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GLOBAL EXISTENCE OF SOLUTIONS FOR A WEAKLY COUPLED
SYSTEM OF THREE DAMPED ¢-EVOLUTION EQUATIONS

A. MOHAMMED DJAOUTT, §

ABSTRACT. In this paper our purpose is the study of the Cauchy problem for weakly
coupled system of three semi-linear damped o-evolution equations. Using (L™ N L2) —IL?
linear estimates combined with fractional Gagliardo-Nirenberg inequality. We find the
so-called (p1 — p2 — ps) planes for the global (in time) existence. Moreover, from the
interaction between the parameters mi,m2, ms € [1,2) in one hand and o1,02,03 = 1
in the other hand. We proved lower bounds for powers nonlinearities similarly to the
modified Fujita exponent, which are in the form of planes (p1 —p2), (p1 —ps) and (p2 —ps).

Weakly coupled system; o-evolution equation; frictional damping, visco-elastic damping,
Additional regularity; Global existence.

AMS Subject Classification: 35152, 35B44.

1. INTRODUCTION

Let us consider the Cauchy problem for weakly coupled system of three semi-linear
damped o-evolution equations :
g + (—A) 7w+ up + (—A) 7wy = |w|Pt
v + (—A)20 + v + (—A)20 = [ul?, (1)
wy + (—A)Bw + wy + (—A) 7w, = |v[P?

equipped with the initial data
u(0,z) = up(x), uy
v(0,2) = vo(x), vy ,
w(0,z) = wo(x), w(0,z) = wi(x),
where
t= 07 T € Rna 01,02,03 = 17 P1,Dp2,P3 > 1.
Here, we used the usual expressions for the time derivatives

ou 0%u

= g(f,ﬂf), Uyt -

= =5 (ta), (ta)e[0,00) xR

ui=u(t,x), wu:
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The Laplacian operator (—A)? is defined as usual through the direct and inverse Fourier
transform F, F~! as :

(=) 1)) = F (1€ F () (©) @), (@,€) e R xR, [¢] =

|D|* with a = 0 stand for the pseudo-differential operators with symbol |¢].
It is clear that the problem (1) is a generalization to the single semi-linear o-evolution
equation with frictional u; and visco-elastic (—A)%u; damping

g + (—A)7u + up + (—A)%u = |ul?,
(2)
u(0,2) = ugp(z), ue(0,2) = up(z).
Before state the main results of global (in time) existence to (1), let us recall some previous
results for (2). The important goal in the study of single semi-linear equations or weakly
coupled systems of two equations is to derive the so-called critical exponent or critical
(p — q) curve respectively. Indeed, the critical exponent pcrit or critical pe.; or critical
(p — q) curve is exactly the threshold between two important results, the first one is the
global (in time) existence of small data solutions for any p > perit or h(p,q) < n, while
the second one is the blow-up of solutions (no global solution) for p < pei¢ or n < h(p, q),
where h is an appropriate function of p and ¢. Here, the relation h(p,q) < n is called
(p — q) plane.
For (2) several papers [4], [6] and [7] have derived the modified Fujita exponent where o =
1. In [10] the general case o > 1, the authors derived the following form of pe,it(n, m, o):

2mo
pcm't(nymaa) =1+ T? m e [172)7 (3)

where m is the parameter of additional L™ regularity of the data (ug,u1)
(ug,u1) € (H® n L™) x (L* n L'™).

We remark that the frictional damping has the dominant influence, then p.i(n, m,o) in
(3) is exactly the critical exponent to

u + (—A)7u + up = |ul?,
w(0,x) = ug(x), ue(0,2) = uy (). (4)

For more details the reader can see [3] if m = 1. Let us now consider the weakly coupled
system :

