= 4.895× 107 (in US$).

The revenue along suboptimal solution is computed as follows. If (xso(t), yso(t)) denotes
the suboptimal path, the present value for the first 100 years is given by

PV =

∫ 100

0
e−δt

(
ταqÊxso +

ρyso
σ + yso

− Emax
)
dt = 2.399× 109 US$.

We observe that the present value along the optimal solution is greater than that of the
suboptimal solution in the given period, and this will be true for all future times. The
present value curves for both optimal and suboptimal solutions are shown in Figure 4.

To see how the profit from the stock influences the optimal harvesting policy, let’s look
at the parameter values in Table 2 with the exception of ρ. The optimal singular effort

Ê and the associated stock levels for different value of ρ are determined and are given in
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(c) The trivial equilibrium is stable for E = 1.75× 106

Figure 2. The figure depicts the stability of the distinct equilibrium points
of the system (1). Frames (a), (b) and (c) stand for the interior, axial and
trivial equilibrium points, respectively (with all the parameter values in
Table 2 are unchanged except for E).

Table 3. According to the table, we can see that as stock benefits rise, harvest efforts fall,
leading to higher stock levels of both prey and predator. It emphasizes the need to harvest
less when the benefit due to the stock (predator) is greater, which ensures availability of
sufficient food to the predator.
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(b) Optimal approach path

Figure 3. This figure depicts the optimal control and associated optimal
approach path. The optimal control (Eo) follows E = 0 for 0 ≤ t < 13.7,

E = Emax for 13.7 ≤ t < 14.69, and then E = Ê for t ≥ 14.69 (see
Frame (a)). The optimal approach path (starting from the initial state
(1000, 200)) first takes the trajectory (xm(t), ym(t)) for 0 ≤ t ≤ 13.7, and
then (xM (t), yM (t)) for 13.7 ≤ t ≤ 14.69 to reach the optimal solution
(14290, 1334) (see Frame (b)). The suboptimal path (xso(t), yso(t)) takes
t = 150 (years) to enter a neighborhood of (14290, 1334) with sufficiently
small radius.

Recall the optimal control problem (2), where pollution reduction was not taken into
account. In this instance, the optimal solution can be constructed using the same method-
ology as that of (1). For the time period [0, 100], discounted net income is given by

PV =

∫ 12.75

0
e−δt

(
ρym

σ + ym

)
dt+

∫ 13.81

12.75
e−δt

(
(ταqxM − 1)Emax +

ρyM
σ + yM

)
dt

+

∫ 100

13.81
e−δt

(
[ταqx∗(Ê)− 1]Ê +

ρy∗(Ê)

σ + y∗(Ê)

)
dt = 2.288× 109 (in US$),
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Figure 4. The figure shows the revenue curves for both the optimal and
suboptimal solutions to (1). We notice that for a limited length of time
(only), the revenue from the suboptimal solution predominates during the
initial phase. However, after the two curves cross, the situation is reversed,
and the revenue from the optimal solution takes over in all subsequent
periods.

Table 3. The table presents the optimal harvest efforts and the associated
optimal steady states for different values of ρ (with all the other parameters
in Table 2 are unchanged).

SNO ρ Ê x∗(Ê) y∗(Ê)

1 5× 104 9.0815× 105 1.4277× 104 1330
2 5× 105 9.0732× 105 1.4290× 104 1334
3 5× 106 8.9887× 105 1.4425× 104 1377

where the optimal harvest strategy is

Eo(t) =


0, for 0 ≤ t < 12.75
Emax, for 12.75 ≤ t < 13.81

Ê = 9.9664× 105, for t ≥ 13.81.

Clearly, sharing the total effort capacity in an optimal manner between harvesting and
pollution reduction enhances net revenue. Figure 5 depicts the revenue curves for the
two alternative scenarios, and Table 4 provides a summary of the optimal values for the
two alternative scenarios. Note that the yield and revenue are higher than they would
be in the case when there is no pollution reduction, despite the fact that less optimal
harvesting effort is spent. It is because of the increased resource stock levels brought
about by investments in pollution abatement.

6. Conclusion

In this work, we investigated the effects of stock benefits and pollution control efforts on
a prey-predator system in a polluted environment. The growth rates of both species are
impacted by pollutants from outside sources, which reduces the resource’s value. In order
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Figure 5. This figure presents the revenue curves for the optimal harvest
problems (1) and (2). Observe that the revenue associated with (2) is
superior during the initial period for a finite amount of time, and that once
the curves cross, the situation is reversed, with the income associated with
(1) dominating in all subsequent times.

Table 4. The table presents the optimal harvest effort (Ê), the associated

optimal steady state (x∗(Ê), y∗(Ê)), optimal sustainable yield (h(Ê)), and

the instantanuous net revenue R(Ê) for problems (1) and (2), with the
numerical values in Table 2.

SNO Ê x∗(Ê) y∗(Ê) h(Ê) R(Ê)
Problem (1) 9.0732× 105 1.429× 103 1.334× 103 6.483× 103 6.3089× 107

Problem (2) 9.9664× 105 1.147× 103 362 5.714× 103 5.6159× 107

to increase the productivity of the resource, we have thought about assigning a portion
of the overall effort capacity to reducing pollution. We have investigated the existence
and stability of the equilibrium solutions. The system has three equilibrium solutions,
which we have identified as the trivial, axial, and interior equilibrium points. Interior and
axial equilibria are stable for each harvesting effort below some critical effort levels E∗

and Ē, respectively. Trivial equilibrium is stable for each harvest effort above Ē, and it
loses stability at the birth of the axial equilibrium point. The stocks of prey and predator
decrease with the harvest effort (E) and increase with the depollution effort (Emax −E).
At a certain critical effort level, the sustainable yield reaches its maximum (where a part
of the effort capacity goes for pollution reduction).

In order to maximize the benefits of harvesting prey and the stock benefit of the preda-
tor(in its natural environment), we also investigated the optimal harvest problem on an
infinite horizon and constructed the optimal harvest policy. When the stock benefit is
more alluring, it is preferable to harvest less, according to the optimal strategy. We have
addressed a comparison of the optimal values for two different scenarios by considering
the optimal harvest problem in the absence of any efforts towards pollution reduction. We
found that the optimal harvest strategy with pollution control calls for reduced harvesting
effort, resulting in higher stock levels of both prey and predator. The sustainable yield
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and revenue are higher than they would be without pollution reduction, despite the lower
harvest effort. It is a result of significantly increased resource stocks as a result of invest-
ments in pollution control. Therefore, taking into account the effort allocation towards
pollution reduction may result in a clean environment with a higher resource stock and
better revenue.
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