U(Ow"f)) =up(z), w(0,2) =muq(x),’ (5)

where 01,00 > 1, p,q > 1. In [11] the authors studied the global (in time) existence of
small data solutions by using (L' n L?) — L? linear estimates to the corresponding linear
equation, they shown also the influence of o1, o9 in the critical (p — q) curve. Finally,
they prove also the optimality of (p — ¢) curve by using the test function method. For
more detail about this method one can see [2, 5, 9, 10, 11] and reference therein. In this
paper we take different additional regularities of the data, this method is inspired from
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[12] where the author studied the following weakly coupled system

u — Au + b(t)uy = |v|?,

vy — Av + b(t)vy = |ul?,

uw(0,2) = up(z), u(0,2)=wui(x), "
’U(O,.’IJ) = U()(l'), ’Ut(O,.%') = '1}1(IE),

(6)

where b(t) satisfies some suitable conditions. The author used different L™, L™2 regu-
larities for the data in the treatment of global existence (in time) of small data solution.
The authors proved the existence of a lower bounds less than the modified Fujita exponent
which stated in (3). So, motivated by these results our goal is study the Cauchy problem
of weakly coupled systems of three equations (1) under different additional regularities
to get the lower planes than the (p1 — p2), (p1 — p3) or (p2 — p3) planes. That is, we
use different (L™ n L?) — L? linear estimates for solutions to the corresponding linear
equations appeared in (1)

yu + (—A)7y + ye + (=A)%y = 0,
y(oax) = yO(x)’ yt(owr) =W (x)’

(7)

where my, € [1,2) and show the interaction between o1, 09, 03 and mq, ma, m3 which leads
to the global (in time) of small data solution to (1).

2. NOTATIONS

Through this paper, we use the following notations:

e f < g when there exists a constant C > 0 such that f < C'g. This means that
these constants does not play any role in our studies.
e Sobolev spaces (see [2] for more detail)

HO(R™) i= { f € S'R™) : | f oy = |1+ |- PYEF() oy < o0}

e For the sake of simplicity, we omit the notation R in all spaces and write L', L™,
L?, HY instead of L'(R™), L™(R"), L?(R") and H°(R"). In particular, we write
the admissible data spaces as follows:

AZZ" = (H"’C A Ll) X (L2 A Lmk), k=1,2,3,
such that if (f, g) € Aj* we have the following norm:

I, Dage = 1 gon + 1F e + Dglpz + glpms -

In Section 3 we state the main results of the global (in time) existence to (1) with
some examples. In the last section we prove our main theorems using linear estimates
(L™ ~ L?) — L? explained as well in the same section before the main proof.

3. MAIN RESULTS

It is naturally that the system behave like one single equation if the power nonlinearities
satisfy the Fujita condition. So, for this reason we consider that two power nonlinearities
not satisfied this condition. This assumptions generate two loss of decay estimates for
(u,v) or (u,w) or (v,w) in order to obtain the (p; — p2 — p3) curve.

Theorem 3.1. Let my,mg,m3 € [1,2) and 01,092,053 = 1 such that

03 < 01 < 09
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and

. { 404 409 403 }
ng = min i
0 2—ms 2—m3 2-—my

With respect to the dimension n we distinguish the following cases:

o for 209 < n < ng, then we assume

2 n 2 n 2 n
— <P ——(F—, —Sps<—(F—, —SP3S —(F-—,
mq n — 203 mo n — 201 ms3 n — 209

o for 201 < n < 209, then we assume

2 n 2 n 2
< b1 < ) < b2 < ) < p3 < 0O,
mq n — 203 mo n — 201 ms

o for 203 < n < 201, then we assume

2 n 2 2
— SpPIS——(F—, —Sp2<® —<p3<D©,
mi n — 203 mo ms3

o forn < 203, then we assume

2 2 2
— <p1 <0, — <Py <00, — Kp3<0n0.
mi m2 ms3
Moreover, we suppose
(2 ms3 2’!7130'3
— Sp1S )
mq mi n
n 1+ po

< 9
205 i =1 (1) i+ (1 )

1+p3+p2ps n

< .
2

There exists a constant € > 0 such that for any data
((xt0, ), (o, vn), (o, w1) ) € B =: ATt x A2 x A

with
Iy = H ((uo, u1), (vo,v1), (wo, w1)> HB <eg,

then there exists a uniquely globally determined (in time) solution

3
(wv,wye [ ] (C ([0, 0), H*) ~ C* ([0, 0), L?) )
k=1
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to (1). Furtheremore the solution satisfies the estimates

[u(t. Ve < (140 %)
fus(t, Yo < (140 5 (F3) 1o
DI a(t, Ve < (148 2 (mrm3)=a 2t
[t )]s < (1+8) %2 (mam3) e
[t ) e < (14 t) % (Fa—8) 1o
D20t Yo < (14 1) Pz (s —3) 48w
fwt, ) < (140 =@,
fwn(t, )]s < (148 % (m3) 1y,
DI w(t, Y < (141 % (w3 ag,

Here, v(p1) represents the loss of decay in comparison with the corresponding decay es-
timates for the solutions u of the corresponding linear Cauchy problems with vanishing

right-hand sides which defined
o Ifp1 < T84 293 then A(p1) = 1 — gl 4+ 50 >0,

my 2msos 2mio3

o [fp =18 4 27”%“, then ~(p1) = €o.

mi
For 6(p1,p2) represents the loss of decay in comparison with the corresponding decay es-
timates for the solutions u of the corresponding linear Cauchy problems with vanishing
right-hand sides which defined

o Jf 12— < 1+p2 , then
f 2o p1P2*1+P2(%7 )%JF(I*ZSZ?)
npo n
6(p1, =1- + >0
(p1,p2) Imioy | 2maoy p2y(p1) )
1
o If gpee = P2 , then

5(P17p2) = €1,
where g and €1 are a sufficiently small positive numbers.

Remark 3.1. The upper bounds n/(n —20y,) with k = 1,2,3 appear due to the application
of the fractional Gagliardo-Nirenberg inequality from Lemma 4.2, while we assume the last
condition (12) to get the same decay estimates for solutions w as those to the corresponding
linear model (7).

Remark 3.2. If we change in Theorem 3.1 the order of 01,02 and o3 for example o9 <
o3 < o1, then we get a similar (by summitry) result to Theorem 3.1, where we feel the
modification in condition (12) and the loss of decay for uw changed to 6(p1,ps3), whereas for
w changed to ~y(p3). In this case there is no loss of decay for v. The same remark if we
take 01 < 09 < 03.

Remark 3.3. If we also change in weakly coupled system (1) the order of power nonlin-
earties, then we get a similar result to Theorem 3.1, where we also feel the modification in

conditions (8)-(12).
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Example 3.1. Let us illustrate the obtained result with an example of a weakly coupled
system of a very well-known doubly damped semi-linear wave equation, that is

u — Au + up — Aug = [wlP*

v — Av + v — Ay = |ulP?,

wy — Aw + wy — Awg = |v|P® .
On the one hand, we can see that the upper bound of p1 can be chosen smaller or larger
than the modified Fujita exponent (3) if ms < my or mg > my, respectively.
On the other hand, one can shows after a straightforward calculations that the (p; — p2)
curve which guarantees global (in time) existence of small data solutions to the following
weakly coupled system

u — Au + up — Aug = o[t

vy — Av + v — Ay = |ulP?,
is exactly similar to that in [12] (or also in [11] when mg = 1). So, in comparison with
second condition in (12) we can feel the nice influence of ma and ms on the (p1 —p2) curve
which is smaller or larger than that in [11], [12] if mg < mg or ms > ma.

To prove these results, we need to show some new linear estimates which are the main
tools for the following sections.
4. LINEAR ESTIMATES

Let us show the derived (L™ n L?) — L? and L? — L? linear estimates proved in [10] for
solution to (7), where the authors chose the data spaces

(yo,y1) € (H” n L™) x (L2 N Lm) , me[l,2).
Proposition 4.1. Let 0 > 1 in (7). For all m € [1,2), the solutions y to (7) satisfy the
following (L™ n L?) — L? estimates
171DIy(t, M pz < 1+ 573 G275 (0, Y1) | (o oy 20—
and the L? — L? estimates
16 1D1*y(t, V12 < (14 8) 73 7190, Y1)l oy priasai-nor
for any a =0, j =0,1 and for all space dimensions n > 1, where [-]*7 = max{0,-}.

For the proof see [10].
In some parts of the proof of our main theorem we need to assume L' regularity for the
initial data yg, then for this reason we prove the following lemma which is important if
the data
(yo,y1) € (H” n LY) x (L* A L™), me [L,2).

Lemma 4.1. Let o > 1 in (7) and m € [1,2). The solutions y to (7) satisfy the following
estimates

_mn (1 1
lyt, e < @+87356G72) (lyolpinze + [vilpmarz) (13)
_n (1 _1)\_
lye(t, Ve s (A48 %G (yolprame + Jyil prazz) (14)
_n (1 1Yy _ 1
NDPy(t, e < A +6)7 %6272 (Jyol prame + [91]pmer) - (15)

Proof. We apply the Fourier transform to the linear equation (7), then we get for any fixed
& € R™ the following differential equation of second order:

Jue + (L+ [EP27)e + [€1779 = 0, 5(0,€) = Jo(€), 9:(0,€) = 51(6),
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where Q(t,f) = f(y)(t,a:)
Straightforward calculations implies that the solution to the above equation can be written
as follows:

(—1)7|¢|2oitaeleP7t 4 (—1)itt|g[2otat

€l alg(t,€) = e o (€)
_1)i|¢|200ae—lEPt —1)itl|glae—t
(Wl el_m;( i

= K(t,8)50(8) + G(t,£)y1(8),
with j =0,1and a =0
In order to estimate the L? norm of the solution and its derivatives in small frequencies
€] < 1, we need only to estimate the L2 norm of K'(¢,£) and L™ norm of G(t,€) where
mo = 2m/(2 — m). Then, we write:

‘§|2U]+aef|§|2"t _,’_( j+1|€’2a+a67t
|l |DIy (¢ H —_ Iyolzs
L2
_|£]20 ; _
|§’203+ae [€] t+( )]+1|£’ae t
+ 1 _ ‘£|20 HyIHLm-
L™o0

Here, we can estimate the above two norms as follows:

(—1)7|¢|2oitaeleP7t 4 (—1)dtL|g[2otat

< (1+t) G0 207 et

1—[¢Pe L

_1\il¢|205+a,—|€|%t _1\i+li¢la,—t )

(=1)7¢] < + (1) gl < Q48 BED-E 4t
— el o

where we used the following inequality:

n a

llefe MK | < (1407 H 75, a0, b>0,n>1, r> 1,

Summarizing, we obtain

11DIy(t, Nz s ((+ D78 F e yol

(4 G e o,
this implies the following desired estimate for low frequencies:

j _n_a 4 L 1 _1y_a 4
1671DIy(t, N2 € (1 +8) 3 2 I yofpr + (1+£) 72 =272 gy pm

_n¢l 1y a
s (14072272 (Jyolr + Jyilzm)

for m € [1,2).
For large frequencies |£| > 1, we use the same procedure as in [10] and the proof of Lemma
4.1 is completed. N

In the following we present two important tools used in the next section. The first one
is the fractional Gagliardo-Nirenberg inequality in general form.

Lemma 4.2. Let 1 < qo,q1,92 < 0, 0 > 0 and s € [0,0). Then, the following fractional
Gagliardo-Nirenberg inequality holds for all y € L n H>%

H|D‘0yH9sa q0,91,92) H Hl —05,5(90,91,92)

[1DPy[ a2 < Lir Lo :
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where
1 1 s
- — =+ = s
0 J(QOaQI7Q2) qo q12 Z € [ 71:|
s mth

The proof can be found in [1]
Lemma 4.3. Let a,be R. Then, it holds

: C(1 + t)~ minfa.b} if max{a,b} > 1,
J (L+t—s)"%(1+s)bds <{ C(1+t)-mntad log(2+¢) if max{a,b} =1,
0 C(1 + t)l-a=b if max{a,b} < 1.

For the proof one can see [2]

5. PROOF OF THEOREMS 3.1

Proof. To prove Theorems 3.1 we will use Banach’s fixed point theorem. We define a
family of Banach spaces {B(T")},., and the operator

S:B(T) — B(T).

For any T > 0, we introduce the Banach spaces B(T) as follows:

ﬁ( [0, 7] H”k)mcl([O,T],L2)>,

k=1
equipped with the usual norm

v, w)aay = s {0407 COM (1 w) + (14 1) 00 My (1, 0)
o<t<T

+M3(t, ’LU)} .

The functions M (t,u), Ms(t,v) and Ms(t,w) are defined with respect to the linear esti-
mates with some loss of decay

Mi(tw) = (14 0% E D) e, ) + (14 BTG D, )
£ 1 075 BT ) Yy 2, e, (16)

on (1 1 1
Dot Mz + (1 + %2552 2 D2, ) o

NI

Ma(t,r) = (1+10)%3 (73

(11 02705 )y, ) e, )
Mytw) = (1405505 ) (e, )12 + (1 + %5 (B~ 2)* 3| D, )|
(11075 55 ) g (1, ) (18)

We know that homogeneous Cauchy problem corresponding to (1) has exactly the following
representation of solution:

ln(tam) = K(f1 (t x) *(x) UO( ) + GU1 (t,l’) *(x) ul(x),
In(t,x) = Koyt T) #(z) V0(T) + Gy (L, T) #(2) v1(2),
ln(tvx) = Ko, (t,x) = (z) wo () + GUs(tvx) *(x) w1 (),
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where #(,) denotes the convolution product with respect to space variable z, and the
kernels Ky, (t, ), Go, (t,x) are defined in the proof of Lemma 4.1. We apply Duhamel’s
principle to obtain the integrals representation of solution to (1)

u(t,z) = t,x J Goy(t = 5,7) (g |w(s,z)|Pds
= 4 (t, +u™(t, x),
v(t,z) = J Goy(t — 8,) *(y) |u(s, z)[P2ds

= vl”(t z) + o™ (t, x),
w(t,x) = "(t,x) f Goy(t — 5,2) #(y) |v(s, ) [P2ds

= wh(t,z) + wl(t, ).

Now, we can define our operator S : B(T') — B(T') by the same formula

ul™ + 4"
(u,v,w) — S(u,v,w) = Ul" + o™
w't + w™

The main goal now is to prove that the operator S satisfies for any (u,v,w) € B(T) and
(u,v,w) € B(T) the following inequalities:

IS (a0, 0)mry S 10, )l + (00, 01) Lagy + | (0, 201) gy

19
s v,y + 00} By + (0 0) By )

I8 (u,v,w) = S(,0,0) |z < |, v,0) — (,0,9) |5,
(I 0, 375 + n<u,v,w>|\’§(; (0, w0) 25+ T w)Hf;;(T% (20)

(a5, @) [ + 17, 0) )

Using linear estimates and the fact that v(p1),d(p1,p2) > 0, we can reduce the proof of
(19) to

™, 0™ ™) pery < 1,0, 0) Gy + 1 v, ) By + 1w, v, 0) 5 gy (21)

To prove (21) we divide the interval [0, ¢] into two sub-intervals [0,¢/2] and (¢/2,t], where
we use from Lemma 4.1 the (L™ n L?) — L? linear estimates if s € [0,¢/2] and L? — L?
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estimates if s € [¢/2,t], then we have
. 4/2 S (1)
[u™ ()2 < f L+t —s) 2l 2/ Jw(s, )P pmo 2 ds

t
n f (s, [P = ds,
t/2

=3
-3
—~
\.Ol-
=
=
N
A
%
<
[\
—~
—_
—+
~
|
»
~—
N
9
i
/N
K
[
S~—
g
—
»
~
]
[y
;
3
[
D
~
]
U
VA

A
%
<
[\
—
—
+
~
\
»
~—
[
Q
=
/
3
|
N
S~—~
N
g
—
»
—~
=
?
&
pJ
=~
M
L
»

[1DI7 " (2, )] 2

t
+ J (L+t—5)72 [lw(s, )] 2 ds,

) Vs, P2 g o s

=,
=
—~
\.ﬁi-
=
=
N
A
S
<
[\
—~
—_
+
~
|
V)
S~—
N
q
Y]
—
3
[\
N

t
N f s, P2 2 ds,
t/2

__n (L _1)_ 4
(14t — )75 (533 u(s, P2 g

=
s
—~
“@F
-
=
[V
N
S—

t
+ J (14t — )" Ju(s, )] 2 ds,
t/2

l
[1DI720™ (&, )] 2 (8, )72 Lo 2 ds

N
%
S
~Z
[ )
—
—
+
~
|
V)
~—
N
q
M)
)
e
N
|
N[
~—
)
s

t
N J (14t —s)72 [[u(s, ) [P2] 2 ds,

) Vo5, VP2 g g

g
2
—
\'@F
=
(V)
N
S —
—
_l’_
o~
|
=
[V
Q
w
/
3
w
[V

t
+ f Ilo(s, )| 2 ds,
t/2

t/2 _on (1 _1)_
[l (8, e < f (1t — ) %5 () (s, )P g g
0
t
n f (Lt — ) Jos, P o ds,
t/2
t/2 _ 11
Pt e < [ (are-s 255 (35 78) 72 Ju(s, )P s g s
0

t
] @ t— s oGl ds
t/2
To control integrals in (22) to (24) we need to estimate the following norms:

Hw(sv ')‘1212?1 ’ H|w(57 _)|p1 ”Lml nL2 = ”w(sa ’)|I[),1’"1P1 + Hw(s, ')‘1212?1 :

(22)

(24)

(25)

(30)
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From the definition of the norm we have
_.n (1 _1)\_1
DI w(s, Yz < (L4 8) %5 (5273 (u, 0,0 | ey, (31)

(s, Yoz < (1+5)" 255 353 w0, 0)] - (32)

Applying the fractional Gagliardo-Nirenberg inequality from Lemma 4.2 we can estimate
the above two norms as follows:

[w(s, ) onins < (14 5) 7" F07 20075 |, 0, 0) [

_ L+L
w(s, )2y, < (1+ )" 757 55 0, w)| [ - (33)
Hence, we conclude
— L.ﬁ_#
o, NP s e S (1 + )55 37075 | (w0, 0) [ (34)
provided that
2 4
— <p; < n forall 203 <n < 75
mi n — 203 2—m
We have
(I+t—s)~ (1+1t) for se[0,t/2], (1+s)~(1+1t) for se[t/2,1]. (35)

Using (35), then we obtain from (34) the estimate for [0,¢/2]

t/2 _L<L_l>
f (L+t—s) 20 2] (s, )P | oy g2 ds <
0

_n (1 1 __mP1 4 n
(1275 () v, )l < T,

_n (1 1 + .
(14t F G )y, iy = g 2,
with sufficiently small positive number &g.
For the second integral over [t/2,t] we can conclude

(1+ 1) T "o | (u, v, w) |22 f ds < (1 + t)' " Fmams * 305 | (u, v, w) |12
PAB) L, U WIB(T)

Using the same way one can obtain

n (1 1
e < (14 8 GO0

_n (L _1)_ 94 )
a2, g < (14 )75 ()70 gy
_n (1) 1
DI )l ga 5 (14 6751 (@A) H 00 )
where o3 < 071.
Similarly to the function w we can after straightforward computations get the desired
estimates for v and w under conditions (8) to (12). Finaly inequality (19) proved. To
prove (20) we assume that (u,v,w) and (u,v,w) belong to B(T'), then we write

p1
B(T)’

nl nl

urt —u
S(u,v,w) — S(a,v,w) = | v™ — o™
wnl _ wnl
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where
t
unl(tvx) - ’anl(t’m) = J GUl (t - S,:L’) *(x) (|w(83$)|p1 - |w(3,x)|p1)d5.
0

Holder’s inequality leads to
lw(s, )Pt = lw(s, )P e < llw(s, ) — (s, )| pro (36)
-1 _ -1
< (ot i, + (s, I, )

where k = mq,2 to control all norms of u™ (t,x) — @™ (t, z) appearing in (16). In fact, we
will use the same approach that we proved from (22) to (24), that is

(™ —a")(t, )2 <

t/2 _L(L_l)
f (]. +t— S) Zop\my 2 |||w(87 ')|p1 - |w(87 _)|p1 HLmlr\L2 ds
0

t
+f lfw(s, )[P* = [w(s, ) ["*| 2 ds,
t/2

(™ = a")e(t, ) e <

[[D7* (™ = a™)(¢, )2 <

t/2 _L<L_l>_l
L (1+t—5) 20272 lw(s, )P — [@(s, )P | o g2 ds

t
[ @rt= s oGl = fats )Pz ds
t/2
Using again the norm of the solution space B(T) and fractional Gagliardo-Nirenberg in-
equality we can estimate the norms in (37) as follows

_ — _
lw(s, ) = w(s, )| prr < (L4 s) a3 2o | (u, v, w) — (4,0, )| pr),

-1

s, 2 < (14 )77 ) 0D 0, )

Lkr1

_ -1 — g b Dy — -1
(s, g 5 (1+ 5) e 5w 0D, g, ) )

Now, we use the same conditions again for p; and n as in (8) to (12) to obtain the loss of
decay for u™ — @™, and in the same way for v™ — o™ and w™ — @w™. Summarizing, the

proof of Theorem 3.1 is completed. O
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